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A Unifying Bayesian Optimization Framework for
Radio Frequency Localization

Nachikethas A. Jagadeesan and Bhaskar Krishnamachari

Abstract—We consider the problem of estimating an RF-
device’s location based on observations, such as received signal
strength, from a set of transmitters with known locations. We
survey the literature on this problem, showing that previous
authors have considered implicitly or explicitly various metrics.
We present a Bayesian optimization framework that unifies these
works and shows how to optimize the location estimation with
respect to a given metric. We demonstrate how the framework
can incorporate a general class of algorithms, including both
model-based methods and data-driven algorithms such finger-
printing. This is illustrated by re-deriving the most popular
algorithms within this framework. Furthermore, we propose
using the error-CDF as a unified way of comparing algorithms
based on two methods: (i) stochastic dominance, and (ii) an upper
bound on error-CDFs. We prove that an algorithm that optimizes
any distance based cost function is not strictly stochastically
dominated by any other algorithm. This suggests that in lieu
of the search for a universally best localization algorithm, the
community should focus on finding the best algorithm for a given
well-defined objective.

Index Terms—Indoor environments, Algorithm design and
analysis, Estimation, Optimization, Bayes methods.

I . I N T R O D U C T I O N

THE ability to locate a wireless device based on received
signal strength from known-location transmitters is of

great utility for many applications, including indoor location-
based mobile apps and services, interactive media, emergency
search and rescue, asset tracking, etc. A significant number
of researchers have tackled this fundamental problem and
proposed various algorithms for radio signal strength (RSS)
based localization. Many works adopt standard algorithms
from signal processing, specifically estimation theory, such as
Maximum Likelihood Estimation [1], Minimum Mean Squared
Error Estimation [2], Best Linear Unbiased Estimator [3], etc.,
while other techniques such as fingerprinting [4], and sequence-
based localization [5], are somewhat more heuristically derived.
These algorithms are typically evaluated using numerical and
trace-based simulations, using varied metrics such as the mean
squared position error, the absolute distance error, etc.

We contend that the literature is disconnected and disorga-
nized and that it is hard to decipher any unified theory that fairly
evaluates these algorithms across different metrics of interest.
We argue that the state-of-the-art approach to localization in
the literature — which typically involves first presenting an
algorithm and then evaluating its performance according to
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a particular metric or a set of metrics — is akin to putting
the proverbial cart before the horse. For instance, it is not
uncommon for algorithms to be evaluated on metrics for which
they are not explicitly or implicitly optimized.

We advocate a systematic way of designing location estima-
tion algorithms which we refer to as the “optimization-based
approach to localization”. In this approach, first the localization
metric is defined in terms of a suitable cost function, then
an appropriate estimation algorithm is derived to minimize
that cost function. In addition, our optimization framework
is applicable to any deterministic or stochastic model of the
observations (assumed to be known) and can accommodate any
prior distribution for location. Our framework also applies to
data-driven approaches such as fingerprinting. We show that, in
such data-driven settings, our framework makes better use of the
available data compared to traditional methods. Fundamentally
a Bayesian approach, this framework is also compatible with
Bayesian filtering for location tracking over time [6].

As an illustration of our framework, we consider first a com-
mon metric used in the evaluation of localization algorithms, the
absolute distance error, and derive an algorithm which yields
location estimates so as to minimize the expected distance
error (MEDE). For a second illustration, we also consider as
another metric the probability that the location estimate is
within a given radius of the true location (P(d)) and derive
an algorithm which maximizes this probability. Furthermore,
we show that standard algorithms such as MLE and MMSE
can be derived similarly from optimizing the corresponding
metrics (likelihood, mean squared error respectively).

In conjunction with our framework for deriving algorithms
to optimize a specified metric, we also consider the problem
of comparing different localization algorithms with each other;
for which we make use of the error CDF. For an important
class of cost functions that can be expressed as non-negative
monotonically increasing functions of distance error, we prove
that there is in effect a partial ordering among various estimation
algorithms. Certain algorithms dominate other algorithms for
all such cost functions, and we show the necessary condition
for this to happen. But there could also be two algorithms, A1
and A2, and two metrics, M1 and M2, such that A1 is better
than A2 in terms of M1 while the reverse is true for M2. Thus
we show that there is, in general, no single-best localization
algorithm, but rather a “Pareto Set” of algorithms that are each
optimized for different cost functions.

We evaluate the optimization-based framework for location
estimation using both numerical simulations, traces [7], and
data obtained from experiments in an indoor office environment.
We illustrate how our framework can incorporate a variety of
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localization algorithms, including fingerprinting based methods.
Our evaluation confirms what is predicted by the theory — no
single algorithm outperforms others with respect to all metrics,
thus underlining the need for an optimization based approach
such as the one we propose.

A. Contributions

• We describe an optimization-based Bayesian framework
that unifies and puts in context various previously proposed
techniques for localization and provides a systematic basis
for developing new algorithms.

• We introduce a partial ordering over the set of algorithms
by considering a stochastic dominance relationship be-
tween their error CDFs. We prove that any algorithm
that optimizes a distance based cost function is not
stochastically dominated by any other algorithm.

• We also present how algorithms may be compared based
on how ‘close’ an algorithm gets to the upper bound on
error CDFs. We propose one such measure of closeness
(area of difference) and identify MEDE as the optimal
algorithm over that measure.

• We illustrate how our framework encompasses both model-
based approaches and data-driven methods such as finger-
printing, through simulations and real-world experiments.

The rest of the paper is organized as follows: A survey of the
existing literature on RSS based localization algorithms is given
in Section II. We introduce our optimization based localization
framework in Section III. In Section IV we introduce the
concept of stochastic dominance and prove how it leads to
a partial ordering over the set of localization algorithms. We
also introduce the upper bound on error CDFs and illustrate
the evaluation of algorithms using the same. In Section V we
evaluate our framework using simulations and trace data. We
also show how fingerprinting methods fit into our framework.
We conclude in Section VI.

