Optimality of Myopic Policy for a Class of Monotone Affine
Restless Multi-Armed Bandits

Parisa Mansourifard’ ,Tara Javidi ,Bhaskar Krishnamacharif

T Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA
! Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA
emails: parisama@usc.edu, tjavidi@ucsd.edu, bkrishna@usc.edu

Abstract— We formulate a general class of restless multi-
armed bandits with n independent and stochastically iden-
tical arms. Each arm is in a real-valued state s € [so, Smaz]-
Selecting an arm with state s yields an immediate reward
with expectation R(s). The state of the arm that is selected
stochastically jumps from its current value s to either s,,q4
or so with probability p(s) or 1 — p(s) respectively. The
state of the arms that are not selected evolve according
to a function 7(s). We prove that if 7(s), p(s), and R(s)
are all monotonically increasing affine functions, and 7(s)
is a contraction mapping, the simple myopic policy, which
selects at each time the arm with the highest immediate
reward, is optimal. This generalizes recent results in the
literature pertaining to arms evolving as two-state Markov
chains.

I. INTRODUCTION

Multi-armed bandit (MAB) are a class of stochastic
decision problems concerned with selecting from several
alternatives at each time, in order to maximize the ex-
pected discounted or average reward obtained over some
horizon, possibly infinite. They arise in a wide range of
settings involving online learning and sequential control
[1]. As the number of options that may be selected
at each time are limited, and the reward process is
typically stochastic, there is a fundamental trade-off in
these problems between exploration and exploitation.

In the classical Bayesian rested multi-armed bandit
problem, a single arm is selected to play at each time,
and a state-dependent reward is obtained. The state of
the played arm changes according to a known Markovian
rule, while the remaining arms remain frozen. In [2],
Gittins showed that the optimal policy has an index
structure for classical MAB. Specifically an index can
be assigned to the state of each arm, and the optimal
policy is playing an arm with the largest index at each
time. This index is referred to as the Gittins index [3].

Peter Whittle introduced the Bayesian restless multi-
armed bandit (RMAB) problem [4], a generalization in
which the state of all arms evolve in Markovian fashion

at each time (even those that are not selected). Whittle
showed that for RMAB, an index policy is not in general
optimal. He proposed a Gittins-like index and showed
it is optimal under a constraint on the average number
of arms that can be played at each time. It has been
shown that this class of problems is in fact PSPACE-
hard [5]. Therefore the literature on these problems has
emphasized the design of approximation algorithms ([6],
[7], [8]) or the identification of special classes of RMAB
for which particular heuristics are optimal ([9], [10],
[11], [12]). Our contribution in this paper is of the latter
type: we describe a general class of RMAB for which a
simple index policy is optimal.

The simplest index policy is the myopic policy which
ignores the impact of the current action on the future
reward, and focuses on maximizing the current reward.
For a specific opportunistic spectrum sensing RMAB
problem arising in the domain of cognitive radio net-
works, recently several researchers ([10], [11], [12])
have shown that the myopic policy is optimal under
certain conditions.

In this work, we formulate and consider a general
class of restless multi-armed bandits with n independent
and stochastically identical arms. Each arm is in a real-
valued state s € [Sg, Smaz]- Selecting an arm with state s
yields an immediate reward with expectation R(s). The
state of the arm that is selected stochastically jumps from
its current value s to either s,,q, Or sg with probability
p(s) or 1 — p(s) respectively. The state of the arms that
are not selected evolve according to a function 7(s). We
show that if 7(s), p(s), and R(s) are all monotonically
increasing affine functions, and 7(s) is a contraction
mapping, the myopic policy is always optimal.

Our result is a significant generalization of the work
in [10], [11] and [12], as the conditions under which a
myopic policy is found to be optimal in those papers
correspond to a specific setting of our formulation.
Specifically, [10], [11] and [12] address a problem in



which the arms can be in “good” or “bad” state and
s is the conditional probability of jumping to the good
state, S = Po1, Smaz = P11. Then p(s) and R(s) are
both simply equal to s, and 7(s) has a particular affine
linear form obtained from a Bayesian belief update that
satisfies the contraction criterion whenever the Markov
chain for each arm is positively correlated.

