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Abstract—We study the presence of social communities in
mobility traces from vehicular fleets. By analyzing publicly
available sets of fleet vehicle mobility traces obtained from two
real-world deployments – consisting of more than 2000 taxis
in Shanghai and Beijing respectively, we confirm the existence
of small numbers of distinct social communities in vehicular
networks, which is in direct contrast to the general belief that
vehicular networks are best modeled as a relatively homogeneous
system. We examine the spatio-temporal characteristics of social
communities, gaining the insight that they are driven primarily
by social proximity induced by geographic locality. We then
develop a parsimonious multi-community ordinary differential
equation (ODE) model, which uses the heterogeneous structure
introduced by social communities to model information dis-
semination. We show through simulations that this approach
dramatically outperforms the conventional homogeneous ODE
model in capturing the dynamics of the dissemination process. We
further demonstrate that the use of the ODE model to optimize
seeding of an initial set of vehicles results in improved utility for
information dissemination compared to seed-optimization using
a homogeneous model.

I. INTRODUCTION

The U.S. National Highway Traffic Safety Administration
recently announced that it is to begin taking steps to enable
the deployment of vehicle-to-vehicle (V2V) technology [1].
It is of great interest to be able to model, tractably and with
high-fidelity, the dissemination of information about traffic and
road-conditions across such a vehicular network.

The prevailing methodology for modeling information dis-
semination in vehicular networks has been generally to con-
sider the entire system as a homogeneous network, assuming
that any two vehicles are equally likely to meet each other.
On the other hand, it is possible to conceive an alternative
approach in which each pair of nodes is considered to have a
different encounter rate. However, modeling the dissemination
process over such a extremely fine-grained model becomes
rapidly intractable as the number of possible information states
(i.e., which cars have a given piece of information at some
time) would scale exponentially with the number of cars.
Thus, we seek a parsimonious model that can realistically
capture the heterogeneity of interactions but with relatively few
parameters so that it remains tractable. We show in this paper
that such a parsimonious model of information dissemination
for vehicular networks can be built using social communities.

A number of studies in recent years have applied social
network analysis to general opportunistic mobile networks to
understand how various characteristics such as the presence
of communities, hubs, and bridges can be used to design
efficient protocols; however, virtually all of these have focused
primarily on human mobility traces [5] [6]. Somewhat to
our surprise, there are very few studies which investigate the
social community structure of vehicular networks. We analyze
two publicly available sets of fleet vehicle mobility traces –
more than 2000 taxis in Shanghai and Beijing respectively.
We confirm the existence of a relatively small number of
distinct social communities in vehicular networks, which is
in direct contrast to a widely-held, albeit implicit, belief that
encounters in vehicular fleets such as taxis are likely to be
always homogeneous in nature. We further examine the spatio-
temporal characteristics of social communities to analyze
their root causes. Finally, we consider how to incorporate
social communities to enhance the modeling of information
dissemination in vehicular fleets.

The contributions of this paper are as follows:

1) Using large-scale empirical measurement traces, our
study is the first to confirm the existence of social
community structure in the context of vehicular fleets.
Our study reveals two unique characteristics of social
communities in vehicular networks: (a) the community
structure arises primarily due to geographic correlations;
(b) We find that the social communities in the taxi fleets
are relatively stable over time.

2) Building on the discovery of a relatively small number
of distinct yet stable social communities and their unique
characteristics in vehicular networks, we develop a multi-
community Ordinary Differential Equation (ODE) model,
which takes advantage of heterogeneous structure of so-
cial communities to model the information dissemination
process in vehicular fleets. This model is parsimonious
because of the small number of communities detected.

3) Via extensive simulation, we show that the multi-
community ODE model offers a high-fidelity modeling
of the information dissemination process, particularly
when it comes to sufficiently large communities, sig-
nificantly outperforming the conventional homogeneous
ODE model which does not take community structure
into account.



4) We further use our proposed multi-community ODE
model to optimize the number of initial seeds and show
that it improves the utility of information dissemination
compared to the optimal seeding based on a homogeneous
model.