I I . L I T E R AT U R E O N R S S B A S E D L O C A L I Z AT I O N

In this section, we survey the existing literature on RSS
based localization algorithms with the intention of comparing,
across papers, the metrics used to evaluate the algorithms. The
results of the survey are summarized in Table I. We identify
certain metrics that are commonly used across the literature:
• MSE: Mean Squared Error is the expected value of the

square of the Euclidean distance between our estimate and
the true location. Often the square root of this quantity
Root Mean Squared Error (RMSE) is given instead of
MSE. As RMSE may be derived using MSE, we shall only
use MSE in our discussions in this paper. The minimum
mean squared error (MMSE) algorithm returns an estimate
that minimizes the MSE.

• EDE: The Expected Distance Error (EDE) is the expected
value of the Euclidean distance between our estimate and
the true location. The minimum expected distance error
(MEDE) algorithm returns an estimate that minimizes the
EDE.

TABLE I
L I T E R AT U R E S U RV E Y O N L O C A L I Z AT I O N M E T H O D S

Study Algorithm Model Metric

WLAN location
determination via
clustering and
probability
distributions [8]

MLE Fingerprinting P(d)

Indoor Localization
Without the Pain [9]

Genetic
Algorithm Log-Normal D(p)

RADAR: An
In-Building RF-based
user location and
tracking system [4]

Clustering Fingerprinting EDE

The Horus WLAN
location determination
system [10]

MLE Fingerprinting EDE

Locating in fingerprint
space: Wireless
indoor localization
with little human
intervention [11]

Clustering Fingerprinting EDE

Weighted centroid
localization in
Zigbee-based sensor
networks [12]

RSSI
weighted
position

Free Space Path Loss EDE

Sequence based
localization in
wireless sensor
networks [5]

SBL Free Space Path Loss EDE

Best linear unbiased
estimator algorithm
for RSS based
localization [3]

Best linear
unbiased
estimate

Log-Normal MSE

Cooperative Received
Signal Strength-Based
Sensor Localization
With Unknown
Transmit Powers [13]

MLE Log-Normal MSE

Relative location
estimation in wireless
sensor networks [14]

MLE Log-Normal MSE

RSS-Based Wireless
Localization via SDP:
Noncooperative and
Cooperative
Schemes [15]

MLE Log-Normal MSE

A Study of
Localization Accuracy
Using Multiple
Frequencies and
Powers [16]

MP(d) Log-Normal MSE

Maximum likelihood
localization estimation
based on received
signal strength [1]

MLE Log-Normal MSE

Distance Estimation
from RSS under
log-normal
shadowing [17]

Best
unbiased
estimate

Log-Normal MSE
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• P(d): P(d) indicates the probability that the receiver
location is within a distance of d from our location
estimate. P(d) is closely related to the metric D(p) which
gives the radius at which an open ball around our location
estimate yields a probability of at least p. The MP(d)
algorithm returns an estimate that minimizes the P(d).

As evidenced by Table I, it is with striking regularity that one
encounters a mismatch between an algorithm and the metric
used for its evaluation. While there is hardly anything amiss
in checking how an algorithm performs on a metric that it is
not optimized for, it is shortsighted to draw a conclusion as to
the efficacy of the said algorithm based on such an evaluation.
An awareness of the metric that an algorithm is implicitly
or explicitly optimized for, is essential to its fair assessment.
We believe that such of notion of consistent evaluation of
algorithms across all important metrics of interest has been
absent in the community so far. In addition, while the literature
on localization abounds in algorithms that yield a location
estimate, there is no unifying theory that relates them to each
other with appropriate context.

For instance, [18] picks four algorithms for evaluation,
independent of the metrics used to evaluate the algorithms. Such
an approach makes it unclear if an algorithm is optimal with
respect with any of the given metrics. In this case, we can only
make (empirical) inferences regarding the relative ordering of
the chosen algorithms among the chosen metrics. Consequently,
there are no theoretical guarantees on algorithm performance
and it becomes hard, if not impossible, to accurately predict
how a chosen algorithm will behave when evaluated with a
metric that was not considered.

Moreover, while error CDFs have been used earlier to eval-
uate localization algorithms [16], [19]–[21], they are typically
used to derive inferences about algorithm performance with
respect to the Euclidean distance and D(p) metrics. In the
absence of the unifying theory presented in this proposal, it is
unclear how one may draw meaningful conclusions regarding
the relative performance of algorithms across various metrics
based on their error CDF. Our proposed unifying framework
places the commonly employed subjective reading of error
CDFs on a firm theoretical footing and enables a better under-
standing of algorithm performance than what was previously
possible. Moreover, our framework is computationally tractable
as the optimization is typically done over a reasonably sized
discrete set of possible locations.

Table I also indicates that there is considerable interest in the
community for the EDE metric. However, it is interesting to
note that none of the algorithms evaluated using that metric are
explicitly optimized for it. In the following sections we show
how such metrics fit into our framework. More importantly, it
is our hope that thinking in terms of the framework below shall
lead to a clearer understanding of the trade-offs involved in
choosing an algorithm and a better specification of the criterion
necessary for its adoption.

The optimization-based framework for localization presented
in this paper is inspired in part by the optimization-based
approach to networking developed since the late 90’s [22],
which has shown successfully that efficient medium access,
routing, and congestion control algorithms, protocols, and archi-

Localization 
Algorithm

Distribution of 
Observations

Prior 
Distribution

Observation 
Vector

Estimate

Fig. 1. Localization Algorithms

tectures all can be derived from suitably specified network utility
maximization problems [23]. Moreover, Bayesian optimization
is increasingly gaining in popularity in the recent years [24],
including applications in cognitive radio networks [25], [26],
largely due to the increased availability of both abundant data
and the computational power needed to process that data. Our
proposed framework is poised to leverage both these trends.