In [13], the authors consider a class of reset processes
that is related to our formulation. They show that the
Whittle index can be computed for this class in closed
form and is equivalent to the myopic policy, and present
new results on its optimality in the asymptotic regime
when the ratio of the number of arms selected at each
time to the total number of arms tends to zero. They also
extend prior results on optimality of the myopic policy
in the finite regime for 2-state Markov chains, allowing
for time-inhomogeneous chains and time-varying arm
constraints. In contrast, our work focuses on the opti-
mality of the myopic policy in the finite regime for a
larger class of problems than two-state Markov chains.

The remainder of this paper is organized as follows. In
Section II, we formulate our problem. In Section III, the
optimal policy and the myopic policy are described. In
Section III, we prove that in our case the myopic policy
is optimal. Finally we conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider a restless multi-armed bandit problem in
which only one arm can be played at each time. Assume
there are n independent and statistically identical arms.
Each arm is in a state changing over time, either played
or not. After playing an arm, a reward can be achieved
as a function of the state of played arm. The problem
is to find an optimal policy of sequentially playing
arms which maximizes the expected discounted reward
achieved over finite horizon.

The finite horizon is denoted by 7" and time steps are
indexed by ¢t = 1,2,...,T. The state of arm j at time
t, is given by s;(t) € R,j = 1,...,n, and the vector
5(t) = [s1(t), 82(t), ..., sn(t)] denotes the state of the
system at time ¢. We have the following assumptions:

o The state of the arms can be any real number
between sg and S, the lowest and the highest
achievable state, respectively, i.e. so < 5 < Spmaq-

o The expected reward collected by playing the arm
a at time t, is a function of the state of that arm,
denoted by R(s,(t)).

o After playing the arm a, its state jumps tO Saz
with probability p(s,(t)); otherwise it jumps to sg.
Then p(s) is the probability of jumping from state
5 t0 Smao Which is a function of the state of played
arm.

o The state of not-played arms will be changed as a
deterministic function of their states, i.e. s;11(t) =
7(s;(t)), 7 # a.

Briefly the state transition of the arms upon playing arm
a is governed by the following:

Sj(t + 1)
Smax Ww.p. p(Sj (t))’ lfj =a
=4S wp. 1 —p(s;(t),iff j=a
T(s;(t)) wp. Lif j#a
Vi=1,..,n, (D

For compactness we use an operator I' for the state
evolution of all arms described by (1) in a vector format.
T is applied on the state vector 3(¢), upon playing arm
a, as follows:

I(5(t),a)
_ {[T(s%‘l(t)), Smazs 75001 (D)] Wp. p(sa(t))
(5171 (0) 50,750 ()] wp. 1= plsa(t),
(2)
ok

where 57(t) is the vector [s;(t),...,sk(t)], and
T(E?(t)) = [1(s5(t)), ..., T(sx(¢))], for 1 < j <k < n.

We assume the player uses a Markovian deterministic
policy 7 which maps the current state vector, 5(¢), to the
action of selecting a particular arm at time ¢. We denote
this policy by the vector 7 = [m(1),7(2),...,m(T)]
where 7(t) = a € {1,2,..,n} means that the arm
a is selected to play at time ¢. This is not restrictive
because the current state vector is a sufficient statistic for
the entire of observation history due to the Markovian
dynamics of the underlying system.

The problem is maximizing the total discounted ex-
pected reward achieved in a finite horizon, over all
admissible policies 7. This maximization problem is
written as follows:

T

max JF(s) = max B[ 87" s (1))[5(1) = 3],
t=1

3)

where 0 < 8 < 1 is the discount factor and 5 is the
initial state of the system. Note 5 is equal to 57 where we
drop both the subscript and the superscript for notational
simplicity. R(sx(;)(t)) is the immediate expected reward
collected by playing arm 7(¢).

