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Abstract—We present the design and implementation of Multi-
Channel Collection (MCC) protocol , a high-rate multi-channel
time-scheduled protocol for fair, real-time data collection in
Wireless Sensor Networks (WSN). MCC incorporates sophisti-
cated mechanisms for balanced routing tree formation, multiple
frequency channel allocation and globally synchronized TDMA
scheduling. Through systematic experiments with real WSN hard-
ware (Tmote Sky), we identify the maximum possible throughput
for many-to-one (convergecast) data collection as a function
of key communication parameters such as packet size, use of
acknowledgements, and network topology. Then, we demonstrate
that the maximum achievable network throughput can in fact be
attained in practice using a carefully designed mix of routing,
frequency allocation and time scheduling. Compared to state
of the art collection protocols for WSN, we show that MCC
offers 33-155% improvement in throughput. We also show how
to exploit the time-scheduled nature of this approach for reducing
the number of required frequency channels. MCC presents an
algorithmic approach for time-frequency scheduling and routing
that could be adapted and used in conjunction with relevant
emerging standards such as WirelessHART, ISA 100.11a and
IEEE 802.15.4e TSCH.

Keywords—Wireless sensor networks; Collection protocol; IEEE
802.15.4e TSCH; WirelessHART

I. INTRODUCTION

Networks of wireless sensors, each capable of a combina-
tion of sensing, computation, radio communication, possibly
even actuation, are envisioned to form a key component of
the emerging “Internet of Things”. Wireless Sensor Networks
(WSN) have been developed and put into use for automated
data collection in many different scenarios, like environment
monitoring, traffic monitoring, building automation, etc.

In many real implementations [1], [2], it has been found
that even if each sensor generates low rate data individually,
due to the density of deployment, the many-to-one hop-by-hop
traffic pattern and the lack of data compression/aggregation,
the amount of traffic close to sink is still very high, leading
to high loss rate and poor throughput. This is even true for
WSNs with small size and light traffic as shown in [2]. For
example, as mentioned in [3], experiments on a testbed using
Tmote Sky devices showed that with 40-byte packets, the per-
source rate in a 40-node WSN is only about 0.5pkts/sec; thus
the network throughput is only 6.4kbps, about 2.56% (!) of
the nominal 250kbps data rate of the IEEE 802.15.4 radio on
Tmotes. These observations illustrate that sensor networks are
fundamentally throughput limited.
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This work is therefore aimed at improving the throughput
performance of wireless sensor networks. We ask and an-
swer two questions based on experiments with state-of-the-art
wireless sensor network hardware : 1) What is the maximum
possible data collection rate for a given network? 2) Can this
maximum rate be achieved in a real system?

To answer the first question, we first undertake a series of
experiments on a representative widely-used WSN platform,
the Tmote Sky. We study how throughput performance is
affected by the packet size, node function (leaf / relay /
sink), and the use of acknowledgements for reliability. Our
experiments show that the maximum achievable throughput
varies significantly with these parameters, and is well below
the radio link rate provided by the PHY layer. To answer the
second question, we design and implement the first-ever real
protocol implementation of fair throughput-maximizing multi-
channel convergecast, and demonstrate that it is able to achieve
almost the highest-possible rate given the hardware limitations
of a real sensor node.

Significant effort has been expended in recent years on
developing and experimentally evaluating high throughput
routing and rate-control protocols [3], [5]–[7]. Nearly all of
these works have been single-channel, CSMA-based protocols.
While these mechanisms are relatively easy to implement,
their data rate is significantly limited by co-channel inter-
ference, particularly in dense deployments. Interference could
be reduced by allocating different channels to different links,
improving the efficiency of bandwidth usage. However, time
synchronization is needed to efficiently coordinate the commu-
nication of nodes operating on different frequency channels.
This motivates us to design and implement a time-scheduled
multi-channel data collection protocol, that we refer to as
Multi-Channel Collection (MCC).

MCC is well-aligned with emerging new protocols and
standards focused on industrial WSN, such as WirelessHART,
ISA 100.11a and IEEE 802.15.4e (TSCH). We proposed a real-
istic and generic mechanism for implementing time-frequency
scheduling, which we believe could be adapted to be used with
these and other relevant protocols and standards.

We compare MCC with the Collection Tree Protocol
(CTP) [8], a state of the art single-channel collection protocol
for WSN, and with RCRT [7], a state of the art single-channel
centralized rate allocation protocol. MCC provides significant
improvements in throughput, ranging from 48% to 155% with
respect to CTP and even more with respect to RCRT.

We summarize the key contributions of this work:



• Systematic experimental analysis and modeling of the
impact of packet size, node function, and use of link-
layer acknowledgements on the maximum achievable
throughput in real WSN hardware.

