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Abstract—Population expansion and broad deploy-
ment of wind and solar renewable power generation
has highlighted concerns over the long-standing strat-
egy for grid deployment, expansion and upgrade.
Due to their stochastic and often volatile nature,
these renewable sources are difficult to integrate into
the grid in its current power-on-demand paradigm.
In this work, we propose a novel stochastic frame-
work, leveraging distributed storage, that alleviates
many of the problems of the current grid. Our
proposed energy routing algorithm is distributed,
agile to failures, and provably maximizes the carrying
capacity of the existing power-line resources. We
evaluate the performance of our proposed solution
using analytical performance guarantees and sample
simulation results. We hope the the result of our work
provides a strong motivation for further development
and application of large scale distributed storage.
Index Terms—Grid integration, Stochastic net-

works, Energy routing, Stability, Storage, Self Heal-
ing, Renewable Power, Storage Planning, Distributed
storage

I. INTRODUCTION

With the percentage of power being generated
by renewable sources rapidly growing, driven by
both the policy-makers [1], [2], [3] and by ad-
vances in research globally1, we are faced with the
mounting problem of efficiently integrating these
diverse sources into the grid. As these renewable
sources are often stochastic and volatile in nature
they cannot simply be added to the existing grid
efficiently as it is not smart enough. The reason
being that many renewables (wind farms, solar
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1Global solar power capacity grew 44% in 2009. [Reuters,
reported 30 March 2010]

power) may ramp up or down unpredictably and
faster than can be compensated for without idling
of traditional generator resources [4].
The grid currently operates under a delivery-on-

demand paradigm leveraging predictive optimiza-
tion approaches. This assumes that parameters of
demand and production processes are well known.
With the introduction of renewable sources, pro-
duction capacities become far more volatile and
require substantial over-provisioning or idling of
traditional generators. We believe that renewable
integration strongly motivates a stochastic approach
to the problem of power distribution.
Upgrading the grid is an enormous undertaking,

and one which will have implications for power
delivery for many decades. It may not be in our
best interest to discount the possibility for large
scale (i.e. ubiquitous) in-grid storage without thor-
ough investigation of the potential benefits. We
begin our investigation into a stochastic solution
by defining the goals of the smart grid energy
routing algorithm. We would like the solution to
be autonomous yet supporting manual over-ride,
self-healing in outages, capable of maximizing the
networks’ energy delivery capability, and reliable
with low outage probability. Further, to be capable
of pricing energy transfers and to minimize this cost
would be beneficial for electrical operators.
In this paper we define the novel concept of

a depletion token network, in which the grid is
transformed into a network of distributed storage
depletion queues. Using this transformed model, we
provide a stochastic network framework for energy
routing. By utilizing inter-disciplinary techniques
from wireless communication network theory [11],
we provably achieve the maximum steady-state
energy distribution sustainable over an arbitrary
power grid interconnect.



Using utility-penalty optimization extensions to
this stochastic framework ([6], [8], [9], [10]), we
further discuss how sources can be assigned dif-
fering generation prices and the stochastic network
can be made to minimize the cost of servicing the
energy demand. We analytically show that there is a
direct tradeoff between in-grid storage volume and
the optimality of the cost of supply. We validate
our theoretical findings using simulation results.
The findings, albeit based on idealized assumptions,
provide a strong motivation for further research into
developing affordable energy storage mechanisms
and provide a robust theoretical framework for
future extensions that may more accurately reflect
grid realities, such as energy losses due to transfer
or storage inefficiencies.
The remainder of the paper is organized as fol-

low: In Section II we define our terminology and
provide a brief background on queuing theory for
the readers’ convenience. The concept of depletion
token networks is described in Section III. Analyti-
cal performance guarantees of the proposed frame-
work is presented in Section IV. Section V discusses
the result of a simple simulation model, intended
as proof of concept. The paper is concluded in
Section VI, where future research directions are
also highlighted.

II. BACKGROUND ON NETWORK MODEL

In this section we will present a brief background
on queuing theory, for readers’ convenience. We
try to keep the notation consistent with current
communication network literature [6].
Consider a general network with N nodes, with

each node holding a queue (storage device) for
storing tokens. Let Un(t) represent the number of
tokens stored in node n’s queue at time t. Let
nodes be connected to one another by a set of
links L, through which the tokens can be trans-
mitted from one node to the other. A link be-
tween node i to another node j, is labeled by
its corresponding ordered node pair (i, j) (where
i, j ∈ N ). Note that link (i, j) is distinct from link
(j, i). Let µ(t) = (µij(t)) represent the matrix of
transmission rates over each link (i, j) during slot t
(in units of tokens/slot). By convention, we define
µij(t) = 0 for all time t whenever a physical link
(i, j) does not exist in the network. The capacity
of the link (i, j), is represented by Cij (in units
of tokens/time), to describe the maximum number

tokens that can flow through that link at any time.
Therefore, µij(t) ≤ Cij for all t. Assume nodes
could potentially have exogenous arrivals and allow
An(t) to represent the amount of exogenous tokens
allowed to enter the queue at node n at time t.
The network is assumed to operate in slotted time
with slots normalized to integral units, so that slot
boundaries occur at times t ∈ 0, 1, 2, .... Hence, slot
t refers to the time interval [t, t+1). If we assume
that only the tokens currently stored in node n at the
beginning of slot t can be transmitted during that
slot, the slot-to-slot dynamics of the queue backlog
Un(t) satisfies the following equality:

Un(t+ 1) =max

[

Un(t)−
∑

i

µni(t), 0

]

+An(t)

+
∑

j

µjn(t) (1)

In each time slot, a control algorithm schedules
inter-node transfers (!µ). Recent work ([9], [10], [8],
[6]) describes the Quadtratic Lyapunov Algorithm,
which provides performance guarantees under pre-
scribed control actions.

III. SMART GRID TO TOKEN NETWORK
TRANSFORMATION

In its direct application, the Quadratic Lyapunov
Algorithm maintains queue stability by making
control decisions that provably minimize an upper
bound of the queue drift. While this goal is sensible
within a packet network, direct application of these
techniques to energy storage in a smart grid would
place the batteries frequently at risk of depletion.
We therefore substantially modify the meaning of
the queue network considered for smart grids.
In this work, we chose not to route blocks of

energy across the infrastructure, but instead to route
the energy holes in the form of Distributed Storage
(DS) depletion tokens. Figure 1 depicts a simple
microgrid with consumers, distributed storage facil-
ities and a wind generator. When consumers deplete
slightly the distributed storage resource providing
the consumer with energy, tokens are injected into
the token network. The tokens represent depletion
levels of the distributed storage facilities, and are
stochastically operated on by the Quadratic Lya-
punov Algorithm. The algorithm naturally stabilizes
the queues (depletion tokens) in the microgrid by
routing energy towards the depleted DS resources.



Fig. 1: A small generator / storage / consumer grid.

In order to capture financial drivers involved
in these energy transfers, we will introduce link
usage costs which charge for transport between
distributed storage centers. These can be used to
minimize the cost of energy by sourcing from least
cost generators or to minimize charges incurred by
transfers in cross-provider domains.
To describe the grid-to-token-network transfor-

mation, we will work in describing the transforma-
tion of Figure 1 to the token network of Figure 2.

A. Smart Grid Links

Fig. 2: A small generator / storage / consumer grid.

In Figure 2, the smart grid contains a link con-
necting distributed storage facility j to facility i,
with capacity Cij(t) and cost per unit transferred
pij(t). In our token network then, the forwarding

of a token from i to j results in grid control that
forwards a unit of energy from j to i in the reverse
path. The token network is therefore a reverse-path
based graph. This technique is similar to that which
has been applied to multi-rate Multicast by Bui et
al. in packet routing networks, in which they refer
to these tokens as shadow traffic [5]. Importantly,
each transfer of a token in the token network is
matched by an energy transfer within the smart grid.

B. Consumers
We define a consumer as any entity which con-

sumes energy from some distributed storage unit,
without itself storing that energy for transfer to
other resource in the smart grid. For simplicity,
consumers are assumed to be associated with a
single distributed storage resource in the smart grid.
This assumption may be broken if source admission
controllers are introduced, but for brevity we omit
them in this work. Multiple consumers may draw
from the same DS.
In Figure 2, consumers are associated with dis-

tributed storage resource i. As users consume en-
ergy reserves they inject tokens into the network.
These token arrivals are termed exogenous (i.e. ex-
ternal, not a result of node-to-node transfers inside
of the grid) and are notated Ai(t). The user energy
consumption processes, in order to satisfy the QLA
analysis assumptions, need only have finite first and
second moments.

C. Generators
Generation facilities are network sinks for DS

depletion tokens. In existing QLA literature from
wireless packet networks [9], [10], [8], [6], the
sink’s receiving capacity is assumed to be limited
only by the transfer capability of its receiving
channel. In our framework, we pair each generator
with an energy reservoir. Depletion tokens, arriving
at the reservoir, can be dispatched by the genera-
tor. We restrict the per-timeslot generator capacity
by modulating the link capacity between the en-
ergy reservoir and the associated generator. The
underlying theory applies generally to reasonable
generator capacity processes, including finite state
Markov chains. Further, generator capacities are not
required to be uncorrelated.

D. Penalty Function
We now define a system penalty function that is

equal to the sum of the charges incurred by token



transfers (and therefore energy transfers) across the
smart grid. Let the cost incurred p(t) by transfers
in time slot t equal:

p(t) =
∑

i,j

µij(t) · pij(t) (2)

Our goal will be to minimize the time average
expected penalty incurred by our control actions.