III. OPTIMAL POLICY AND THE MYOPIC POLICY

The optimal policy is the policy 7* which maximizes
JZ(5) in (3). Note an optimal policy exists since the
number of admissible policies are finite. This problem



may be solved using dynamic programming (DP) and
the following recursive equations:

Vr(s) = _max R(sq), 4)

,,,,,

= max {R(s.)

a=1,2,....,n

+ Bp(sa)‘/t+1(7(§tllil)> SmawaT(gngl))

+ 5(1 - p(sa))vt-&-l (T(g?_l)a 50, T(§Z+1))}’
t=1,2,...T -1, (5)

where V;(3), is the value function, or the maximum
expected remaining reward accrued starting from time
t when the current state is 5. V,.(5),a = 1,...,n,
is the expected remaining reward accrued by playing
arm a. it has two parts, the immediate expected reward
obtained in time step ¢, and the maximum expected
remaining reward starting from time ¢ + 1 with the
states updated according to the action a. Note, for all
t=1,..,T, Vi(5) = max, JT_, (5) with probability
1. In particular, V;(5) = max, J7(5).

A policy 7* is optimal if and only if for ¢t =1,..., T,
a = 7*(t) achieves the maximum in (4). and (5)
Because computing the optimal policy for a RMAB can
be computationally intractable, there is a motivation to
study the performance of simpler, possibly sub-optimal
policies. One of the simplest policies is the myopic
policy, which ignores the impact of the current action
on the future reward. It focuses solely on maximizing
the expected immediate reward. For problem (3), the
myopic policy under state § = [s1, S2, ..., S,] is given
by

R(sa). (6)

IV. OPTIMALITY OF MYOPIC POLICY

In this section, we will show that the myopic policy
is optimal under the following conditions:

CI:p(s), R(s), and 7(s) are monotonically increasing
functions of the state s. A function X (s) is monotoni-
cally increasing if

X (s1) > X(s2) Vs1 > sq, @)

C2: p(s), R(s), and 7(s) are affine functions of the
state s, ie., they are in the form of py + %s,
a, + b,s and a, + b;s, respectively.

C3: 7(s) is a contraction mapping, i.e.,

IT(s1) — T(s2)| < [s1 — 82| Vs1,82. (8)

So b, < 1. Intuitively, this property implies that the state
of an arm, that is not played for a long time, converges

to a steady state s* € [Sp, Smaz), (as per Banach fixed
point theorem, [14]).
Using CI, the myopic policy of (6) is simplified to

7*(5) = arg
a

ax Sq. 9
,2,...,m

The implementation of the myopic policy is as fol-
lows. We take the initial state $(1) and select an arm
with the highest state. In subsequent steps, we will play
the same arm if its state stays in S;,4,. Otherwise, it
is moved to the lowest priority of playing and we will
play other arm with the highest current state. Since C/ is
satisfied for 7(s), the ordering of the states of not-played
arms is preserved.

Assume Wy(sy,...,s8,),t = 1,..,T indicate n-
variable functions with a recursive representation as
follows:

Wt(517 ceey Sn) = R(Sl) + 5])(81)Wt+1(5mar, T(gg))
+ B(L = p(s1)) Wiz (7(5771),80),  (10)

which is equal to the total expected reward earning by
playing the arm with the lowest index at each time. If
the state of played arm jumps to sg, we will put it in
nth index, unless keep it in the first index and repeat
playing it for the next step. The state of other arms will
be changed as (2).

Our main result is summarized in the following the-
orem:

Theorem: Under conditions CI-3, and b, <
1 . . . . . .
(e C— the myopic policy is optimal, i.e. if we
sort the states such that s; > s9 > ... > s, then we
will have:

Wt(slvgg_la Si, §?+1) > Wt(5i7 512_17 S1, 5?—0—1)3
Vt,0 <t <T, V8§=[s1,..., Sn] (11)
Proof: To prove the theorem, we will use backward
induction on ¢. The optimality of the myopic policy at
time 7' is straightforward from (4). Assuming satifying
(11) at times t,t + 1,...,7", we prove some equalities
and one inequality, given by lemmas 1-4. In lemma 1
and 2, we show the symmetry and affine linearity of
W;(3). In lemma 3, we drive a simple expression for
the difference between the W, functions achieved by
switching the playing order of different arms. In lemma
4, we prove that if the state of one arm at time ¢ is
changed, the difference between new W, function and
the previous one is less than an upper-bound. Using the
lemmas, we will show that (11) holds at ¢ — 1, as well.