II. RELATED WORKS

This piece of work is inspired and informed by a number
of other pioneering works.
Pairwise Contact Analysis in DTN. By studying empirical
human mobility traces, a number of research works analyze
several metrics of human contacts, including node degree, con-
tact duration and inter-encounter interval [2]. In particular, the
probabilistic distribution of inter-encounter interval receives a
great deal of attention. The distribution of inter-contact time
between walking pedestrians was reported to follow a power-
law distribution, in direct contrast to the commonly used
assumption of exponential decay [4]. Unlike these prior works
which focus on pairwise relationship between mobile nodes,
our study is more interested in understanding the behaviors of
social communities in vehicular networks.
Social Network Analysis. Departing from pairwise contact
analysis, social network analysis has gained momentum in
the past few years. Exploiting often ignored social network
structure of delay-tolerant networks, SimBet [5] and Bubble
Rap [6], utilize a number of social-based metrics (e.g., cen-
trality, betweenness, and similarity) to guide the opportunistic
forwarding decisions. For instance, SimBet [5] utilizes the
metric of similarity and betweenness centrality to determine
the role of nodes in the hidden architecture of social networks;
Bubble Rap [6] uses between centrality to identify the bridging
nodes between different social communities and uses the
metric of centrality to gradually find better nodes to relay
information within a given community.

Apart from leveraging metrics of social behaviors, several
studies further investigate the behaviors of social communities
so that the structure of social community could be used in the
context of delay-tolerant networks. Using Kalman filter as a
forecasting technique, CAR [8] predicts the future evolution
of nodal mobility based on social behaviors (e.g., co-location
of nodes in the same communities) in order to guide the
decision of packet forwarding. Social community structure
is explicitly used in Socio-aware Publish/Subscribe frame-
work [7] to establish a two-tier overlay network architecture.
To our best knowledge, our work, which focuses on larger
taxi fleets from two big cities, is the first of its kind to
demonstrate the existence of social community structure in
vehicular network fleets. However, not surprisingly, we do find
that the community structure in vehicular networks is different
from their counterpart in pedestrian network, because of the
higher speeds and greater spatial coverage of vehicles.
Community Detection. Community detection algorithms help
to identify the local community structure inherent to a net-
worked system. Literature in theoretical network science re-
veals that finding the optimal allocation of nodes to social

communities is a computationally challenging task. A rich set
of methods were developed to detect social communities in
a cost-efficient manner. In specific, among other solutions,
several mainstream methodologies commonly used all adopt
heuristic approach – Louvain [9] and k-clique [10], mainly
because these heuristic approaches are easy to implement. In
our study, we leverage these works (in particular, Louvain
algorithm) to understand the structure of social communities
in vehicular networks and their behaviors.
Information Dissemination. Virus propagation and contam-
ination, in wired networks, could be modeled as spreading
process of infectious disease [11]. Recent studies shows that,
in mobile networks, disease modeling could be applied to in-
formation dissemination process as well [12]. These efforts use
stochastic models (i.e., Markov Chain) or their deterministic
approximation (i.e., fluid model) to analyze the performance of
encounter-based information propagation process [12]. How-
ever, all these studies assume that nodal encounter process is
of homogeneous nature, and do not take social community
structure into account. Our work differs from these works as
follows: Realizing that inherent social community structure
indeed exists in vehicular networks, we propose a multi-
community Ordinary Differentiation Equation (ODE) model
to study fairly complicated information dissemination process;
our extensive simulations show that our model taking social
community structure into account significantly outperforms
other models that do not.

III. DATA SETS

Data Collection. We choose a set of taxi traces as our first step
to understand the community structure of encounter patterns
among fleet vehicles. Our primary set was collected from
Shanghai, China on January 31, 2007 - February 27, 2007
(1 month), and composed of over 2,439 taxis covering 6,340
km2 area providing regular GPS data. A secondary set we use
in our analysis and validation is of Taxis from Beijing, China,
and consists of 2,721 nodes examined over two weeks, May
1 - May 14, 2009.
Data Processing. The logged data in the data sets includes (1)
the vehicle’s ID, (2) the current time-stamp, (3) the longitude
and latitude coordinates of the vehicle’s current position, (4)
the current speed and heading of the vehicle, and (5) the
occupancy status of the taxi. Due to the cost associated with
cellular communication, each taxi could only afford to report
its mobility trajectory every 15-60 seconds. Using a linear
interpolation technique, we convert a set of coarse-granularity
mobility trace into a set of fine-granularity mobility trace (e.g.,
an update of every second). Using this fine-granularity trace,
we could assume that two vehicles are in direct contact if
their distance is less than or equal to a parameter r (we use
r = 300m here in order to match the typical range of a
DSRC/WiFi radio).