• Empirical demonstration that it is possible to obtain
close to the estimated maximum achievable network
throughput in a real network.

• The finding that doing channel allocation using time
scheduling information is effective in reducing the
number of channels required for multi-channel pro-
tocols.

The rest of the paper is organized as follows. First, we
discuss prior work in section II. In Section III, we model,
analyze and measure the maximum achievable throughput
of convergecast. In section IV, we present the design and
implementation of MCC. In section V, we describe the test
environment. In section VI, we evaluate the various compo-
nents of MCC. Then, we deploy MCC and compare with state
of the art single-channel collection schemes in section VII.
Finally, we present future work in section VIII and summarize
our contributions in section IX.

II. RELATED WORK

One of the objectives of our work is on characterizing
the maximum achievable throughput in a WSN. This ques-
tion was also posed by Österlind and Dunkels [10] in the
context of a linear (single branch) network, motivated by
bulk transfer protocols. The authors also consider the problem
of the maximum achievable throughput and the role played
by the Serial Peripheral Interface (SPI) bus transfer rate in
linear (single branch) path. In our work, we investigate in
a more comprehensive and fine-grained way this problem in
a general network (multi-branch), including the consideration
of the packet size, node roles, and ACKs. And we propose
an analytical two-parameter model for maximum throughput
estimation, which also accounts for non-packet-size-dependent
factors such as software delays.

The number of papers written on collection and multi-
channel protocols is too vast to enumerate comprehensively.
Instead, we focus our review on key works, particularly those
that have focused on experimental validation over testbeds.

The de facto state of the art data collection protocol for
WSN today is the Collection Tree Protocol (CTP) [8], which
is a single-channel protocol that offers the best and reliable
delivery performance. We therefore use it as a baseline com-
parison for MCC. An alternate routing approach is the queue-
aware dynamic routing BCP [5], which enhances throughput
as well as robustness to external interference. Others have
focused on avoiding congestion collapse and maintaining high-
rate delivery by using a rate control protocol; examples of those
are IFRC [4] and WRCP [3]. A centralized approach to rate
control, RCRT [7], has yield even better rate performance.
Flush [6] offers a robust, high-rate connection-oriented bulk
transfer capability. All these protocols are single-channel pro-
tocols, and have been developed over CSMA. In this work, we
compare the throughput obtained by our approach with that of
CTP and RCRT, to understand how much improvement can
be obtained with a multi-channel scheduling approach over
single-channel CSMA-based schemes.

A comprehensive survey of multi-channel mechanisms for
wireless networks can be found in [11]. MMSN [12] is the first
multi-channel MAC protocol especially designed for WSNs
with devices having half-duplex single transceiver. In MMSN
there is a common broadcast channel, and nodes contend to
access the channel on different unicast frequencies. TMCP [13]
is a tree-based channel allocation mechanism, in which the tree
is partitioned into separate sub-trees, each of which is allocated
a separate channel. The authors in [14] show a cluster-based
dynamic control-theoretic approach of multi-channel MAC
design, which offers a distributed joint time and frequency
scheduling mechanism.

Y-MAC [17] presents a multi-channel protocol that is based
on lightweight channel hopping. Nodes on a link hop to a new
channel when traffic bursts occur, following a predetermined
sequence. The focus of Y-MAC is to improve energy efficiency
by reducing contention, rather than high-rate performance, and
it does not offer any guarantees in this regard.

PIP [16] is a joint TDMA-FDMA based bulk-transfer
protocol. In its basic form, it allows the sink to establish a
connection with a particular sensor node and download data
from that node at the highest rate possible. By keeping the
sink occupied half the time (it must remain idle whenever
the node one hop from it is in receive mode) it can achieve
at least 50% of the maximum throughput. P3 [15] improves
the performance of PIP using synchronized multi-path trans-
missions that completely fulfills the packet pipeline. In P3’s
proposed architecture all intermediate nodes between source
and sink are split into two sub-groups, each one working on a
different channel, which permits that packets are transmitted
and received continuously throughout the pipeline. Besides
that, P3 uses multi-transmitter constructive interference in
order to increase the probability of packet reception.

A key distinction between the last two near-optimal multi-
channel protocols and our proposal is that the MCC protocol is
able to collect data fairly from all nodes in the network, rather
than establishing connections only to one at a time. Thus, it
is more suitable for real-time, fair data gathering application.