Lemma 1: Wy(3) is an affine function of the states
and the following equality holds:

AW (517" 5,5700) + (1= NW(s) L8, 57,0)
= Wt(gjlil, )\S + (1 - )‘)Slv 5?—&-1)

Vj=1,2,..nV\ (12)

Proof:  Affine linearity of W;(3) is obvious from
(10), and C2. m

Lemma 2: Wy(5) has the symmetry property, i.e.,

—_j—1 — _j—1 —
Wi(s, 85,8, 870) = Wils', 85,5, 57,)

V1i<i<j<n. (13)

Proof: Since the arms are stochastically identical,
exchanging the index and the state of the playing arm
with another arm will not change W,. |

Lemma 3: For any 7 = 1,...,n, we have:

Wt(817‘§75717 Siy g?Jrl) - Wt(8i7 géila S1, §?+1)
= (>\1 - Al) X [Wt(Ua 512_17La 5?—&-1)

_Wt(lﬁggi%U? g?«}l)]’ (14)

where,

U:Til(‘smar)a L:Til(SO);
si=NU+(1-N)L,

SofL <
U-L —

(152)
(15b)

Smam*L
<l
NS oL

(15¢)

Note 7! is the inverse of the function 7.
Proof: From (12) and using (15b), we have:

Wi(s1,557 ", 84,8001)
= WU, 55", 55,80 )
+ (1= A)Wi(L, 35 s, 541)
= MNW(U, 551U, 80 )
+ (1= \)We(U, 8571, L, 54 1))
+ (1= A)NW(L, 851, U, 574)

+ (L= X\)Wi(L,85 ' L, 5% )] (16)

After computing W (s;, §§*1, S1,5p41) in the same way
and subtracting it from W;(s1,55 ',s;,87), due to
(13) the similar terms are cancelled, and the result
follows. ]

lemma 4: If we change the state of ¢th arm at time t, the
following upper bound hold for the difference between

W; functions:

Wt(*gli_lﬁsiv 5?—1—1) - Wt(gi_lv S;’ 5?-1-1)
R(r"!(ss)) = R(T""'(s}))
1- 5(pmaw _pO)

_ (Bbe) " bu(s1 — 5)
1- B(pmaa: —Po)
Vt=0,1,..,T,

< gt

(17)
if s; > 5.

Note pmnqr and po represent the simplified notations
for p(Smax) and p(sq), respectively.

Proof: The proof is inductive. For time T it is
straightforward from (4) and the fact that p,,,4.. —po < 1.
Assuming the inequality (17) holds for ¢ + 1, for time ¢
we have:

Wt(gi_l, Si, g?—&-l) - Wt(gi_lv Sg’a g?—&-l)
= Bp(s1) [Wes1 (Smaz, 7(85 ), 7(s0), 7(5741))
~ Wer1 (Smaz, 7(85 ), 7(57), 7(5741))]
+ B(1 = p(s1)) Wira (7(55 1), 7(s1), 7(5741), 50)

- Wt+1(7(§éil)aT(S;)aT(g;ﬁ-l)vSO)] (1821)
(Bb7)" " br (7 (1) — 7(s7))

= ﬁp(SI) 1- 5(pmax - pO)

450 = plon)) LS AT 2T g

1-— 5(pmax - pO)
We get (18a) from (10). Then, from CI for p(s) and
(17) at time t 4 1, we get (18b). Then we have:

Wt(giilvsiv g?—i—l) - Wt(giila 3;7 §?+1)
(ﬁbf)i_lbrbT(Si - 5;)

< p(81) 1-— /B(pmaac - po)
ey (B b (s = )
FA=re)) T Ty
i—1 P
< (86 b5 = s7) (195)

1- 5(pmaw - pO)
The equality (19b) is achieved from C2, i.e. b, < 1. H

Two functions in the right side of (14) at time ¢ — 1
can be computed from (10), as following:

Wi (U, 551 L, 50 )
= R(U) + Bp(U)Wi(Smaz, 7(55 1), 50, T(3141))

+ ﬁ(l - p(U))Wt(T(Eé_l), 50, T(E;L—&-l)’ 80)7
(20a)