E. Putting it all Together
Provided the penalty function defined above and

solving for Lyapunov-drift minimizing control ac-
tions, as done in [9], [10], [8], [6], yields the
following token network control algorithm.
Every distributed storage node computes per-

neighbor weights wij as follows:

wij = (Ui(t)− Uj(t)− V · pij(t)) · Cij(t) (3)

If endpoint j describes a generator, then Uj(t) =
0. Then given these weights, a simple decision is
made that determines token (and therefore energy)
transfers.
Let j∗ be the neighbor such that:

j∗ = argmax
j

wij (4)

If distributed storage node i has no positive
weight wij ≥ 0 then no transfers out of i occur.
Otherwise, the distributed storage facility transfers
the maximum link capacity over the link repre-
sented by weight wij∗ which is the maximal out-
bound weight.

IV. PERFORMANCE GUARANTEES OF QLA
APPLICATION TO SMART GRIDS

The question then is the following: are the proven
performance bounds for QLA application in packet
networks meaningful after transformation to route
energy holes in smart grids? If the depletion token
queues are stable then the time average injection
rate must be lesser than the service rate. This then
requires that the distributed storage resources are
replenished at a time average rate that matches
their consumer demand, and the system supports
the load provided sufficient storage provisioning.
We will now give a more rigorous description, from
stochastic network optimization, of the relationship
between stability and network capacity.

A. Capacity Region
Central to the analysis of performance guarantees

for the Quadratic Lyapunov Algorithm is the def-
inition of a network capacity region. Let the time
average token injection rate sourced by resource n
be:

λn = lim
t→∞

1

t

t
∑

τ=0

An(τ) (5)

Note that by assumption that An(t) has finite
first and second moments, there exists such a λn

for all n. Let the vector !λ be composed of time
average token injection rate for all nodes in the
token network.

Definition A queueing network is strongly stable
if the following holds:

lim sup
t→∞

1

t

t−1
∑

τ=0

E[Un(τ)] < ∞ for all n (6)

Note that for a queuing network to be strongly
stable, every queue must be strongly stable. This
definition is then leveraged to provide a capacity
region for the token network as follows.

Definition The capacity region Λ of token network
N is the set of all token injection rate vectors (!λ)
for which there exists some resource and routing
control algorithm that guarantees strong stability.

Theorem IV.1 (From [9], [10], [8], [6], [7]) As
the token network service and arrival processes
satisfy assumptions of prior work, the application of
the distributed energy routing algorithm of section
III-E operating over our transformed token network
N guarantees strong stability for any token rate
vector !λ ∈ Λ.

B. Time Average Production Cost
Application of stochastic network optimization to

this token network also affords us guarantees on the
cost of system smart grid transfers, defined by our
penalty function in section II. First, let us define
the best achievable penalty rate.

Definition Let p∗ be the minimum time-average to-
ken network penalty (payment for energy transfers
per time slot) under an optimal control policy which
guarantees strong stability.



Theorem IV.2 (From [9], [10], [8], [6], [7]) As
the token network service and arrival processes
satisfy assumptions of prior work, the application of
the distributed energy routing algorithm of section
III-E operating over our transformed token network
N guarantees:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

i,j

E [µij(t) · pij(t)] ≤ p∗ +
B

V
(7)

That is, the control decisions result in a penalty
that deviates in time average expectation from the
optimal penalty rate by no more than B

V for constant
B which is a function of fixed network parameters.

V. SIMULATION RESULTS
In this section, we simulate the algorithm of Sec-

tion III-E for a simple grid consisting of 5 nodes, 2
of the nodes being consumers and 3 generators. One
of the 3 generators is a renewable generator. The
definition of consumers and generators are as per
Section III, so the consumers could potentially be
substations. The nodes are assumed to have storage
available to them. This simulation setting has been
intentionally chosen to be simple and demonstrate
the proof of concept. The algorithm of Section III-E
is capable of routing on multi-hop networks, so it
easily supports more complex simulation settings.
The simulation network is presented in Figure

3. As can be seen, each consumer has access
(through a dedicated link) to a traditional generator.
In addition, the renewable generator, namely gener-
ator 3, can serve both consumers. The demand for
the two consumers are chosen to be identical and
periodic for simplicity, and the aggregate demand
(A1(t)+A2(t)) is shown in Figure 4 for a 48 hour
period. The green generator is assumed to generate
power stochastically, during the first 12 hours of
the day, according to an exponential distribution
with mean 1.6 units of energy per hour and no
power during the night. The traditional generators
are assumed to have a deterministic generating
capacity of 2 units of energy per hour each. We
pick the capacities to be 2 units of energy per hour
for all links connected to traditional sources and
1.6 for links connected to the green generator, i.e.
C11 = C22 = 2 and C23 = C13 = 1.6.
To encourage the system to have a preference

in utilizing the green source, we assign penalty
functions to these sources with the links connecting
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Fig. 4: All plots are taken over a 48 hour period during
the steady-state, with V = 50. The y axis shows time in
hours and the x axis represents units of energy.