TSMP [23] is a centralized multi-channel mesh protocol
designed specifically for high reliability. It is currently used
as the basis of WirelessHART and ISA100.11a standards for
industrial wireless communication, and was used as basis
for the amendment IEEE 802.15.4e (TSCH). TSMP offers
reliability of 99.9% and frequency hopping, which makes it
efficient for noisy environments and critical applications. The
focus of TSMP and other protocols designed for harsh envi-
ronments is on the reliability of delivery, while MCC targets
at scenarios requiring high data rate. TSMP offers a relatively
lower maximum theoretical throughput of 76Kbps [23] and
MCC demonstrates in practice throughput of about 100Kbps,
an improvement of 33%. MCC presents algorithmic details of
a generic framework for scheduling independent of network
topology, which could be adapted and extended to work in
accordance to WirelessHART standard. Ultimately, frequency
hopping algorithm, which strengthens TSMP against inter-
ference, can be easily adapted to be used on MCC. The
frequency channels to be used by each node at time slots can
be considered as virtual channels, which are used by MCC
during time-frequency scheduling. As long as the frequency



hop patterns are carefully designed to be orthogonal, MCC
can work with frequency hopping without drastic changes.

III. MAXIMUM THROUGHPUT ESTIMATION

In practice the maximum achievable throughput may be
much lower than the data rate of the underlying radio, mainly
due to hardware limitations. In this section, we systematically
study one widely used WSN hardware platform, the Tmote
Sky, and understand its achievable throughput.

A. Basic Model

We show in Fig. 1 a high level view of main component
that are involved during packet transmission/reception.

Fig. 1. A high level view of sensor node architecture

The node has a micro-controller, a radio with 2 separate
buffers (TX and RX), and a bus to copy data between them.
The total time for transferring a single packet, TPacket, can
be written as a linear combination of a constant and a term
proportional to the packet size, as follows. As it will be
clarified in III-B, depending on the role of the node being
analyzed, TPacket may include either TX or RX time, or both.

TPacket = α+ β · Packet Size (1)

The parameter α pertains to per-packet software and radio
latencies that are independent of the packet size. The rate
term β depends on the CPU rate, the bus transfer rate, the
radio rate, and the degree of pipelining achieved in successive
transmissions. We see that α is very software-specific, while β
can be estimated based on hardware specs for the Tmote Sky
- it lies between 0.05 and 0.08 ms / byte. The corresponding
throughput can then be calculated as follows.

Throughput =
Packet Size

TPacket
(2)

B. Estimating the Maximum Convergecast Throughput

In convergecast applications, nodes can be categorized,
according to their roles in communication, into three types:
sink (RX only), leaf (TX only) and relay (RX and TX).
Depending on the role of a node, TPacket and the corre-
sponding throughput will be different. To measure them, we
allocate time slots and synchronized transmissions in different
topologies. To measure sink RX rate, we use a star-topology
with the sink receiving packets from multiple one-hop nodes.
To measure the leaf TX rate, we use a simple two-node
link with the transmitter continuously sending packets. To
measure the relay RX/TX rate, we consider a linear topology
and measure the relay RX/TX rate of intermediate nodes as
they alternate between sending and receiving packets in non-
interfering channels. We vary the packet size from 10 bytes

to 110 bytes and conduct the experiments with and without
link-layer ACK. For each setting we vary the slot length to
determine the maximum achievable rate and plot only those
maximum rate values. The results obtained for the case without
ACK is shown in Fig. 2. For the ACK-enabled case, the curves
were very similar to the curves of Fig. 2, only changing the
values of maximum data rate. The corresponding parameters
of the best-fit parameters for α and β are shown in Table I,
for both ACK-enable and ACK-disable cases. We find that the
measurements show an excellent fit with the throughput model
described in equations (1) and (2). The proposed model will
be used for comparing the experimental results with theoretical
maximum throughput.

We observe that the maximum achievable throughput in
practice is at most about 100 kbps, well below the ideal 250
kbps link rate provided by the CC2420 radio.

Fig. 2. Measured versus estimated throughput of Tmote Sky device for
ACK-disabled case

TABLE I. PARAMETERS FOR THE CURVE-FIT OF THROUGHPUT
ESTIMATION MODEL

α (ms) β (ms/byte)
Sink, no ACK 1.79 0.062
Relay, no ACK 3.50 0.079
Leaf, no ACK 3.35 0.079

Sink, ACK 3.95 0.078
Relay, ACK 5.81 0.085
Leaf, ACK 5.52 0.079

The obtained results yield two key observations that inform
our design of a high-throughput collection protocol:

• The throughput performance is a concave function of
the packet size.