The Bayesian structure of the localization problem, as
presented in this paper, bears similarities to the formulation of
the simultaneous localization and mapping (SLAM) problem
commonly employed by the robotics community [27], [28]. In
general, SLAM algorithms tackle the problem of incrementally
building a map of the environment by a mobile robot, in
addition to estimating the location of the robot within this
constructed map. SLAM algorithms are particularly suited
for tracking a mobile robot over time. However this imposes
additional assumptions such as knowledge of a model that
describes the motion of the robot. While SLAM algorithms
may be used to provide simple localization services, for instance
by assuming that the robot is not mobile, the focus there
is more on maintaining a consistent view of the posterior
belief of the location over time, rather than deriving an
estimate of the location from such a belief. In contrast, in
this paper we mainly focus on the derivation and evaluation
of indoor localization algorithms, employing an optimization-
based approach. Incorporating posterior belief updates, using
Bayesian filters [29] or algorithms based on SLAM, to enable
location tracking services within an optimization framework
remains an area of future work.

I I I . A U N I F Y I N G F R A M E W O R K F O R D E R I V I N G
L O C A L I Z AT I O N A L G O R I T H M S

In this section, we present a unifying optimization based
approach to localization. We base our approach on a Bayesian
view of parameter estimation that can be found in classical
statistics and signal processing texts [30], [31]. We adapt the
general theory of Bayesian estimation to the indoor localization
setting, pointing out the constraints and advantages this entails.
We show how existing algorithms can be derived in this
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TABLE II
R E C O V E R I N G E X I S T I N G A L G O R I T H M S I N O U R F R A M E W O R K

Algorithm Cost function Optimization

MMSE C(r, r̃, o) = ( ‖r̃ − r ‖2)
2 rMMSE = arg minr̃ E

[
( ‖r̃ − r ‖2)

2
]

MEDE C(r, r̃, o) = ‖r̃ − r ‖2 rMEDE = arg minr̃ E [ ‖r̃ − r ‖2]

MP(d) C(r, r̃, o) = −P ( ‖r̃ − r ‖2 ≤ d) rMP(d) = arg maxr̃ E [P (‖r̃ − r ‖2 ≤ d)]

MLE C(r, r̃, o) = −P ( ‖r̃ − r ‖2 ≤ ε ) rMLE = limε→0 arg maxr̃ E [P ( ‖r̃ − r ‖2 ≤ ε )]

framework and point out how alternate algorithms may be
derived.

Let S ⊆ R2 be the two-dimensional space of interest in
which localization is to be performed1. We assume that S is
closed and bounded. Let the location of the receiver (the node
whose location is to be estimated) be denoted as r = [xr, yr ].
Using a Bayesian viewpoint [30], [31], we assume that this
location is a random variable with some prior distribution
fR(r). This prior distribution is used to represent knowledge
about the possible position, obtained, for instance from previous
location estimates or knowledge of the corresponding user’s
mobility characteristics in the space; in the absence of any prior
knowledge, it could be set to be uniform over S. Let o ∈ RN

represent the location dependent observation data that was
collected. As an example, o could represent the received signal
strength values from transmitters whose locations are known.
Mathematically, we only require that the observation vector is
drawn from a known distribution that depends on the receiver
location r: fO (o|R = r). In case of RSS measurements,
this distribution characterizes the stochastic radio propagation
characteristics of the environment and the location of the
transmitters. Note that this distribution could be expressed
in the form of a standard fading model whose parameters
are fitted with observed data, such as the well-known simple
path loss model with log-normal fading [32]. The distribution
fO (o|R = r) is general enough to incorporate more data-driven
approaches such as the well-known fingerprinting procedure.
In fingerprinting, there is a training phase in which statistical
measurements are obtained at the receiver at various known
locations and used to estimate the distribution of received signal
strengths at each location.2 Fundamentally, the data-driven
approach constructs fO (o|R = r) empirically, while model-
dependent approaches take the distribution over observations
directly from the model.

Using the conditional distribution of the observed vector and
the prior over R, we obtain the conditional distribution over
the receiver locations using Bayes’ rule:

fR (r |O = o) =
fO(o|R = r) fR(r)∫

r∈S
fO (o|R = r) fR(r) dr

. (1)

1It is trivial to extend the framework to 3-D localization, for simplicity, we
focus on the more commonly considered case of 2-D localization here.

2We note that in many implementations of fingerprinting, only the mean
received signal strength from each transmitter is used, which of course is a
special case, equivalent to assuming a deterministic signal strength measurement
with a unit step function cumulative distribution function.

Algorithms for localization are essentially methods that derive
a location estimate from the above posterior distribution. In
fact, any localization algorithm A is a mapping from
• the observation vector o
• the prior distribution over the location, fR(r)
• the conditional distribution over o, fO (o|R = r)

to a location estimate r̂, as illustrated in Figure 1. A visualiza-
tion3 of the posterior distribution for the popular simple path
loss model with log-normal fading is given in Figure 3.

A. Optimization based approach to Localization

The starting point for estimating the receiver location is a
cost function that must be defined a priori. In the most general
terms, the cost function is modeled as C(r, r̃, o), i.e., a function
of the true location r, a given proposed location estimate r̃, and
the observation vector o. We define the expected cost function
given an observation vector as follows:

E[C(r, r̃, o)] =
∫

r∈S

C(r, r̃, o) fR (r |O = o) dr. (2)

Given any cost function C, the optimal location estimation
algorithm can be obtained in a unified manner by solving the
following optimization for any given observation vector to
obtain the optimal estimate r̂:

r̂ = arg min
r̃

E[C(r, r̃, o)]. (3)

Note that this optimization may be performed to obtain
an arbitrarily near-optimal solution by numerically computing
E[C(r, r̃, o)] over the discretization of a two or three dimen-
sional search space. Given recent gains in computing power, the
optimization is feasible for typical indoor localization problems.
Moreover, the optimization naturally lends itself to parallel
execution since the computation of the expected cost at all
candidate locations are independent of each other. Assuming
uniform coverage, the solution will improve upon increasing
the number of points in our search space. In practice, for RSS
localization, these points could be spaced apart on the order
of 10’s of centimeters.