We acknowledge that some of the assumptions that we
have applied here may introduce certain inaccuracies. On one
hand, using a simple linear interpolation technique (without



TABLE I
DETECTED SOCIAL COMMUNITIES IN SHANGHAI TAXI TRACE (JAN 31– FEB 6, 2007 (MON - SUN), 1 WEEK)

Mon Tue Wed Thur Fri Sat Sun
Num. of Vehicles 2292 2308 2319 2309 2299 2294 2286
Num. of Edges 2293726 2374790 2461384 2285386 1981036 2223864 2284842
Qmax 0.08984 0.08623 0.08016 0.09425 0.1107 0.09062 0.08791
Num. of Communities 4 7 10 5 8 7 4
Size of Major Communities 924, 811, 556 886, 885, 583 925, 813, 574 942, 813, 552 890, 849, 555 940, 790, 560 899, 809, 577

referring to a map), mobility trajectory of a vehicle is not fully
correctly interpolated. In addition, we acknowledge that a disk
range model that ignores realistic radio propagation simplifies
the vehicle encounter process. Despite these inaccuracies, we
believe our analysis of these traces, which are a valuable
source of data covering thousands of vehicles over a long
time period, are able to reveal the first-order characteristics of
vehicle encounter process and its social community structure
in real-world environments.

IV. SOCIAL COMMUNITY STRUCTURE IN VEHICULAR
NETWORKS

Several sets of human mobility traces had been examined to
uncover the community structure among people. To our best
knowledge, nonetheless, knowledge about social community
structure in vehicular networks is fairly limited. Our study
aims to bridge this gap.

A. Social Community Detection Algorithm

Contact Graph. The sequence of actual contacts over time is
mapped into a conceptual contact graph, in which the weight
of link indicates the strength of relationship between two
nodes. Mathematically, the entire vehicle encounter sequence
is aggregated into a static contact graph G(N,V ), where N is
number of vehicles and weighted matrix V = {vi,j} represents
the strength of the relationship between vehicle i and vehicle
j. In our study, we focus on unweighted contact graph such
that vi,j = 1 if vehicle i and vehicle j ever encounter once in
the mobility trace; otherwise, vi,j = 0.
Louvian Algorithm. To identify the existence of social com-
munity structure in vehicular networks, we apply a well-known
Louvian community detection algorithm to the contact graph.
Neuman Modularity is a metric to measure the fitness of de-
tected communities [3]. Neuman Modularity directly compares
the fraction of links in a graph that connect nodes within
particular social communities with the fraction of links in a
graph whose links follow a random distribution, while the node
degree of both scenarios are kept the same. The mathematical
representation of Neuman Modularity is given as

Q =
1

2m

∑
i,j

(Ai,j −
didj
2m

)δ(Ci, Cj) (1)

where Ai,j is the weight of the link between node i and node
j if this link does exist (otherwise, Ai,j = 0), di =

∑
k Ai,k

is the node degree of node i (similarly, dj is the node degree
of node j), and m = 1

2

∑
i di is the total weight of the entire

network. Ci (or Cj) represents the community that node i (or

node j) belongs to, and Kronecker delta function δ(Ci, Cj) is
1 if node i and node j belong to the same community, and
0 otherwise. Q = 0 indicates that network graph is a perfect
random graph, and a nonzero Q value indicates the existence
of social community.

Louvain algorithm [9] offers a heuristic solution that ap-
proximates the optimal allocation of nodes to different com-
munities, so that the Neuman modularity of the whole graph
could be maximized. The simple approach of Louvain algo-
rithm reduces the computational complexity of finding the
theoretically optimal solution on one hand, but still satisfies the
accuracy of community detection on the other hand. Results
obtained from Louvian algorithm are shown to be as good as
those from other community partition algorithms [9]. Because
of these merits, we adopt Louvain algorithm in our study.

B. Social Communities in Vehicular Networks

Table I summarizes the community structures detected by
Louvain algorithm in the Shanghai taxi trace. We observe that
the Q value of Shanghai taxi trace is in the range between
0.080 and 0.110 (similar values are observed for the Beijing
trace). Albeit weak, this shows that there is inherent social
community structure as vehicles encounter each other.

We further look into the number of social communities.
We find that the number of social communities in Shanghai
taxi traces varies from 4 (on Monday) to 10 (on Wednesday)
over a week. Interestingly, among them, there are 3 constantly
well-connected communities that have about 900, 800 and
600 vehicles across the entire week, while the remaining
communities only have a single vehicle. The analysis of the
Beijing trace similarly yields four major communities. It is
striking that the taxi fleet traces naturally decompose into such
small numbers of distinct communities, indicating that these
communities may be useful from a parsimonious modeling
perspective, as we shall see is indeed the case.