• The throughput performance is affected significantly
by the role of a node. We find that the maximum sink
RX rate is slightly higher than the maximum leaf TX
rate. This is due to the possibility of greater pipelining
at the sink which is receiving data from multiple
transmitters1. We also find that the relay RX/TX rate,
which is already halved as it must both receive and
transmit, is further reduced due to the switching over-
head between frequency channels. Thus, in a linear

1At the transmitter, the application must wait to send the next packet from
the microprocessor to the TX buffer on the radio until it is notified of the
previous packet’s transmission. From a receiver’s perspective, the packet from
one transmitter may overlap the time that the previous packet from a different
transmitter is being copied from the RX buffer to the microprocessor.



topology, the throughput bottleneck would be the relay
node’s maximum throughput. However, in our case
(tree topology), where the aggregated rate of multiples
branches may exceed the maximum sink rate, the
throughput is bounded by the maximum sink RX rate.

IV. MCC DESIGN AND IMPLEMENTATION

Based on the previous section, we find that for converge-
cast, conceptually, there are three possible sources of bottle-
neck: (1) interference, (2) relay node RX/TX rate and (3) sink
RX rate. As argued in [9], we can mitigate (1) using multiple
channels. We can address (2) by using suitably balanced
routing topology. Therefore (3) becomes the fundamental limit
on fair throughput, which MCC tries to optimize.

MCC includes network connectivity determination, routing
tree formation, channel allocation, time synchronization, time
scheduling and data collection, which are described below.

A. Network Connectivity Determination

This is the bootstrapping phase of MCC. The PRR values
are first computed in a distributed manner by each mote.
Initially, all nodes in the network start in the same channel and
broadcast 100 messages. Whenever a node receives a message,
it logs the sender’s ID, and uses these messages to compute
the PRR for each other node it hears from. The messages are
randomly broadcasted over a period of 1 minute. The obtained
PRR values represent the link quality due to channel quality
and external interferences.

The server uses the PRR values obtained along with a
threshold parameter Θ to compute an undirected connectivity
graph G(V,E) and an undirected interference graph I(V,E′)
of the network for use in routing and scheduling. An edge
(i, j) is placed in G if and only if PRR(i, j) > Θ and
PRR(j, i) > Θ. An edge (i, j) is placed in I if either
PRR(i, j) or PRR(j, i) are non-zero, in other words, all
links with non-zero PRR are considered conservatively as
potential interferers. Considering the undirected version of
both graphs eases the implementation of the routing and
scheduling algorithms.

It is clear that network connectivity is a very dynamic
parameter of our system. In this work we consider that nodes
are fixed and that the channel quality of all links does not
change significantly, which means that graphs G(V,E) and
I(V,E′) do not change. It may be not true in real scenarios,
where nodes are mobile or environment changes; in such
scenarios MCC can be extended to overcome the network
dynamics (as described in section VIII).

B. Balanced Routing Tree Formation using CMS

We assume that interference can be eliminated by allocat-
ing multiple channels in a TDMA network. It has been shown
in [9] that the available schedule length is lower-bounded by
max(2nk−1, N), where nk is the maximum number of nodes
on any sub-tree and N is the number of nodes in the network.
If it is possible to have 2nk − 1 < N in the tree construction,
we can achieve N as the lower bound for time scheduling.
But for an arbitrary graph G, can we construct a tree T on
G such that nk < (N + 1)/2? This is a special case of the

“Capacitated Minimal Spanning Tree Problem” that is known
to be NP-complete [18]. For MCC, we use the Capacitated
Minimal Spanning (CMS) Tree heuristic presented in [9] to
build a balanced routing tree. Despite the general worst case
complexity result for this problem, we find that in practice
this heuristic can consistently build a tree that satisfies the
condition nk < (N + 1)/2. The basic idea of the CMS tree
construction algorithm is to minimize the size of each branch
by considering the possible growth that a node might bring to
it.

C. Channel Allocation

We adopt a receiver-based channel allocation approach,
whereby nodes allocated a channel use only that channel for
receiving packets but may use another channel to transmit to
their parent. The problem of channel allocation is essentially
the NP-hard problem of graph coloring. We use the greedy
degree-ordering heuristic known as Welsh-Powell [21] algo-
rithm, which has been proven to perform well in practice.
The input of the channel allocation is a conflict graph H and
number of available channels. A conflict graph H means that
if the edge (i, j) exists in H , then nodes i and j must be
allocated different reception channels. We defer to section IV-E
a description of different approaches to generate graph H .