Existing algorithms such as MLE, MMSE, MEDE and MP(d)
can be recovered in this framework using suitable choices of the
cost function C. For instance, it is straightforward to verify that
minimizing the expected distance error yields MEDE. Perhaps
more interestingly, the MLE estimate can also be recovered

3The code used to generate the figures in this paper is available online [33].
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Fig. 2.
An Illustration of the distribution of true location given the observations and
the locations that correspond to different optimizations. In this example, we
show the different estimates returned by the various localization algorithms
for a unimodal, asymmetric posterior probability density function of the form

f (x) =

{
4
5 (1 + x) if − 1 ≤ x < 0
4
5 (1 −

x
2 ) if 0 ≤ x ≤ 1.

The asymmetry of the distribution function pulls estimates other than MAP
from the mode, with MP(d) being the most affected. In this example, it may
be shown that for d ≤ 1.5, the MP(d) estimate is x̂MP(d) =

d
6 . Thus we see

that the MP(d) estimate moves closer to the MAP estimate with decreasing d.
This example serves to illustrate how differing optimization objectives can yield
very different estimates for the same posterior distribution, thereby underlining
the importance of deciding on an optimization objective upfront.

using an appropriate distance based cost function, as can be
seen by employing Theorem 1 with a uniform prior. Table II
lists the choice of cost functions and the optimization problem
to be solved that results in each of these algorithms. Figure 2
provides an example of how these different optimizations can
yield very different location estimates.

The most compelling aspect of this unified optimization-
based approach to localization is its generality. Being Bayesian
in nature, it can incorporate both model and data-driven
approaches to characterizing the radio environment in a given
space, and can accommodate prior information in a natural
way (as such, it is also highly compatible with location
tracking approaches that use Bayesian filtering). In addition,
the framework gets better over time as more observations or
inputs help improve the prior. While we present and evaluate
our framework using RSS measurements for ease of exposition,
it is not limited to such measurements. Other modalities such
as ToA, TDoA and AoA [34], [35] are easily incorporated as
well.

I V. A U N I F Y I N G F R A M E W O R K F O R E VA L U AT I N G
L O C A L I Z AT I O N A L G O R I T H M S

In addition to the previously defined unifying framework,
we also propose the use of the distance error cdf as a unified
way of evaluating localization algorithms. For a localization
algorithm, say A, the L2 (Euclidean) distance between the
estimate (r̂A) and the true location (r) is represented by the
random variable DA. Note that

DA = ‖r̂A − r‖2. (4)

The CDF of DA, also termed the error cdf of algorithm A,
may be characterized by averaging the probability that the true
location lies within a certain distance, say d, of our estimate,

over the all possible receiver locations. This notion is defined
below.

Definition 1. Let A ∈ A, where A denotes the set of all
localization algorithms. Denote by r̂A a location estimate
returned by the algorithm A. Then, the error cdf of A is a
monotonically increasing function FA : Q ⊆ R≥0 → [0, 1] such
that

FA(d) =
∫

r∈S

P [DA ≤ d] fR(r) dr. (5)

Let d∗ be the maximum distance between any two points
in S. Then Q is the closed interval [0, d∗]. Using the error
cdf, we may meaningfully define an ordering over the class
of localization algorithms using the concept of stochastic
dominance.

Definition 2. Let A1, A2 ∈ A. We say that A1 stochastically
dominates A2 if

FA1 (d) ≥ FA2 (d) ∀d ∈ Q. (6)

Definition 3. Let A1, A2 ∈ A. We say that A1 strictly
stochastically dominates A2 if in addition to equation (6), there
exists d1, d2 ∈ Q such that d1 < d2 and

FA1 (d) > FA2 (d) ∀d ∈ [d1, d2]. (7)

A. Distance Based Cost Functions

We now restrict our attention to an important class of metrics,
those cost functions that can be specified to be monotonically
increasing with respect to the distance between the true
and estimated positions. We show that in fact localization
algorithms form a partially-ordered set with respect to this
important class of metrics. We also show that localization
algorithms derived using the optimization-based approach for
these metrics lie essentially on a “Pareto Boundary” of the set
of all localization algorithms. The localization cost function,
formally defined below, generalizes most metrics commonly
used in the localization literature.

Definition 4. Let g : Q ⊆ R≥0 → R≥0 be a monotonically
increasing function. Denote the set of all such functions by
G. For a localization algorithm A, g(DA) is the distance error
localization cost function. E [g(DA)] is the expected cost of
the algorithm A.

We use the above notion of expected cost as a metric to
compare different localization algorithms. Note that this cost
function is a special case of the more general cost function
introduced in the previous section. Here we are only interested
in cost functions that depend on the distance between the true
location and our estimate. Many localization algorithms of
interest try to optimize for some distance based cost function,
either explicitly or implicitly. We have seen already that
MMSE, MEDE and MP(d) have distance based cost functions.
Although perhaps not immediately apparent, MAP may also be
computed using a distance based cost function. Specifically, we
may retrieve the MAP estimate using MP(d) with an adequately
small radius d as shown in the theorem below and also borne
out by our evaluation results.
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Fig. 3. Illustration of the posterior distribution of R using observations taken from a log-normal distribution. For this illustration, four transmitters were placed
in a 16 m × 16 m area. A log-normal path loss model was used to to determine the signal strengths. Each subplot above shows the posterior distribution of R
constructed by the receiver upon receiving a different vector of observations.

Theorem 1. If the posterior distribution fR |O is continuous
and the MAP estimate lies in the interior of S, then for any
δ > 0 there exists ε > 0 such that,

|P1(d) − P2(d)| ≤ δ ∀ 0 < d < ε, (8)

where P1(d) and P2(d) give the probability of the receiver
location being within distance d of the MAP and the MP(d)
estimate respectively.