V. CHARACTERISTICS OF SOCIAL COMMUNITY IN
VEHICULAR NETWORKS

In this section, we study several characteristics of social
communities in vehicular networks. Moreover, we identify that
their root cause is the social proximity behavior of vehicles.

A. Temporal Correlation of Social Communities

We observe that there are always 3 communities in Shanghai
taxi trace across different days; this observation motivates us



TABLE II
CORRELATION BETWEEN BEST-MATCHED SOCIAL COMMUNITIES ACROSS A WEEK IN SHANGHAI TAXI TRACE

Mon Tue Wed Thur Fri Sat Sun
Mon 1, 1, 1 0.72, 0.68, 0.72 0.75, 0.71, 0.74 0.74, 0.71, 0.73 0.75, 0.75, 0.75 0.69, 0.70, 0.71 0.75, 0.74, 0.71
Tue 1, 1, 1 0.69, 0.69, 0.72 0.74, 0.71, 0.75 0.72, 0.70, 0.73 0.73, 0.73, 0.72 0.72, 0.71, 0.71
Wed 1, 1, 1 0.73, 0.72, 0.71 0.75, 0.73, 0.74 0.69, 0.69, 0.69 0.72, 0.73, 0.74
Thur 1, 1, 1 0.74, 0.73, 0.72 0.77, 0.74, 0.75 0.70, 0.72, 0.68
Fri 1, 1, 1 0.70, 0.72, 0.71 0.73, 0.72, 0.74
Sat 1, 1, 1 0.69, 0.70, 0.71
Sun 1, 1, 1
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(a) Social Community 1 (b) Social Community 2 (c) Social Community 3
Fig. 1. The Geographic Coverage of 3 Social Communities Detected in Shanghai Taxi Trace (over 1 Week).

to study the temporal correlation between corresponding social
communities on different days. We define a correlation metric

Sim(Ci(m), Cj(n)) =
|Ci(m) ∩ Cj(n)|
|Ci(m) ∪ Cj(n)|

(2)

where Ci(m) and Cj(n) represent the member set of social
community Ci on m-th day and the member set of social
community Cj on n-th day, respectively. |Ci(m) ∩ Cj(n)|
is the size of overlapping member set that belongs to both
social communities, and |Ci(m)∪Cj(n)| is the size of overall
member set which is the union of both social communities.
This metric reflects the portion of overlapping members of
these two communities to all the members in these two
communities; the higher the value is, the stronger similarity
these two social communities exhibit.

In Shanghai taxi case, Table II shows the correlation of
corresponding social communities across different days. Each
entry of this table represents a pair of different days (m-th day
and n-th day), for each social community Ci(m) on m-th day,
among all other social communities on n-th day, we search and
find its best matched social community Cj(n) on that day. We
find that all these 3 social communities have correlation value
higher than 0.7 with their respective counterparts, suggesting
that the membership composition of each social community is
fairly stable and the members of social community does not
change much over a week.

B. Geographic Concentration of Social Communities

We also look into the spatial distribution of social commu-
nities, by examining the geographic “coverage heatmap” of
member vehicles belonging to a particular social community.
First, we look into the mobility trajectory of a single vehicle
in a given duration, and then assign weight to each geographic
zone according to the dwell time of this vehicle at this

geographic zone. By aggregating all the member vehicles of
the same social community, we plot the geographic contour
graph (“heatmap”) of each social community. This geographic
contour graph illustrates if social community tends to con-
centrate within specific geographic areas. Fig. 1 shows the
geographic heatmap of social communities in Shanghai taxi
trace within a week. It is observed that 3 social communities
are distributed in 3 geographically disjointed areas, with each
corresponding to one of urban activity centers of Shanghai city
separated by the Huangpu River and the Wusong River.

C. Social Proximity Behaviors

It is clear from the above that the social communities of
the Shanghai taxi fleet tend to travel and dwell in distinct
geographic zones; we made very similar observations with the
Beijing trace as well. We speculate that is rooted in social
proximity behavior unique to humans and vehicles: a vehicle
typically moves within a bounded region only, which relates
to the social life of the driver (e.g., home and work), and is
unlikely to move everywhere in the entire network equally
likely.