D. Time Scheduling

We solve the time scheduling problem taking into account
only the tree topology under the assumption that all interfer-
ence as defined by the conflict graph H can be completely
eliminated using channel allocation. Our time scheduling algo-
rithm is modified from the algorithm indicated in [20], which
is proved to derive minimum data collection time and optimal
strategies on tree networks. Instead of solving the collection
problem on a tree topology, the algorithm initially looks at a
simplified converse problem, i.e., the distribution problem on
a line topology. To distribute all data packets in the minimum
time, the sink sends the first packet destined for the furthest
node, then for the second furthest one and so on, as fast
as satisfying the half-duplex feature of the radio. The key
difference between our modified scheduling and that described
in [20] is that while the original algorithm assumes same slot
length for TX and RX, for MCC we double the length of RX
slots on relay nodes in order to introduce a guard-time while
keeping a tight TX slot so the sink could continuously receive
packets. For our modified algorithm, we derive the equation (3)
to find node i’s last busy TS, where i represents the distance to
the sink in a line and vi represents the number of data packets
stored at node i at the end of the observation period.

Ti =


2 ∗ (i− 1) + 3

∑
j≥i+1 νj , if νi = 0,

2 ∗ νi + 3
∑
j≥2 νj , if i = 1 and ν1 ≥ 1,

2 ∗ i− 3 + 3
∑
j≥i νj , if i ≥ 2 and νi ≥ 1.

(3)

The building block in our algorithm is a slot, which
can be of 3 types: TX, RX and ID (idle). The TX and ID
slots have duration of one slot-length and the RX mode has
duration of 2*slot-length. The sink node is scheduled to remain
in RX mode at all times. Nodes follow the same schedule
pattern in each period (corresponding to one round of data



collection from all nodes). It is important to note, though, that
different network requirements can be accommodated on MCC
architecture; a different number of slots might be allocated for
a set of nodes that temporarily need more throughput. Also,
the time slot allocation on MCC aims at guaranteeing the
maximum fairness, but it can be adapted for networks with
heterogeneous applications.

Applying equation (3), we can find node i’s transmission
time, based on the symmetric operations of the distribution
problem on a line topology and collection problem on a tree
topology. The algorithm can be further generalized to tree
networks as shown in Algorithm 1.

Algorithm 1 Time Scheduling Algorithm
Require: Tree T
Ensure: Time schedule ~TS

Step 1: Convert collection to distribution problem
The sink distributes one data packet to each node in the
network
Step 2: Multi Linearize tree topology
Convert tree topology T to a multi line topology:
for ∀ sub-tree Bi ∈ T do
N ← maximum hop count of sub-tree Bi
Li ← an N -node line
Li(m) represents the mth node in Li, with Pi(m) packets
to receive from the sink
∀m ≤ N , initialize Pi(m) = 0
for ∀ node v ∈ sub-tree Bi do
h← node v’s hop count
Pi(h)← Pi(h) + 1

end for
end for
Step 3: Scheduling among Multi line
while sink still has data packets do

for ∀Li that converted from a sub-tree Bi ∈ T do
ti ← the last busy slot of Li by equation (3) based on
~Pi

end for
Decide toward which line to transmit: choose the line Li
with the largest ti while satisfying half-duplex feature
Update time schedule ~TS′ for the distribution problem
Time slot+ +

end while
Step 4: Mapping back to collection
~TS ← mirror ~TS′ for the distribution problem to the

original collection problem

E. Ordering

The way we have designed and described the algorithms
for time and channel scheduling can be implemented in two
different orders, resulting in different conflict graph H:

1. Channel Allocation Before Time Scheduling: In this
case, H can be defined as follows. If i is interfering with any
child of node j, then we place the edge (i, j) in H . This can
be determined from the routing tree T , and the interference
graph I(V,E′).

2. Channel Allocation After Time Scheduling: In this
case, we define H as follows. Start with constructing the H

as in the previous case. After time scheduling is done, remove
the edges (i, j) between nodes i and j if they are not scheduled
to receive on any simultaneous slot.

From the definitions, it is clear that the conflict graph for
the second approach (channel allocation after time scheduling)
is a strict subset of the conflict graph for the first approach.
It is possible to see that the number of channels needed in
the second approach is smaller than in the first approach. In
section VI-D, we will evaluate both orders, and show that the
latter, in fact, is more efficient.

F. Lightweight Time Synchronization

Synchronization is crucial for a multi-channel scheduling
protocol. We implement a Lightweight Time Synchronization
Protocol (LTSP) that is similar to FTSP [19] in that one-
way synchronization is performed between every child and
its parent on the tree, using MAC-layer time-stamps and
linear regression over multiple packets. We also piggy-back
other configuration and control information for scheduling
and channel allocation on the time-sync packets. During the
synchronization phase, all nodes are set to operate on the same
channel.

The topology information is first distributed to all nodes in
the network. So that a node is able to identify its location and
parent in the tree. When the routing configuration is received,
a node starts to synchronize with its parent. Meanwhile, it
also updates channel configuration and time scheduling. After
a child gets synced with its parent, it needs to propagate time
synchronization and configuration information to its children
if it is not a leaf node. Then the node gets ready for data
collection. This process will be repeated periodically in long-
term operation.