Wtfl(lﬁ 5371’ U’ ‘§;L+1)
= R(L) + BP(L)Wt(smara T(gé_l); Smazx, T(g?_i,_l))

+ ﬁ(l - p(L))Wt(T(ng_l)a Smax s T(§?+1)7 SO)a
(20b)



where we substitute 7(L) and 7(U) with so and S;az.
respectively, as defined in (15a). Then by substituting
(20a) and (20b) in (14), we obtain:

Wt—l(Slvgé_laSif?-H)_Wt 1(3u32 81,5?“)
= (A = A)IR(U) — R(L)
+Bp( )Wt(smamv 1))‘9077—( z+1))

)7505 (i+1)’30)
1)>smam (erl))]
)

- Smax, T (::—1) )
(21a)

- ﬁp( )Wt (smaxa

(53
+ AL = pU)Wilr(55
7(55
= B(1 = p(L))We(7 (5

= (M = A\)[R(U) = R(L)

— B(L = p(U)Wi(r(55"), $mazs T(5741), 50)
— Wi(r(5571), 50, 7(5741)5 50)]

— Bp(L)Wi(Smaz, 7(55 ), Smaw, T(5741))

- Wt(smama 7(5271)7 S0, T(E?Jrl))“

+B(pU) = p(L)We(smaa (55 1), 50, 7(541))
— Wt(T(Eg_l),smax,T(Eﬁl),so)]. (21b)

(21b) follows from straightforward manipulations. Ap-
plying (17), we obtain:

Wt71(817§;7175i7§;3r1) - Wt71(3i7§§71a S$1,8741)
> (A = A)[R(U) = R(L)
_ . br(smaw - SO)
5<1 p(U)>1 7ﬂ(pmam *pO)
. br(smam - SO)
ﬂp(L) 1- B(Z)maw - pO) * X] (zza)
= ()\1 — )\L) X
R(U) — R(L) — Bbr(smaz - 3())
[ 1—- 6(pmaw - pO) * X} (22b)
br(U — L)[1 — Bb]
= Q=205 1 — B(Pmaz — Po) TX @20
where we use C2 to conclude that (R(U)

R(L)) (P — 20) — br(5mas — 50) (0(T) — p(L)) = 0

and (15a). X is as follows:

BEU) = p(L)[We($maz (55 1), 50, 7(5741))
*Wt(T(g _1) Smaz, T (3 z+1) s0)l,
(23)

We can have an upper bound for that:

X 2 B(p(U) = p(L))We(r (3571)s 50, T(5741); Smaz)
W55, s 7(584), 50 )
Zﬁ(p(U)_— P(L)Wi(r(55 1), 50, 7(5741), 50)
_Wt(T(gl{ )s Smaz, T(3 1+1) )] (24b)

bT(BbT) (Smaac - 30)
> ~(p(0) - p(0)) " e 0) g

where (24a) comes from using the result of theorem
at time ¢ and switching the position of s,,,, with all
indexes 2, 3, ...,n. For (24b) we use the fact that W; is
monotonically increasing in all states. Finally by Lemma
4 we get (24c¢).

So by using (24c) in (22c), we have:

Wi_1(s1,55 1 80, 800) — Wiea(si, 85 1 1,50 )
A — N\
b, (U — L)(1 — Bb,
> [, o~ A= 8)
- p'(p(U) — p(L))br(ﬁbr)Fl(Smam — 50)]
A — N\
= b.(U—-L
1- ﬂ(pmz_mc' - pO) ( )
[1 - BbT - szz—il(pm(m *pO)]
A — N\
b (U — L)x
- ]-_ﬁ(pmax _pO) ( )
[1 - ﬁbr(l + 5<pmaa: - pO))] (25)
>0
From s; > s; and CI, we have \; — \; > 0 and U —

L > 0. Using the fact that g < 1, and 8b, < 1 from
C3, we got (25) we reach (25). Then with applying the
assumption of theorem, i.e., b, < m the
proof is complete. [ ]

V. CONCLUSION

Restless multi-armed bandit problems have long been
known to be challenging to solve. Recent results in the
literature [10], [11], [12] have identified special cases
for which the simple myopic policy is optimal. Our
results in this work have generalized these prior results
beyond the specific setting of two-state Markov chains.
We have shown that the myopic policy is optimal for
reset processes with monotone affine state evolution
and reward functions, where the evolution of the non-
selected arms corresponds to a contraction mapping.