Proof. See Appendix. �

B. Comparing Algorithms using Stochastic Dominance

In this section, we explore how we may meaningfully
compare algorithms using our optimization based framework. If
we are interested in a particular cost function, then comparing
two algorithms is straightforward. Compute their expected
cost and the algorithm with the lower cost is better. However,
with stochastic dominance we can deduce something more
powerful. For any two localization algorithms A1 and A2, if
A1 stochastically dominates A2, then the expected cost of A1
does not exceed that of A2 for any distance based cost function.
More formally,

Theorem 2. For any two localization algorithms A1, A2 ∈ A,
if A1 stochastically dominates A2, then

E
[
g(DA1 )

]
≤ E

[
g(DA2 )

] ∀g ∈ G. (9)

If A1 strictly stochastically dominates A2, then

E
[
g(DA1 )

]
< E

[
g(DA2 )

] ∀g ∈ G. (10)

Proof. See Appendix. �

Theorem 2 is the first step towards ranking algorithms based
on stochastic dominance. It also gives us a first glimpse of
what an optimal algorithm might look like. From Theorem 2,
an algorithm A∗ that stochastically dominates every other
algorithm is clearly optimal for the entire set of distance based
cost functions. However, it is not obvious that such an algorithm
need even exist. On the other hand, we can compute algorithms
that are optimal with respect to a particular cost function. As
given in the following theorem, such optimality implies that the
algorithm isn’t strictly dominated by any other algorithm. In
other words, if algorithm A is optimal with respect to a distance
based cost function g, then A is not strictly stochastically
dominated by any other algorithm B.
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Theorem 3. For a localization algorithm A ∈ A, if there
exists a distance based cost function g ∈ G such that for any
other localization algorithm B ∈ A

E [g (DA)] ≤ E [g (DB)] , (11)

then for all algorithms B ∈ A, there exists a distance d ∈ Q
such that

FA(d) ≥ FB(d). (12)

Proof. See Appendix. �

Theorems 2 & 3 establish the utility of ranking algorithms
based on stochastic dominance. However, if we are given two
algorithms, it is not necessary that one should dominate the other.
As Theorem 4 shows, if they do not conform to a stochastic
dominance ordering, the algorithms are incomparable.

Theorem 4. For any two localization algorithms A1 and A2,
if A2 does not stochastically dominate A1 and vice versa, then
there exits distance based cost functions g1, g2 ∈ G such that

E
[
g1(DA1 )

]
< E

[
g1(DA2 )

]
, (13)

and
E

[
g2(DA2 )

]
< E

[
g2(DA1 )

]
. (14)

Proof. See Appendix. �

Theorem 4 establishes the existence of a “Pareto Boundary”
of the set of all localization algorithms. Choosing an algorithm
from within this set depends on additional considerations such
as its performance on specific cost functions of interest.

C. Comparison based on Upper Bound of Error CDFs

In the previous section, we focused on using stochastic
dominance to rank and compare algorithms without paying
much attention to what an ideal algorithm might look like. In
this section, we explore this topic more detail. To begin, we
ask if there exists an algorithm that dominates every other
algorithm? From Theorem 2 we know that such an algorithm,
if it exists, will be the best possible algorithm for the class of
distance based cost functions. Moreover the error CDF of such
an algorithm will be an upper bound on the error CDFs of all
algorithms A ∈ A.

Definition 5. We denote the upper envelope of error CDFs
for all possible algorithms A ∈ A by F∗.

We now turn our attention to formally defining the error
bound F∗. Our definition also provides us with a way to
compute F∗. Let DA represent the distance error for algorithm
A. Consider the following class of MP(d) cost functions. For
each d ∈ Q, let

gd (D) =

{
0 if D ≤ d
1 if D > d.

(15)

Then, the value of F∗ at any distance d ∈ Q may be computed
using the MP(d) cost function at that distance. More formally,

Definition 6. The upper envelope of error CDFs for all possible
algorithms A ∈ A, F∗ is defined as

F∗(d) = sup
A∈A
{1 − E [gd(DA)]} , ∀d ∈ Q. (16)

The upper envelope of error CDFs, F∗, satisfies the following
properties:

1) F∗ stochastically dominates every algorithm A ∈ A,
2) F∗ is monotonically increasing in [0, d∗],
3) F∗ is Riemann integrable over [0, d∗].

The monotonicity of F∗ is direct consequence of the mono-
tonicity of CDFs. Moreover, since F∗ is monotonic, it is also
Riemann integrable [36, p. 126]. In general, F∗ may not
be attainable by any other algorithm. However, as we show
below, it is achievable under certain circumstances, which lends
credence to its claim as a useful upper bound that may be used
as a basis of comparison of localization algorithms.

Given the ideal performance characteristics of F∗, it is
worthwhile to investigate if it is ever attained by an algorithm.
A trivial case is when the MP(d) algorithm yields the same
estimate for all distances of interest in the domain. In this
particular case, MAP and MP(d) are optimal since the error
CDF of the MAP or MP(d) estimate traces F∗. As an
illustration consider a continuous symmetric unimodal posterior
distribution over a circular space with the mode located on
the center of the circle. Clearly, the MAP estimate is given by
the center. Moreover, the MP(d) estimate is the same at all
distances, namely the center of the circle. Thus we immediately
have that both the MAP and MP(d) estimates have attained
F∗. An extensive discussion on the attainability of F∗ can be
found in Appendix F.

Thus we see that there exist conditions under which F∗ is
attained by an algorithm. Consequently, it is worthwhile to
search for algorithms that are close to this bound or even attain
it under more general settings. This leads us directly to the
second method of comparing algorithms. We identify how close
the error CDFs of our algorithms get to the upper bound F∗.