G. Data Collection

There are 5 major components in the distributed part of
MCC implemented at each sensor node, as shown in Fig. 3:

• Routing Engine: It obtains routing information, which
is generated at the sink through LTSP packets.

• Forwarding Engine: It is responsible for maintaining
a queue of packets to transmit. The packets could be
generated by the node’s own application or received
from its children. Also provides retransmission mech-
anism (when ACK is enabled).

• Channel Controller: Determines which channel a
node uses for transmission and reception.

• Lightweight Time Synchronizer: Implements LTSP
network synchronization.

• Time Scheduler: Maintains the time schedule and
time calculations needed to inform the node when to
transmit and when to be in receive mode.

V. OVERVIEW OF EXPERIMENTS

All our experiments were conducted on the Tutornet indoor
testbed (the size of the testbed and more details about the
environment is described in [22]), with a set of 30 nodes. We
primarily use channels 25 and 26 (IEEE 802.15.4 channels) on



Fig. 3. Software Architecture for distributed part of MCC

the CC2420 radio, which have no overlap with Wi-Fi signals.
When needed, we also use channels 11, 24, and 20, which
we found empirically to suffer relatively low interference on
our testbed. We use a PRR threshold of Θ = 90% in all our
experiments.

VI. PARAMETER EVALUATION

We evaluate each building block in MCC: time synchro-
nization, routing, channel allocation, and scheduling.

A. Overhead of Time Synchronization

LTSP is responsible for the time synchronization. It uses
MAC layer time-stamping and linear regression to provide
precision of jiffy-level ( 1 jiffy ∼ 30.5µs ).

To evaluate the performance of LTSP, we test it on a 30-
node star-topology. Fig. 4 shows the average synchronization
error measured in terms of the residual time drift observed
after a round of synchronization. We vary the size of the
linear regression table (i.e. number of packets over which
the skew and offset are computed). The figure shows that
we can reduce the error to below 0.007 jiffies per second on
average; this corresponds to a residual drift error about 0.21
microseconds per second, comparable to the best known results
in the literature (e.g., on the order of a microsecond per second
for FTSP [19]).

Fig. 4. LTSP: Time Synchronization Accuracy Comparison

We conduct a testbed experiment to understand how fre-
quently the synchronization needs to be repeated. Because in
all our experiments the maximum depth of network is 4 hops,
we do this experiment with a simple 5-node line topology. We
let the protocol run with a single synchronization event before
the start of the data collection at time 0. Results showed that,
setting aside times when there was heavy external interference,
there is a consistent deterioration in the performance starting

around 150 minutes after the beginning of network operation.
The network synchronization process could be completed in
under 2 minutes, implying that the overhead due to synchro-
nization will be typically less than 2%.

B. Generation of a Balanced Routing Tree

Fig. 5 shows the maximum sub-tree size obtained using the
CMS tree algorithm on the 30 node testbed for different power
settings, averaged over all 30 possible sink locations. We see
that even at the lowest power, the average maximum sub-tree
size nk is well below the bound of (N + 1)/2 (which in our
case comes to 15.5). This ensures that the sink will always be
the bottle-neck. An ancillary benefit of this algorithm is that
it yields a relatively shallow tree, with small maximum hop
count, which is beneficial for reducing the synchronization
time, delay, packet loss (in the case of no ACK). This is
also illustrated in Fig. 5, which shows that the hop-count is
always less than 5, and often just 2 hops at the medium to
high transmit power settings.

Fig. 5. Maximum sub-tree size and max hop count obtained by CMS
Algorithm in 30-node networks

C. Time Scheduling: Slot Length

The main parameter for time scheduling is the length of
slots, which should be a function of the packet size. We
identify the optimal schedule length for each packet size by
conducting experiments where we vary the slot-length and
observe its impact on the throughput. We conduct two sets
of experiments; one to measure the impact of slot length
for a star-topology, to understand the best slot-length for
maximizing the rate of sink reception, and another to measure
the impact of slot length for a linear topology, to understand
the best slot-length for maximizing the relay transmission rate
(subject to the MCC design constraint that the reception slots
are twice as long as the transmission slots).

A typical set of results, for the 40-byte, no-ACK case is
shown in Fig. 6. We see that a smaller slot-length causes
packet losses, indicated by the delivery rate falling significantly
below 100%, a larger slot-length results in poor utilization.
Interestingly, we find that the maximum sink RX rate in
the star-topology is achieved at a slot-length of 140 jiffies,
while the maximum relay transmission rate in the linear
topology achieves a maximum at a slot-length of 160 jiffies.
This can be attributed to the additional channel-switching
overhead incurred in the linear topology. Optimal slot length
was obtained empirically since software delays are hard to
estimate precisely.