We find that the mobility trajectory of Shanghai taxis is
typically around certain social spots of Shanghai city. We plot
the center point (i.e., home spot) of each taxi in Fig. 2(a), with
vehicles from different communities labeled with different
colors. It is clearly observed that the three social communities
tend to have their own geographic hot spots, corresponding to
different urban activity centers of Shanghai. These 3 com-
munity centers are 11 km, 14 km and 12 km away from
each other. In Fig. 2(b), we plot the CCDF of taxi’s traveled
distance away from its home spot. We find that the probability
of traveling more than 10 km away from a taxi’s home spot
is only about 10%-20% for all these three communities. Very
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similar observations can be made from the results presented
for the Beijing trace in Fig. 2(c) and Fig. 2(d), with the only
difference being that there are four communities to consider
in this city. We thus believe that this social proximity behavior
is the fundamental root cause of the community structure we
have observed using the social network analysis.

D. Vital Dynamics of Social Communities

Via our study, we also find that the size of social commu-
nities varies over time within a day, since different vehicles
are switched on and off at different times. We call this as
vital dynamics. We capture the vital system dynamic of 3
social communities collected from Shanghai taxi trace (Jan 31,
2007) in Fig. 3. For each time slot t, we plot the number of
operating vehicles at its beginning (S(t)) and at its end (E(t)).
We observe that, for all these 3 social communities, except
a small portion of taxis serving the night shift, the majority
of taxis were operating during normal working hours and
early night (i.e., between 8am and 11pm). As later shown in
Sec. VI, the system vital dynamics of social communities plays
an important role in determining the information propagation
speed in the vehicular delay-tolerant networks.

VI. INFORMATION DISSEMINATION PROCESS IN
VEHICULAR NETWORKS

In this section, by taking the structure of social community
into consideration, we develop a community-based Ordinary
Differential Equation (ODE) model for information dissemi-
nation in vehicular networks. Our proposed community-based
model is able to better capture the real-world heterogeneous
nature of vehicular encounter process than conventional model.

A. Compartmental Model

Our theoretical framework is built upon the foundation of
compartmental models in epidemiology; however, we take
a further step to enhance generic compartmental models by
taking into account the social community structure inherent to
vehicular mobility patterns.

In this paper, we focus on two compartments: Infected (I)
compartment (vehicles that have received a copy) and Suscep-
tible (S) compartment (vehicles that have not received the copy
yet). We only focus on a SI model in this study, but our analyt-
ical framework could also cover other sophisticated compart-
mental models such as SIR (Susceptible-Infected-Recovered)
and SIS (Susceptible-Infected-Susceptible) models. Without
loss of generality, we assume that, at time t = 0, there is
only one infected node in the entire system (S(0) = 1 for
homogeneous ODE model) or in each community (si(0) = 1
for heterogeneous ODE model).

We first start from a simple scenario in which no system
vital dynamic is assumed. At time t, the state transition prob-
ability from i(t) to i(t+1) (or the state transition probability
from s(t) to s(t + 1)) is determined by the i(t), s(t) and
contact rate α(t) as follows:

di(t)

dt
= α(t)i(t)s(t) (3)

ds(t)

dt
= −α(t)i(t)s(t) (4)

This simple ODE model has been proposed [12] to model the
performance of the Epidemic Routing protocol.
B. Social-Community Compartmental Model with Vital Dy-
namics

The generic compartmental model (Eqn.3 and Eqn.4) could
only be applied to homogeneous mobility models. In addition,
in generic compartmental model, di(t)

dt + ds(t)
dt = 0 since this

model does not support vital system dynamics (i.e., birth-
death process). Realizing these shortcomings, in this paper, our
proposed model includes two aspects – system vital dynamics
and social community structure, which had long been ignored
in the literatures.
Compartmental Model with Vital Dynamics. Vital dynamics
is often ignored in epidemiology. This is because (1) epidemic



TABLE III
SYMBOLS USED IN ANALYSIS

System-Level Community- Definition
Variable Level Variable
C The number of social communities in the system.
N Nk The total number of vehicles in the system (or in the k-th community).
n(t) nk(t) The number of vehicles that are operating at time t.
N − n(t) Nk − nk(t) The number of vehicles that are not operating at time t.
I(t) Ik(t) The total number of “infected” vehicles at time t.
i(t) ik(t) The number of “infected” vehicles that are operating at time t
I(t)− i(t) Ik(t)− ik(t) The number of “infected” vehicles that are not operating at time t.
S(t) Sk(t) The number of “susceptible” vehicles at time t.
s(t) sk(t) The number of “susceptible” vehicles that are operating at time t.
S(t)− s(t) S(t)− sk(t) The number of “susceptible” vehicles that are not operating at time t.
B(t) Bk(t) The number of “newly born” vehicles (operating at time t but not at time t− 1)
D(t) Dk(t) The number of “newly dead” vehicles (those operating at time t− 1 but not at t)

at time t in the system (or in the k-th community) .
α(t) The average contact rate between any given pair of vehicles at time t.

