
Streaming Data Payment Protocol (SDPP)
for the Internet of Things

Rahul Radhakrishnan, Bhaskar Krishnamachari
Viterbi School of Engineering

University of Southern California
Los Angeles, CA 90089

Email: rahulrad@usc.edu, bkrishna@usc.edu

Abstract—As the deployments of IoT systems grow for a wide
range of applications, there are new use-cases emerging where the
organizations or individuals that own sensor devices are different
from the individuals or organizations that have use for the data
from those devices. In such settings it is helpful for the data
consumer to be able to effortlessly get data streams in return for
monetary payments. The advent of cryptocurrency technologies
have made the establishment of bidirectional automatic data
micro-payment channels (with data flowing in one direction and
micro-payments in the other) feasible. We present an application
layer protocol called the streaming data payment protocol (SDPP)
which embodies this very idea. The protocol also makes provi-
sions for the data provider to send automated invoices and the
data consumer to provide signed receipts for data to be stored
on an immutable distributed ledger for auditing and dispute
resolution purposes. We present an implementation of SDPP
using TCP for data transport and IOTA as both cryptocurrency
and a distributed ledger.

Index Terms—IoT, Blockchain, SDPP, TCP, Data Payments,
IOTA.

I. INTRODUCTION

The Internet of Things is enabling a rich set of applications
by providing fine-grained real time data streams from a wide
array of pervasively deployed sensors and is envisioned to be
the key enabling technology for smart cities [1], [2]. The initial
set of IoT applications have focused on vertically integrated
solutions with end devices, cloud computing, and applications
not only developed but also deployed and managed by the
same individual or organization. This poses a challenge to
scalability and interoperability. In particular, in the context of
smart buildings or smart cities, it could be of interest for a
third party application developer or an end user to access a
stream of data from a particular sensor or set of sensors that
is owned and managed by another entity.

Further, that stream may be need to be obtained only for
a time-limited period so that it may not be feasible for the
prospective consumer of the data to enter into a long-term
agreement over the purchase/use of the data stream. As an
example, consider a food truck vendor that is visiting a new
city for a few days, deciding where to park her truck on
different days of the week or even at different times of the day
in a downtown area, in order to attract the most customers;
there is a different sensor owner or even a collection of
different sensor owners that is able to provide real time counts
of pedestrians in various city blocks. It would be helpful for

the food truck user to be able to order and pay for the pertinent
streams of dynamic data that could be used to drive decision
making about where to park the truck. It would be most
flexible to employ a ”micro-payment” model, where the user
could acquire the pertinent local sensor streams as and when
needed. This would not only be beneficial to each user of the
data from a cost perspective, it would also benefit the sensor
device owners by giving them an incentive to share the data
from their sensors, and by growing the pool of potential users
attracted by the ease of obtaining data. Such micro-payments
can also incentivize sensor owners to clean or process their
data in ways to make them more valuable to users and also
to deploy the right kinds of sensors in places where they are
in demand, spurring the creation of a new kind of IoT data
economy.

Such pricing-based transactions of sensor data streams are
being proposed and starting to be actively explored in both
academia and industry. The work by Birmpas et al. [3] ex-
plored how to price participatory sensing data. The Intelligent
IoT Integrator (I3) project from USC has been exploring the
creation of a community marketplace for IoT data where
buyers and sellers can find each other and transact over real-
time data streams [4]. More recently, the IOTA foundation
has proposed and demonstrated the concept of a data market
based on the DAG-based IOTA cryptocurrency platform in
which both data and payments are securely communicated over
IOTA’s masked authenticated messaging mechanism [5].

We present our design of a streaming data payment pro-
tocol (SDPP), which enables a buyer and seller to easily
connect and transact with each other using micropayments
for streaming IoT data. Our design carefully separates out
three key components: the data transport channel (which is
operated as a traditional Internet client-server application-layer
protocol, atop TCP), a payment channel (implemented using a
cryptocurrency protocol), and a records medium (implemented
using a distributed ledger technology). In light of the wide
range of available options for cryptocurrencies and distributed
ledgers (both permissioned and open systems), at the level
of the protocol description, we purposely stay technology-
agnostic regarding how the payment channel and the records
medium are implemented; however, in principle these two
could be implemented even on the same system. Our reference
implementation of SDPP utilizes the IOTA tangle [6] as both



Fig. 1. The Tripartite Architecture of the Streaming Data Payment Protocol

a cryptocurrency and as a distributed ledger.
To our knowledge, SDPP is the first integrated data-

payment-record protocol for IoT-type streaming data that
leverages the traditional TCP/IP as well as the innovative
decentralized blockchain/DAG-based distributed ledger tech-
nologies.