Consider algorithms A, B ∈ A. Intuitively, if the error CDF
of A is closer to F∗ than that of B, then it seems reasonable
to expect A to perform better. To make this idea precise,
we need to define our measure of closeness to F∗. In the
following paragraph, we propose one such measure of how
close the error CDF of an algorithm A is to F∗. Our proposal
satisfies a nice property. Namely, searching for an algorithm
that is optimal over this measure is equivalent to searching for
an algorithm that minimizes a particular distance based cost
function. Consequently, to specify the algorithm we only need
to identify this cost function.

Definition 7. The area between the error CDF of algorithm A
and the upper envelope of error CDFs is given by

ΘA =

d∗∫
0

(F∗(x) − FA(x)) dx. (17)

The intuition behind our measure is can be summarized
easily. We seek to find an algorithm A that minimizes the “area
enclosed” by F∗ and the error CDF of A. Note that ΘA ≥ 0
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Fig. 4. Illustration of the empirically estimated distribution of O using signal strength measurements taken at different locations. Each subplot refers to the
distribution of signal strength from a unique access point. The left subplots refer to measurements taken at night, while the right subplots refer to measurements
taken during daytime. Our framework makes better use of the higher variance data.

for all A ∈ A. In general, it is not clear if every measure of
closeness between F∗ and FA will yield a cost function for
us to minimize. However, if we do find such a cost function,
then we have the advantage of not needing to explicit know
F∗ in the execution of our algorithm. This is the case for ΘA

as proved in the theorem below.

Theorem 5. The algorithm that minimizes the area between
its error CDF and the upper envelope of error CDFs for all
possible algorithms is the MEDE algorithm.

Proof. See Appendix. �

As consequence of Theorem 5, we note that if F∗ is attainable
by any localization algorithm, then it is attained by MEDE.
This in turn yields a simple test for ruling out the existence
of an algorithm that attains F∗. On plotting the error CDF
plots of different algorithms, if we find an algorithm that is
not dominated by MEDE, then we may conclude that F∗ is
unattainable. Thus it is relatively easy to identify cases where
there is a gap between F∗ and MEDE. However, the issue of
confirming that MEDE has attained F∗ is more difficult as it
involves a search over the set of all algorithms.

In summary, the utility of F∗ lies in its ability to pin point
the strengths and weaknesses of a proposed algorithm. As we

have seen, some algorithms such as MP(d) is designed to do
well at specific distances while others such as MEDE aims for
satisfactory performance at all distances. Other algorithms lie
somewhere in between. Consequently, choosing one algorithm
over the other depends on the needs of the application utilizing
the localization algorithm. Therein lies the strength of our
proposed framework. It allows us to effectively reason about
the applicability of an algorithm for the use case at hand.

D. Comparison with the Cramér–Rao Bound

The Cramér–Rao Bound (CRB) is often used as an aid in
evaluating localization algorithms [14], [17], [37], [38]. How-
ever, the CRB is not necessarily a good choice as an absolute
measure of performance for every localization algorithm.

Let DA denote the distance error corresponding to a algo-
rithm A. Define dA = E [DA]. Since the ideal distance error is
0, dA is the bias of algorithm A. The expected mean squared
error of algorithm A may be then expressed as

E
[
D2

A

]
= E

[
(DA − dA)

2] + d2
A (18)

= Var[DA] + (Bias[DA])
2. (19)

In our setting, the CRB is a lower bound on Var[DA]. Thus
an algorithm that attains the CRB is optimal only if (i) our
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objective is to minimize the mean squared error, and (ii) the
class of algorithms under consideration is unbiased. In our
framework, the MMSE algorithm given in Table II shares the
same objective as that of an algorithm evaluated against the
CRB. However, the MMSE algorithm considers both variance
and bias simultaneously, allowing for estimates that have a
small, non-zero bias combined with a small variance.

V. E VA L U AT I O N

We evaluate the proposed framework using simulations,
traces and real world experiments. In Section V-A, we provide
an illustration of how fingerprinting methods fit in to the
framework presented in Section III, using real-world data
collected from an indoor office environment. We show that
while many implementations of fingerprinting use only the
mean signal strength from each transmitter, we are able to better
utilize the collected data by building an empirical distribution
of the received observations.

We also evaluate the performance of the MLE, MP(d),
MMSE and MEDE using simulations as well as using traces [7].
In both cases the signal propagation was modelled using a
simplified path loss model with log-normal shadowing [32].
We assume that the prior distribution ( fR) is uniform over S.

A. Fingerprinting Methods

Model-based methods assume that the distribution of ob-
servations given a receiver location is known. In contrast,
fingerprinting methods avoid the need to model the distribution
of observations by noting that one only needs to identify the
change in distribution of observations from one location to
another. Most implementations simplify matters even further
by assuming that mean of the observations is distinct across
different locations in our space of interest. The estimated mean
is thus said to ‘fingerprint’ the location.

This approach works well only in cases when the distribution
of signal strengths is mostly concentrated around the mean. In
this case, the approach of using only the mean signal strength
amounts to approximating the signal strength distribution
with a normal distribution centered at the estimated mean
signal strength and variance approaching zero. However, if
the distribution has significant variance this approach is likely
to fail. Indeed, in the regime of significantly varying signal
strengths, keeping only the mean amounts to throwing away
much of the information that one has already taken pains to
collect.

As already indicated in Section III, we make better use of
the collected data by empirically constructing the distribution
of observations fO (o|R = r). This formulation allows us to
the use the same algorithms as in the model-based approach, as
the only difference here is in the construction of fO (o|R = r).
This is in contrast to many existing implementations where
one resorts to heuristics such as clustering. Indeed, under mild
assumptions it is well known that the empirical distribution
converges with probability one to true distribution [39] which
gives our approach the nice property that it can always do
better given more data.