αk(t) The average contact rate between vehicles both from k-th community.
α(k,l)(t) The average contact rate between vehicles from communities k and l
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outbreak (in a few weeks) is usually far more rapid than
the vital dynamics of human community (human population
does not change significantly over a couple of years); and
(2) the birth rate B(t) and death rate D(t) of human pop-
ulation tend to be equal (|B(t) − D(t)| ≈ 0), leading to a
constant population. As shown in Sec. V-D, nonetheless, these
two observations made from human society become luxury
assumptions when applied to our case in vehicular networks.
Lemma 1: We assume that there is significant system vital
dynamic in the vehicle network (|B(t)−D(t)| � 0). At time
t = 0, as one message is propagated through epidemic routing
protocols, the information contamination process only happens
between both infected vehicles and susceptible vehicles that
are operating (i.e., alive). The number of infected vehicles I(t)
and susceptible vehicles S(t) evolves as follows:

dI(t)

dt
= α(t)i(t)[n(t)− i(t)] (5)

dS(t)

dt
= −α(t)i(t)[n(t)− i(t)] (6)

where n(t) is the number of operating vehicles at time t.
The number of infected operating vehicles i(t) and susceptible
operating vehicles s(t) evolves as follows:

di(t)

dt
= α(t)i(t)[n(t)− i(t)]

+
I(t)− i(t)
N − n(t)

B(t)− i(t)

n(t)
D(t) (7)

ds(t)

dt
= −α(t)i(t)(n(t)− i(t))

+[1− I(t)− i(t)
N − n(t)

]B(t)− [1− i(t)

n(t)
]D(t) (8)

Social-Community Compartmental Model. A compartmen-
tal model built upon single community accurately characterizes
the performance of Epidemic Routing in a homogeneous
setting [12]. By taking more sophisticated social community
structure into account, we extend compartmental model to
incorporate the heterogeneous nature of vehicle networks.

Lemma 2: We assume that there are C social communities
in a city and we do not assume vital system dynamic. At
time t = 0, one message starts from a randomly selected
vehicle belonging to social community m and we propagate
this message through epidemic routing process. For the social
community k, the number of infected vehicles Ik(t) and
susceptible vehicles Sk(t) evolves as follows:



dIk(t)

dt
=

C∑
j=1

α(j,k)(t)Ij(t)Sk(t) (9)

dSk(t)

dt
=

C∑
j=1

−α(j,k)(t)Ij(t)Sk(t) (10)

Social-Community Compartmental Model With Vital Dy-
namics. After taking vital dynamics and social community
into consideration, we have theorem as follows.

Theorem 1: We assume that there are C different social
communities in a city and we also assume vital system
dynamic. For the social community k, the number of infected
vehicles Ik(t) and susceptible vehicles Sk(t) evolves as fol-
lows:

dIk(t)

dt
=

C∑
j=1

α(j,k)(t)ij(t)[nk(t)− ik(t)] (11)

dSk(t)

dt
=

C∑
j=1

−α(j,k)(t)ij(t)[nk(t)− ik(t)] (12)

and the number of infected operating vehicles ik(t) and
susceptible operating vehicles sk(t) evolves as follows:

dik(t)

dt
=

C∑
j=1

α(j,k)(t)ij(t)[nk(t)− ik(t)]

+
Ik(t)− ik(t)
Nk − nk(t)

Bk(t)−
ik(t)

nk(t)
Dk(t) (13)

dsk(t)

dt
= −

C∑
j=1

α(j,k)(t)ij(t)[nk(t)− ik(t)]

+[1− Ik(t)− ik(t)
Nk − nk(t)

]Bk(t)− [1− ik(t)

nk(t)
]Dk(t)

(14)

C. Simulation Validation on Shanghai Trace

We evaluate our proposed model against conventional ODE
model through simulations.
Encounter Rate. Fig. 4(a) illustrates the encounter rate of
entire taxi population, indicating that the encounter rate α(t)
among all operating vehicles does not vary significantly over
24 hours on that particular day. Fig. 4(b) shows the intra-
and inter-community encounter rate of operating vehicles.
Intra-community encounter rate αi(t) is at least 1/3 higher
than inter-community encounter rate αi,j(t), suggesting that a
vehicle has higher chance to encounter with vehicles from the
same community than with those from other communities.
Model Validation. We develop a customized C++ simulator
to emulate how information propagates in the delay-tolerant
networks, in which Shanghai taxi trace on Jan. 31, 2007 is
used as mobility profiles of these emulated vehicles. Since
i(t) and s(t) are two aspects of the same problem, to save
limited space, we only present the measurement results of
i(t) in our simulations. As shown in Fig. 4(c), we plot
measurement results di(t)