There are several avenues for future work. Using
techniques from [15], we can easily extend the results in
this paper to the selection of multiple arms at each time.
n [16], the authors present three sufficient conditions
under which the myopic policy is optimal for the RMAB
problems involving 2-state Markov chains, including



some cases involving non-identical arms. It would be
of interest to consider whether such an approach could
be applied to extend our results to show the optimality of
myopic policy for non-identically evolving arms (under
some additional conditions). We are interested in investi-
gating the optimality of the myopic policy under further
generalizations such as non-affine evolution and multi-
dimensional states. We are also interested in identifying
conditions for related problems where the myopic is not
necessarily optimal but some other efficient, possibly
index-based, policy is optimal.

REFERENCES

[1] J. Gittins, R. Weber, and K. Glazebrook, Multi-armed bandit
allocation indices. Wiley Online Library, 1989.

[2] J. Gittins, “Bandit processes and dynamic allocation indices,”
Journal of the Royal Statistical Society. Series B (Methodologi-
cal), pp. 148-177, 1979.

[3] P. Whittle, “Multi-armed bandits and the gittins index,” Journal
of the Royal Statistical Society. Series B (Methodological),
pp. 143-149, 1980.

[4] P. Whittle, “Restless bandits: Activity allocation in a changing
world,” Journal of applied probability, pp. 287-298, 1988.

[5] C. Papadimitriou and J. Tsitsiklis, “The complexity of optimal
queueing network control,” in Structure in Complexity Theory
Conference, Proceedings of the Ninth Annual, pp. 318-322,
1994.

[6] J. Nino-Mora, “Restless bandits, partial conservation laws and
indexability,” Advances in Applied Probability, vol. 33, no. 1,
pp. 76-98, 2001.

[71 S. Guha and K. Munagala, “Approximation algorithms for
partial-information based stochastic control with markovian re-
wards,” in Foundations of Computer Science, 48th Annual IEEE
Symposium on, pp. 483-493, 2007.

[8] S. Guha, K. Munagala, and P. Shi, “Approximation algorithms for
restless bandit problems,” Journal of the ACM (JACM), vol. 58,
no. 1, p. 3, 2010.

[9] C. Lott and D. Teneketzis, “On the optimality of an index rule
in multichannel allocation for single-hop mobile networks with
multiple service classes,” Probability in the Engineering and
Informational Sciences, vol. 14, no. 3, pp. 259-297, 2000.

[10] Q. Zhao and B. Krishnamachari, “Structure and optimality of
myopic sensing for opportunistic spectrum access,” in Commu-
nications, IEEE International Conference on, pp. 6476—-6481,
2007.

[11] T. Javidi, B. Krishnamachari, Q. Zhao, and M. Liu, “Optimality
of myopic sensing in multi-channel opportunistic access,” in
Communications, IEEE International Conference on, pp. 2107-
2112, 2008.

[12] S. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari,
“Optimality of myopic sensing in multichannel opportunistic
access,” Information Theory, IEEE Transactions on, vol. 55,
no. 9, pp. 40404050, 2009.

[13] K. Liu and Q. Zhao, “Indexability of restless bandit problems and
optimality of whittle index for dynamic multichannel access,”
Information Theory, IEEE Transactions on, vol. 56, no. 11,
pp. 5547-5567, 2010.

[14] V. Istratescu, Fixed point theory an introduction, vol. 7. Kluwer
Academic Print on Demand, 2001.

[15] S. Ahmad and M. Liu, “Multi-channel opportunistic access: A
case of restless bandits with multiple plays,” in Communication,
Control, and Computing, 47th Annual Allerton Conference on,
pp. 1361-1368, 2009.

[16] K. Wang and L. Chen, “On optimality of myopic policy for
restless multi-armed bandit problem: An axiomatic approach,”
Signal Processing, IEEE Transactions on, no. 99, pp. 1-1, 2011.