As a proof-of-concept, we compare the performance of our
approach with that of traditional fingerprinting methods in two
different settings. The data was collected from a 4 m×2 m space
inside an office environment. The space was divided into eight
1 m × 1 m squares and signal strength samples were collected
from the center of each square. Two hundred and fifty signal
strength readings were collected for the ten strongest access
points detected using the WiFi card on a laptop running Linux.
The beacon interval for each access point was approximately
100 ms. The signal strength measurements were taken 400 ms
apart. Two sets of data were collected, one at night time and the
other during the day. The measurements taken at night show that
the observed signal strengths are highly concentrated around
the mean, as can be seen from the left subplots of Figure 4.
The measurements taken during daytime show slightly more
variability as can be seen in the right subplots of Figure 4.

Ten percent of the collected data is randomly chosen for
evaluating algorithm performance. The remaining data is used
to construct the empirical distribution f̂O (o|R = r) from which
the MMSE, MAP and MEDE estimates are derived. It is also
used to compute the mean signal strength vector or fingerprint
for each location. For the algorithm denoted as ‘FING’ in
Figure 5, the fingerprint closest to the test observation vector
(in terms of Euclidean distance) is used to predict the location.

From the performance results given in Figure 5, we see that,
as expected, the traditional fingerprinting approach works very
well when the variability in the signal strength data is low.
On the other hand, even with slight variability in the data, the
estimates derived using our Bayesian framework outperforms
traditional fingerprinting.

To illustrate that our framework performs better given more
observations over time, we investigate the variation of distance
error with increasing size of the training data set. The data
set with more variability was chosen for the purposes of this
illustration. For each fraction of the original data set, we
compute the distance error for 100 random choices of the
data points, for MAP, MEDE and MMSE algorithms. Figure 6
shows how the average of these distance errors varies on
increasing the size of the training data set. As can be seen from
Figure 6, with increasing data we are able to better estimate the
empirical distribution f̂O (o|R = r) from which the MMSE,
MAP and MEDE estimates are derived, thereby resulting in
better performance.

B. Simulation Model
Say {l1, l2, . . . , lN } (N > 2) are the known positions of (N)

wireless transmitters. We assume each transmitter is located on a
planar surface given by S = [0, l]×[0, b] where l, b ∈ R>0. The
locations of the transmitters are given by the two dimensional
vector li = (xi, yi) ∈ S ∀i ∈ {1, 2, . . . , N}. We wish to estimate
the receiver locations, given by the vector r = (x, y), from the
received signal strengths. For a given transmitter-receiver pair,
say i, the relationship between the received signal power (Pi

r )
and the transmitted signal power (Pi

t ) may be modelled by
the simplified path loss model: Pi

r = Pi
tK

[
d0
di

]η
Wi , where the

distance between the receiver and the ith transmitter is given

by di (r) =
√
(x − xi)2 + (y − yi)

2, and Wi represents our noise
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Fig. 5. Comparison of error CDFs for different localization algorithms. Traditional fingerprinting based on matching the mean signal strengths is indicated by
the moniker ‘FING’. Each subplot indicates the algorithm performance for a different set of test data. The left subplots refer to the case when the signal
strengths are tightly clustered around the mean, while the right subplots refer to the measurements with more variance.
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Fig. 6. Variation of distance error with the size of the training data set. For
each fraction of the original data set, we compute the distance error for 100
random choices of the data points. The regression line for each algorithm is also
shown. The results indicate that our empirical estimates of the prior improves
with increasing training data, which results in better algorithm performance.

that is log-normally distributed with zero mean and variance
σ2. In log scale, the path loss model is given by

Pi
r |dBm = Pi

t |dBm + K |dB − 10η log10

[
di
d0

]
+Wi |dB, (20)

where K is a constant given by the gains of the receiver and
transmit antennas and possibly the frequency of transmission.
d0 is a reference distance, taken to be 1m. In this setting, our
estimation problem may be restated as follows. We are given
measurements of the receiver signal strengths

{
P1
r , P

2
r , . . . , P

N
r

}
from which we are to estimate the receiver location r. Thus,
our observation vector O may be written as

Oi = Pi
r |dBm − Pi

t |dBm − K |dB = Wi |dB − 10η log10

[
di
d0

]
,

for all i ∈ {1, . . . , N}. In other words, the distribution of each
observation is given by Oi ∼ N

(
−10η ln [di (r)] , σ2) . Finally,

the distribution of the observation vector fO(o|R = r) can
be obtained from the above by taking the product of all the
individual observation pdfs.

C. Simulation and Trace Results

The parameters for the simulation were chosen to be identical
as that of the traces. The dimensions of the area of interest (S)
was 50 m × 70 m. Sixteen transmitters were chosen randomly
and 100 RSSI readings were taken for each transmitter at 5
distinct receiver locations. The transmit power was kept constant
at 16 dBm. The estimated model parameters were a path loss of
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TABLE III
N O R M A L I Z E D P E R F O R M A N C E R E S U LT S

Simulations

Likelihood P(ε ) P(d) MSE EDE

MLE 1.0000 0.9222 0.8994 1.4359 1.1240

MP(ε ) 0.9808 1.0000 0.9165 1.3172 1.0997

MP(d) 0.6963 0.7573 1.0000 1.2860 1.0857

MMSE 0.6806 0.6980 0.8737 1.0000 1.0643

MEDE 0.7247 0.7455 0.9080 1.1272 1.0000

Traces

Likelihood P(ε ) P(d) MSE EDE

MLE 1.0000 0.9989 0.9865 1.1583 1.1808

MP(ε ) 0.9976 1.0000 0.9881 1.1522 1.1785

MP(d) 0.8213 0.8596 1.0000 1.2605 1.3760

MMSE 0.9013 0.9171 0.9797 1.0000 1.1101

MEDE 0.8529 0.8685 0.9517 1.1569 1.0000

K = 39.13 dB at reference distance d0 = 1 m, fading deviation
σ = 16.16 and path loss exponent η = 3.93. We used two
distances for the MP(d) algorithm: (i) ε = 0.5 m was relatively
small while (ii) d = 3 m covers a more sizable area. The
normalized performance results are presented in Table III. Each
row evaluates the performance of the indicated algorithm across
different metrics, while each column demonstrates how different
algorithms perform under the given metric. The performance
value for each metric is normalized by the performance of the
best algorithm for that metric. Thus the fact that each algorithm
performs best in the metric that it is optimized for, is reflected
in the occurrence of ones as the diagonal entries in the table.