Fig. 6. The impact of time slot length on relay transmission and sink reception
(packet size = 40 bytes )

Fig. 7 shows the value of the best slot-length as the packet
size is varied, for both the sink and relay nodes. Again, we see
that the best slot-length for the relay node is generally higher
until a packet size of about 80 bytes. After this point, it appears
that the overhead due to channel switching is negligible and the
two cases require the same slot-length. In the MCC protocol
implementation, we use the higher of the two curves, i.e. the
curve for the relay nodes, to set the slot-length for all nodes
in the network according to the corresponding packet size2.
One implication of this plot is that for small packet sizes, the
sink will not be fully utilized, resulting in some reduction of
the throughput compared to the maximum possible sink RX
rate. Note that these plots are both for the case without ACK.
Similar curves are obtained in the case ACK is used, however,
as expected, the best slot lengths in that case are higher.

Fig. 7. Optimal slot lengths for sink and relay nodes in MCC

D. Channel Allocation

As mentioned in section IV-E, the order of channel alloca-
tion and time scheduling algorithms can be chosen in both
ways. Using the connectivity obtained from the testbed at
different power levels, we compare the number of channels
required for the two approaches, after applying the CMS
algorithm to determine the balanced routing tree, for each of
the 30 possible sink locations. This is shown in figure 8 using

2We assume in our evaluations, as in most WSN applications, that packets
are all of the same length; in the rare case of an application where multiple
packet sizes are utilized, the slot-length should be chosen to correspond to the
maximum packet size, though this may result in lower utilization.

box plots showing the minimum, 25 percentile, median, 75
percentile, and maximum values as well as the mean (shown
as a small square) of the number of channels required in each
case. It can be seen from this evaluation that the approach
of doing channel allocation after time scheduling is decidedly
better: in most cases, only 2 channels are required, at most 4 in
the low power settings. Channel minimization is an important
consideration because even if the number of required channels
is less than the 16 available on the radio, many channels
may show poor quality in indoor environments due to WiFi
interference. For the remaining results, we therefore always
run channel allocation after time scheduling.

Fig. 8. Number of channels required to eliminate interference

VII. MCC PERFORMANCE EVALUATION

In this section, we evaluate MCC collection under different
settings to see how factors such as packet size, power level,
retransmission mechanism (ACK or no-ACK) and channel
allocation impact the performance of the network, and compare
it with the estimated maximum achievable throughput, as well
as with other protocols.

A. Backlogged MCC

MCC collection maintains a queue of packets, from both its
own applications and the network. When a node is scheduled to
transmit, if this queue if not empty, it will send the first packet;
otherwise, the current TX slot is wasted. We first test MCC
collection throughput when the queue is always backlogged so
that all TX slots are busy and utilization is 100%.

We perform the test on a 10-node and a 30-node balanced
tree on the testbed. We show the topology of the first case in
Fig. 9. Maximum power level (31) is used to have the best link
quality. We label in Fig. 9 the scheduled TX slots of each node.
Note that all these slot numbers are relative to its parent’s first
TX slot. The total frame length is 9. We test MCC collection
throughput with packet sizes of 40 bytes and 100 bytes, and
with ACK enabled and disabled. When ACK is enabled, at
most 3 retransmissions are executed.

The result is shown in Fig. 10. We compare MCC col-
lection throughput with the expected throughput (obtained in
section III) with and without ACK. We see that for the 100-
byte packet without ACK, the throughput of MCC collection
is ∼ 99kbps, almost achieving the maximum achievable RX
capacity. However, for the 40-byte packet, we see that the
throughput is a bit lower than the estimated maximum sink



Fig. 9. A balanced routing tree with 10 nodes

RX rate. This is due to the channel-switching overhead which
causes the relay nodes to require a longer slot-length than the
sink-rate-maximizing slot-length. A similar trend is observed
for backlogged MCC with ACK. This figure shows that MCC
is able to achieve close to the maximum achievable throughput
so long as nodes always have data to send at each slot.

Fig. 10. Throughput of backlogged MCC compared with the expected
maximal achievable throughput with or without ACK

B. Comparison with other protocol

In Sec. VII-A, we bypassed the queue management. Now
we assume the application generates a constant data rate equal
to the maximum that can be transported by the MCC protocol.

We deploy MCC collection on the full 30-node testbed.
We consider three power levels. For a fair comparison, we
enable ACK and test for packet size of 40 bytes and 100
bytes. MCC is compared with two alternatives: CTP and
RCRT, a state-of-the-art centralized rate controlled collection
protocol that also guarantees end to end reliable transport. CTP
protocol is implemented with an ideal maximum achievable
rate, which is calculated by extensively tests considering all
fair rate allocation for all nodes.