dt obtained from simulation studies,

together with prediction values derived from two different
compartmental models – (1) conventional model (Eqn.3-4),
and (2) our proposed model taking both social community and
vital dynamics into account (Eqn.13-14). It is observed that
our proposed model drastically outperforms the conventional
model, and it closely matches measurement results obtained
from simulations. To take a deep dive, in Fig. 5, we plot
din(t)
dt in each of the three major communities, in which both

measurement results from simulations and prediction values
derived from our model were plotted. For all communities, our
proposed community-based compartmental model accurately
matches the empirical measurements. The observation made
above motivates us to believe that the hidden social community
structure and system vital dynamics, which have been long
ignored, in fact turn out to be critical factors determining the
information propagation process in vehicular networks.
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Fig. 7. The Rate of Change of the Total Number of Operating Infected Nodes
i(t) in the Beijing Taxi Trace. Comparison of empirical measurement from
simulation with predictions from the homogeneous and social-community-
based ODE models is presented.

D. Simulation Validation on Beijing Trace

Figure 6 shows that the community ODE model also pre-
dicts the number of alive infected nodes in each community
for the Beijing trace very well for the first three communities.
The one community where this prediction is not so good is the
smallest of the four communities, which contains only about
20 vehicles. This is primarily due to the sparsity of contacts
in this small community (first-order ODE models generally
do not fit small populations well due to this very problem
of small samples and high variance). Figure 7 shows that the
overall number of operating infected nodes in the whole city
is modeled very well by the community approach, decisively
showing the efficacy of this approach in modeling information
dissemination in large vehicular fleets in real cities.

VII. OPTIMAL SEEDING MECHANISM IN VEHICULAR
NETWORKS

In this section, we tackle an optimization problem in vehic-
ular delay-tolerant networks using the novel community-based
ODE model developed in the previous section and show that
it outperforms the state of the art solution obtained with a
simple homogeneous ODE model.
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(a) Social Community 1 (b) Social Community 2 (c) Social Community 3
Fig. 5. The Rate of Change of Number of Alive Infected Nodes in(t) in Each Community over 24 Hours in Shanghai Taxi Trace (Jan 31, 2007). Both
empirical measurement from simulation and prediction based on community-based ODE model are plotted.
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(a) Community 1 (b) Community 2 (c) Community 3 (d) Community 4
Fig. 6. The Rate of Change of Alive Infected Nodes ik(t) in Each Community over 24 Hours in Beijing Taxi Trace. Both empirical measurement from
simulation and prediction based on community-based ODE model are plotted.

TABLE IV
OPTIMUM SEED ALLOCATION VIA SIMPLE ODE MODEL AND COMMUNITY-BASED ODE MODEL (SHANGHAI TRACES)

Settings Simple ODE Community-based ODE
Allocated Seeds Utility by Deadline Allocated Seeds Utility by Deadline

T = 5,w = 2 98 386 [40 0 48] 426
T = 10,w = 0.9 85 780 [10 2 68] 779
T = 10,w = 2 53 704 [0 0 48] 743
T = 10,w = 5 30 619 [0 0 26] 645
T = 15,w = 10 9 613 [0 0 10] 708

TABLE V
OPTIMUM SEED ALLOCATION VIA SIMPLE ODE MODEL AND COMMUNITY-BASED ODE MODEL (BEIJING TRACES)

Settings Simple ODE Community-based ODE
Allocated Seeds Utility by Deadline Allocated Seeds Utility by Deadline

T = 10,w = 0.9 190 -30 [10 50 80 50] -19
T = 10,w = 2 36 35 [0 0 0 42] 64
T = 15,w = 0.9 159 59.9 [0 30 80 40] 62
T = 15,w = 2 64 48 [0 0 0 50] 75
T = 15,w = 5 2 -2 [0 0 0 12] 62
T = 20,w = 2 65 104 [6 0 0 40] 140

A. Problem Formulation

The cellular networks are still feeling the strain of rapidly
increasing data traffic because of new mobile platforms and
applications. By applying the concept of WiFi offloading to the
context of vehicular networks, hybrid protocols that synergis-
tically combine direct cellular access along with store-carry-
forward routing through peer-to-peer vehicular communication
will provide a bandwidth-efficient and cost-effective way for
dissemination in vehicular networks.