II. PROTOCOL DESCRIPTION

As shown in figure 1, SDPP has three main components to
it, which we refer to as the data channel, the payment channel
and the records medium. The data channel is implemented
as a classic application layer client-server protocol utilizing
TCP sockets. We incorporate basic security features at present
without specifying a full implementation of TLS to keep
it lightweight (but this could be modified in the future).
The payment channel may be implemented using a crypto-
currency (or any form of electronic payment, for that matter).
The records medium is assumed to be implemented using
an immutable distributed ledger. The payment and records
can be combined and implemented on the same blockchain
/ DAG-based technology if needed but this is not essential.
Given the nascent state of blockchain technology and the
ongoing emergence of diverse choices, we do not specify
exactly which technology should be used for the payment and
records (however, as a proof of concept, we have implemented
them both using IOTA).

An overview of how the data channel of the SDPP protocol
evolves along with the times when transactions are made
to send payments and create/store new records is shown in
figure 2. At the data layer, for ease of implementation, and
bearing in mind that it’s relatively lightweight, we define sim-
ple JSON-formatted messages for different types of messages
in the protocol. All messages use the general format described
in listing 1. It is assumed that the server/seller’s public key is

known to the client/buyer through an out of band mechanism
– this could be a QR code, for example, or from a public
website or even the records medium.

{
message_type: ""
data: ""
signature: ""
verification: ""

}

Listing 1: general format

The buyer is assumed to be the client and the seller the
server. We will use these terms (buyer/client, seller/server)
interchangeably. When the client contacts the server, it may
optionally send a simple hello message as shown in listing 2.

{
message_type: "hello"
data: ""
signature: ""
verification: ""

}

Listing 2: hello message from client

The seller responds to the initalization of the connection
and the hello message (if used) with a menu, formatted as in
the illustrative listing below. Effectively this menu provides
the set of sensor topics available with the senors, and the
unit price for each topic. The seller also lists possible and
default payment options (currencies accepted) as well as the



Fig. 2. Message Timeline for Streaming Data Payment Protocol

granularity of payment required (i.e. buyer must pay every K
data items). It also indicates if it would like the buyer to send
signed acknowledgements, and also sends its own signature
(for source authentication and the signed hash of the data for
integrity).

The Menu message is responded to with an order message
by the buyer. In addition to the order message in the data
component, here the buyer will also post the order on the
blockchain/tangle which acts as the records component. The
order message includes which topic is being purchased, how
many items of that topic are being purchased, the invoice
address for the buyer, and its public keys to be used for
signing and encryption, and finally, a signed hash for message
integrity.

Once the order has been placed, the seller sends a symmetric
session key encrypted by the buyer’s public key, that can be
used to efficiently encrypt all data in transit from this point
onwards.

The data then starts to flow from the seller to the buyer. The
data can be encrypted using the session key, and the signature
of the seller applied to a hash of the data could also give
message integrity guarantees. In response the buyer will send
simple data ack messages (not shown here).

This is followed by a signed ACK from the buyer for each
data message to confirm receipt of the data. The seller may
resend data if it times out waiting for the ACK.

Fig. 3. Total time taken versus size of order

When the client / buyer wants, it can turn off the service
and make a final payment to settle the bill and terminate the
connection. The server can then go back to waiting for new
connections.

III. IMPLEMENTATION

We have begun to implement a reference SDPP client
and SDPP server, both using Python. For both the payments
channel and the records component we decided to use IOTA
because of its low transaction fees, friendliness towards em-
bedded implementation, and ease of use including relevant
API’s. Our SDPP client and server implementations currently
still under development has been made available as open
source online at http://github.com/anrgusc/SDPP



{
message_type: "menu"
data: {

available_data: {
type_of_data : quantity_available <integer>

},
default_currency_in_which_the_rates_are_specified: "",
list_of_currencies_accepted: [],
payment_granularity: Value K <integer>,
payment_address_of_the_seller: "",
signature_required_in_every_data_field_or_not: <bool>

}
signature: "signature of the seller"
verification: ""

}

Listing 3: The Menu message from the Seller

{
message_type: "order"
data: {

data_type: "",
order_quantity: <integer>,
currency_type: "",
blockchain/tangle_address_of_the_buyer(to send invoices to): "",
public_key_of_the_buyer_for_signature: "",
public_key_of_the_buyer_for_encryption: ""

}
signature: "signature of the buyer"
verification: "transaction hash where the buyer has posted the order details"

}

Listing 4: The order message from the buyer

{
message_type: "session_key"
data: "key to be used (encrypted by buyers public key)"
signature: ""
verification: ""

}

Listing 5: The session key message from the seller

{
message_type: "data"
data: "encrypted data"
signature: "signature of the seller"
verification: ""