green source charging a lower 1.6 units of penalty
per token transferred and the links connected to
traditional ones charging 2 units of penalty per
token. The objective of the system is thus to sta-
bilize the queues, while minimizing penalty. The
green generator is therefore expected to be used
more intensively than the traditional ones in the
optimal setting. Looking at the aggregate demand
plot and the power produced by the green generator,
in Figure 4, we see that the green generator cannot
support both users by itself without the help of the
traditional sources. So our proposed algorithm finds
the optimal solution to see how much power to
draw from each source to achieve its objective while
making sure the consumers do not face outage. As
we can see from the plots, the system uses generator
3 when possible and whenever generator 3 goes
out (during the night in this case) it automatically
switches back to the traditional generators. As we
see in the coming plots, this happens while the
consumers’ queue backlog is kept steady - so the
consumers will not face any outages.
The instantaneous queue backlog of the con-

sumers and generators, for V = 10 and V = 50, are
shown in Figures 5 and 6 respectively. The queue
backlog represents the instantaneous depletion level
in the storage resource available to each node. As
can be seen there is a transient period after which
the curve reach a steady state. How long it takes
to reach the steady-state depends on the size of V ,
with larger V causing longer delay before reaching
the steady state. Once we have reached the steady-
state though, the fluctuations are fairly small. For
examples, the queues corresponding to consumers
only fluctuate by 6 units, empirically indicating



Fig. 3: Simulation setup, with two consumers, two traditional generators and one solar generator.
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Fig. 5: Instantanous values of queue backlog vs Time,
where time slots are of 15 min duration, and V = 10

that we could support this grid with a battery size
capable of storing 6 units of energy, which is about
two hours of energy for our example grid. So if
consumers are equipped with batteries capable of
storing two hours of power we can use the theory
to make tight probabilistic guarantees that we will
never be in an outage in this case.

The larger value of V , looking at equation (3),
increases the weight of the penalty term and leads
to the algorithm trying to minimize its usage of
higher penalty links even further. This would lead to
a more optimal solution with respect to the penalty
term but at the expense of slightly higher fluctua-
tion rates around the steady-state and the transient
period taking longer. Table I shows how increasing
the V values affects the amount of contribution of
sources (in terms of their aggravate average rate) in
the solution.
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Fig. 6: Instantanous values of queue backlog vs Time,
where time slots are of 15 min duration, and V = 50.

V µ1 µ2 µ3

10 0.499 0.499 0.668
50 0.423 0.423 0.822

TABLE I: Table showing the corresponding transfer rates
of generators for different Vs.

VI. CONCLUSION AND FUTURE WORK

Leveraging distributed storage, we presented a
stochastic framework for fast, distributed energy
switching in the future electric grid, enabling the
efficient integration and dispatching of renewable
sources. In addition to proposing an analytical
model and reviewing theoretical performance guar-
antees, we presented simulation results that demon-
strate the theoretical findings. By utilizing advance-
ments in wireless communication networks, our
model offers reliable and predictable power delivery
while being autonomous, self-healing, and capable
of maximizing the networks energy delivery capa-
bility while minimizing the costs incurred by the
utilities.



While we chose to minimize cost, alternative
utility or penalty functions are possible. The frame-
work does currently support some forms of electri-
cal loss modeling and minimization. Specifically,
we could associate transfer losses to all links in
the smart grid by introducing new queue update
equations and a new penalty function. In this sce-
nario, transferring one token results in inflation of
the token count arriving to the link destination (due
to efficiency losses in the reverse-path energy trans-
fer). The assumptions of the stochastic optimization
framework are not violated by this action. If we
want to additionally model energy losses in the
distributed storage facilities, as a fraction of the
energized portion, the current framework’s arrival
process assumptions are violated as they become
correlated with the depletion queue backlog. In-
storage losses remains a topic for future investi-
gation.
Our work can also be considered as a new

and notable application of stochastic network op-
timization and routing techniques. We hope our
results, albeit idealized at this stage, provide enough
motivation for further research in this area and
in design and development of new techniques in
the field of storage and network optimization. The
proposed framework brings about many interesting
research directions that can be tackled, below are a
few examples that the authors are currently inves-
tigating:

• Comprehensive simulation models using real
data under more realistic settings

• Finite capacity distributed storage facilities
• New constraints through virtual queue pro-
cesses in order to support requirements that
at least some minimum percentage of total
generation be from renewable sources

• Support for energy loss during storage as a
percent of per-timeslot storage backlog
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