One extreme way for the dissemination is to send the
contents to each one of vehicles in interest through cellular
radio only, which incurs significant access fees although the
delay would be small. The other extreme is to send the
message to only a small number of seed vehicles in each
interested group through cellular radio, and let it spread to
other vehicles through V2V communications. The authors

of [13] formulate this as an optimization problem from the
perspective of a content provider, with the goal of maximizing
the number of vehicles that obtain the content within a given
deadline while minimizing the expense of using the cellular
infrastructure. Mathematically, one can define a utility function
as follows:

U(k) =

c∑
m=1

im(T )− w
c∑

n=1

kn (15)

in which k is the vector of seeds; each of its elements, kn,
represents number of seeds allocated to the data chunk in each
cluster, n. w is the normalized cost of planting each seed and
T is the deadline by which we count the number of infected
nodes. Furthermore, im(T ) represent the number of satisfied
nodes by the deadline T in cluster m and is a function of
vector k which can be computed numerically by solving the
linear system of ODE. As a result, the optimization problem



can be formulated as follows:
maximize

k
U(k) =

c∑
m=1

im(T )− w
c∑

n=1

kn (16)

subject to: (17)
0 ≤ kn ≤ Nn, n ∈ {1 . . . c} (18)

c∑
n=1

kn ≤ C,k ∈ N (19)

where Nn is the total number of nodes in cluster n.
Although one might think that solving the above linear

program might be costly for a large network of multiple
clusters, we can prove that the computational cost is linear
in number of nodes and in number of clusters by referring
to the following theorem, which allows the use of a gradient
descent algorithm. We omit the proof due to space constraints.

Theorem 2: The number of infected nodes in the community
based model of the network is a concave function of the vector
of seeds.

B. Simulation Validation

Through extensive simulations, we study if the structure of
social communities could be used to improve the performance
of optimal seeding process. We consider two different ap-
proaches. In the first approach, by assuming a homogeneous
contact pattern among all vehicles, the conventional simple
ODE model is applied to find an optimal seeding scheme
(this is what was done by the authors of [13]). In the second
approach, we instead take social community structure into
consideration (and only assume mobility homogeneity within
each social community), and then apply the social community-
based ODE model to derive the number of optimal seeds
for each individual community. For our optimization problem
formulation, we consider varying two key system parameters:
(1) the deadline for interested node to receive content (T );
and (2) normalized costs for seeding (w). By using the simple
ODE model and community-based ODE model, the optimum
number of seeds requirements under a given (w, T ) for the two
different traces of Shanghai and Beijing are listed in Tables IV
and V respectively.

Under the simple homogeneous ODE model, for each set-
ting, we choose the predicted number of seeds randomly from
the set of all active nodes. And for the social community-based
ODE model in each setting we choose the predicted number
of seeds for each community randomly from the active nodes
in that community. Then we trace the propagation of files
through the network using the real traces and the customized
C++ simulator. The ultimate utilities gained by the deadline
in each setting under the above mentioned two models are
compared in the utility columns of Tables IV and V.

It can be seen from the tables that the community ODE
modeling always improves the utility of dissemination, with
less amount of seeding cost. When the resources become
scarce (i.e., the deadline is tight, or the seeding cost is
high), the performance gap between the community ODE
model and the simple ODE model is much more noticeable
in both Beijing and Shanghai traces. However, if there is

enough time or sufficient seeds to flood the network, the
advantage of community ODE model is not obvious (such
scenarios can be spotted with the normalized seeding cost
w = 0.9). Meanwhile, we also observe that the network
average contact rate is a critical factor which determines what
set of resources are tight. For example, in our two different
traces, the Beijing average contact rate is almost 2.6 times less
than Shanghai average contact rate. As a result, the advantage
of our community ODE model over the simple ODE model
could be clearly observed in all the settings with T ≤ 15 or
w ≥ 2; in contrast, in Shanghai trace, due to its high contact
rate, our community ODE model shows its vast advantage over
the simple ODE model only if w ≥ 10.

VIII. CONCLUSION

We have presented a detailed analysis of taxi traces showing
that such vehicular fleets are often characterized by a small
number of distinct communities. We have further shown
that these communities essentially come about due to social
proximity or geographic locality of vehicle movements. We
have shown that these communities can be used as the basis
for developing a parsimonious multi-community ODE model,
which is much better at predicting the dissemination process
than a standard homogeneous ODE approach. We have further
shown that use of this model also improves the utility of seed-
based vehicular information dissemination.
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