}

Listing 6: The data being sent from the seller



{
message_type: "data_invoice"
data: {

data: "encrypted data",
invoice: "invoice asking for payment"

}
signature: "signature of the seller"
verification: "transaction hash where the invoice is recorded"

}

Listing 7: Every K messages, the seller sends a payment invoice, and also attaches it to a distributed ledger

{
message_type: "payment_ack"
data: "ack"
signature: "signature of the buyer(if required)"
verification: "transaction hash where the payment has been made"

}

Listing 8: Every K messages, the buyer sends a payment

{
message_type: "exit"
data: ""
signature: "signature of the buyer"
verification: "transaction_hash showing balances are paid by the buyer"

}

Listing 9: The buyer terminates the connection

Fig. 4. Console output showing inputs and outputs at the buyer and seller ends of Streaming Data Payment Protocol



Fig. 5. Web view of transaction on the IOTA Tangle

Although it is a prototype that we are still working on
extending, just as an indication of how lightweight the protocol
could be, our current basically functional version of the seller
(server) side code is only 335 source lines of code, while the
buyer (client) side code is presently only 339 source lines
of code. While there are other libraries being utilized and
room for further refinement, it underscores that SDPP can
in principle be easily deployed on relatively more resource-
constrained compute nodes typical of IoT, at least edge devices
such as raspberry-pi nodes or mobile devices. If we were to
consider really resource-constrained devices such as motes,
it may be worthwhile developing an even more lightweight
version of this protocol that eschews JSON for bit-codes and
TCP for UDP, with the interaction with the blockchain or
tangle happening through remote gateway nodes; we leave
such a resource-constrained design and implementation to
future work.

IV. DEMONSTRATION AND RESULTS

In figure 3 we show how the total time for the entire protocol
varies as a function of the size of the stream (number of data
items ordered). A roughly linear trend is observed, with the
slope determined by the granularity parameter. As expected,
a higher granularity for payment and acks can significantly
reduce the total data download time. The trade-off, however,
is that potentially a larger number of data items may be
left unpaid for with a higher granularity, in case of early
termination without payment.

Figure 4 shows a sample set of console outputs based on the
SDPP protocol running, and figure 5 shows a real-time view
of one of the transactions as it appears on the IOTA tangle.
In our experiments, however, we observed very high variance
in confirmation times on the tangle, taking on the order of
several minutes or even longer sometimes, suggesting that it
is not a sufficiently mature technology just yet (as of April
2018).

V. CONCLUSION AND FUTURE WORK

We have presented SDPP, an application-layer protocol for
streaming data with payment processing and auditable records
utilizing emerging crypto-currencies and blockchain/tangle-
based distributed ledger technologies.

Our reference implementation of SDPP is still work in
progress, with ongoing efforts aimed at a first, functioning,
release soon while we continue to add features including
security, full implementation of the JSON spec for message
types described in this paper. We also plan to make a multi-
threaded version of the server, and have it evaluated in situ
on our university’s outdoor IoT testbed with real sensor data.
We would also like to have a reference implementation of
an application with an SDPP client for Android phones. And
we will consider extending the reference implementation to
other popular blockchain platforms including Ethereum and
Hyperledger fabric (which could be used to store the records).

There are some design and architectural questions we have
yet to explore fully - one of these is whether it is beneficial
to apply standard transport layer security (TLS) for providing
encryption and message integrity functionality (akin to how
HTTPS is enabled by TLS added to standard HTTP) instead of
our current approach of integrating those capabilities directly
into SDPP.

Finally, one comment on SDPP is that it is a plain old-
fashioned client-server protocol. A different approach that is
gaining in popularity for IoT is a publish-subscribe approach.
We are currently working on extending the ideas in SDPP to
a publish-subscribe model as well.

REFERENCES

[1] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and
A. Oliveira, “Smart cities and the future internet: Towards coopera-
tion frameworks for open innovation,” in The future internet assembly.
Springer, 2011, pp. 431–446.

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 1, pp. 81–93, 2014.

[3] G. Birmpas, C. Courcoubetis, I. Giotis, and E. Markakis, “Cost-sharing
models in participatory sensing,” in International Symposium on Algo-
rithmic Game Theory. Springer, 2015, pp. 43–56.

[4] B. Krishnamachari, J. Power, S. H. Kim, and C. Shahabi,
“Iot marketplace: A data and api market for iot devices,”
https://i3.usc.edu/index.php/about/key-documents/, accessed: 2018-
04-19.

[5] “Iota data marketplace,” https://data.iota.org/, accessed: 2018-04-19.
[6] S. Popov, “The tangle,” https://iota.org/IOTA Whitepaper.pdf, accessed:

2018-04-19.