While MCC and CTP do not provide for end to end
reliability, they provide hop-by-hop reliability through the
use of ARQ and retransmissions. Our choice of RCRT as a
comparison collection protocol is motivated by the study in [7]
which shows that this centralized approach provides higher
throughput than the best distributed rate control protocols
that works over CTP (namely, IFRC [4]). The throughput
comparison resulting from our experiments is shown in Fig. 11.

The experiments show that for all schemes, as expected,
the throughput is higher for larger-sized packets. MCC con-
sistently offers in all cases the highest throughput. We find

Fig. 11. Network throughput comparison of MCC, CTP-Ideal, and RCRT in
a 30-node network

that with respect to CTP the relative throughput gain of MCC
is the lowest for 40-byte packets at the highest power level
(48% improvement), and is the highest for 100-byte packets
at the lowest power level (155% improvement). With respect to
RCRT, the throughput gain of MCC is much higher and varies
somewhat less across all settings (from 227% to 266%).

We emphasize that the purpose of this experiment is not to
claim that MCC is a better protocol per se than CTP or RCRT
from all perspectives. RCRT, for instance, provides the addi-
tional key functionality of end-to-end reliability, which may
incur a throughput penalty. These results give an indication of
how much additional throughput improvement can be obtained
with a near-optimal joint routing-TDMA-FDMA approach.

C. Scaling

We examine the scaling of MCC in networks with different
sizes ranging from 10 to 30 as shown in Fig. 12. We choose the
network in these experiments as a monotonically increasing
set, i.e. the network used in the experiment for size m is
a subset of the network used in the experiment for size n,
all m < n. The experiments are for packet size of 40 bytes
and the power level of 15. Throughput and fairness (using
Jain’s index) are measured and compared with what is obtained
with CTP with the ideal rate allocation. For MCC, we found
that in all cases the routing algorithm produced a balanced
tree, and since a conflict-free channel allocation is always
possible, the time slot allocation fully occupied the sink in
all cases. Hence the total source transmission rate was the
same in all cases. However, in the larger networks, due to
an increase in hop-count and weak links, we do see a mild
deterioration in throughput. This suggests that the scaling of
MCC performance with respect to network size is graceful on
the whole, even for network size greater than 30 nodes. And
fairness also remains high. CTP with ideal fair rate allocation
shows a consistently lower throughput, and a slightly higher
rate of deterioration at larger network sizes, resulting from
increased interference and contention on the single channel.

VIII. DISCUSSION AND FUTURE WORK

This work has made advances in identifying a practical
approach to maximize the throughput of data collection in
WSN, but there are other dimensions in which it can be
extended.



Fig. 12. Network throughput and Jain’s fairness

• Dynamics: An inherent weakness of centralized
scheduling is that they are not geared towards han-
dling dynamics due to time-varying links, node joins
and failures, or frequent traffic changes. While one
approach is to repeat the configuration phase from
scratch periodically, there is a trade-off between the
overhead and agile response. The use of frequency
hopping (FH) techniques can also improve the relia-
bility of the network in face of dynamic environments.
As stated in section II, the extension of MCC to sup-
port FH is straightforward and would help to strength
the protocol against sporadic noise and interference.

• Channel Heterogeneity and Availability: In this
work we have assumed that all available channels
have the same quality and are symmetrical. Also, we
assumed that there are a sufficient number of channels
available to be used. Currently we are working on the
collection of link quality on all available channels and
on new channel and time scheduling algorithms which
can handle heterogeneous environments, and take into
account asymmetric links.

• Energy Consumption: Energy consumption is an
important issue in WSN that was not yet explored by
MCC. Due to the TDMA feature, each node is aware
of its TX/RX time schedule and it is easy to configured
the radio to be turned off during idle periods. Using
the energy consumption numbers for reception and
transmission of the CC2420 radio, we analysed the
30-node network considered in the evaluation of MCC
and found that we can yield energy reduction ranging
from 85 to 95%, simply by turning off the radios.

IX. CONCLUSION

In this work, we have evaluated the maximum sink RX
rate with respect to key parameters such as packet size, power
level, acknowledgements. We have shown experimentally that
by having a load balanced tree, multiple channels and time
scheduling, it is possible to achieve a throughput that is close
to this maximum sink RX rate. We have shown how to make
this approach efficient, in terms of minimizing the channels
required, by choosing channels based on time scheduling in-
formation. We have shown that this approach yields significant
benefits in terms of throughput, at least in static environments,
over state of the art single-channel collection protocols based

on random access. As discussed above, future work could
extend these ideas to dynamic environments.
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