As the algorithms presented here are each optimal for a
specific cost function, the theory predicts that none of them are
strictly stochastically dominated by any other algorithm. The
results confirm this theoretical prediction. Moreover, choosing
ε to be small results in the performance of MP(ε) being near
identical to that of MLE, which is in line with what we expect
from Theorem 1. Intuitively, MP(d) tries to identify the region
with given radius that ‘captures’ most of the a posteriori pdf
fR(r |O = o). Consequently for a sufficiently small radius d,
MP(d) will return a region that contains the MLE estimate. As
a result, we are justified in thinking of the MP(d) algorithm
as a generalization of MLE (or MAP, in case our prior is
non-uniform). In practice, the value of d to be used will be
dictated by the needs of the application that makes use of the
localization service.

V I . C O N C L U S I O N

We have introduced an optimization based approach to
localization using a general unified framework that also allows
for a fair and consistent comparison of algorithms across
various metrics of interest. We have demonstrated how this
framework may be used to derive localization algorithms,
including fingerprinting methods. We have shown the existence
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Normalized Distance Error

0.25
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0.75
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F
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Fig. 7. An illustration of stochastic dominance. We plot the error CDFs of
MAP, MMSE, MEDE, and a naïve baseline algorithm (NBS) that returns the
location of the base station with the highest signal strength. For this illustration,
three transmitters were placed evenly on a line and log-normal fading was
assumed. The baseline algorithm is outperformed by MAP, MMSE, and MEDE,
as demonstrated by their strict stochastic dominance over the baseline.

of a partial ordering over the set of localization algorithms
using the concept of stochastic dominance, showing further that
the optimality of an algorithm over a particular distance based
cost function implies that the algorithm is not stochastically
dominated by another. We have identified key properties of an
“ideal” localization algorithm whose performance corresponds
to the upper bound on error CDFs, and highlighted how we
may compare different algorithms relative to this performance.
Specifically, we have shown that MEDE minimizes the area
between its own error CDF and the performance of such an ideal
algorithm. We believe that the framework presented here goes
a long way towards unifying the localization literature. The
optimization based approach places the localization algorithm
desideratum at the forefront, where we believe it belongs.

A P P E N D I X A
P R O O F O F T H E O R E M 1

For ease of notation, denote the posterior distribution fR |O
by f . Define the open ball of radius d > 0 around r as

Bd(r) = {x ∈ S | ‖x − r‖2 < d} . (21)

We denote the interior of S by So. Let r1 ∈ So be the MAP
estimate. Pick any δ > 0. Define

δ′ =
δ∫

r∈S
dr
. (22)

From the continuity of f there exists ε > 0 such that

f (r1) − f (r) < δ′ ∀ ‖r1 − r‖2 < ε. (23)

Consequently for any 0 < d < ε we have,∫
r∈Bd (r1)

( f (r1) − δ
′) dr ≤

∫
r∈Bd (r1)

f (r) dr. (24)

Let r2 be the MP(ε) estimate. By definition,∫
r∈Bd (r1)

f (r) dr ≤
∫

r∈Bd (r2)

f (r) dr. (25)
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Since r1 is the MAP estimate,∫
r∈Bd (r2)

f (r) dr ≤
∫

r∈Bd (r2)

f (r1) dr. (26)

Combining the above inequalities together, we conclude

( f (r1) − δ
′)

∫
r∈Bd (r1)

dr ≤ P1(d) ≤ P2(d) ≤ f (r1)

∫
r∈Bd (r2)

dr.

(27)

Note that the difference between the upper and lower bounds in
the above inequality is at most δ. Consequently, the difference
|P1(d) − P2(d)| is also bounded by δ,

|P1(d) − P2(d)| ≤ δ ∀ 0 < d < ε. (28)

�

A P P E N D I X B
P R O O F O F T H E O R E M 2

Recall that the domain of the cost function is given by
Q ⊆ R≥0. For any element p in the range of the cost function,
the inverse image of p is given by

g−1(p) = {d ∈ Q | g(d) = p} . (29)

Let h(p) = inf
(
g−1(p)

)
. From the monotonicity of g(d), we

conclude that h(p) is monotonically increasing in p. Moreover,
we have the following relation for any algorithm A ∈ A

P (g(DA) ≤ p) = P (DA ≤ h(p)) . (30)

This allows us to characterize the CDF of g(DA) as
FA (h (g(dA))). Moreover, since cost functions are non-negative,
g(DA) ≥ 0. Thus the expected value of g(DA) for any algorithm
A may be expressed as

E [g(DA)] =

sup(Q)∫
0

(1 − FA (h (g(dA)))) ddA. (31)

Consider any two algorithms A1 and A2 such that A1 stochas-
tically dominates A2. From (6), we have

FA1 (h (g(d))) ≥ FA2 (h (g(d))) ∀d ∈ Q. (32)

From (31) and (32), we conclude

E
[
g(DA1 )

]
≤ E

[
g(DA2 )

]
, (33)

which proves (9). If A1 strictly dominates A2, then in addition
to (32), A1 and A2 satisfies

FA1 (h (g(d))) > FA2 (h (g(d))) ∀d ∈ [d1, d2]. (34)

From (31), (32) and (34) we have

E
[
g(DA1 )

]
< E

[
g(DA2 )

]
. (35)

�

A P P E N D I X C
P R O O F O F T H E O R E M 3

Say A ∈ A is the optimal algorithm for the distance based
cost function g ∈ G. Further assume that for some algorithm
B ∈ A,

FA(d) ≤ FB(d) ∀d ∈ Q, (36)

and that there exists some d ′ ∈ Q such that FA(d ′) < FB(d ′).
If these conditions implied that A is strictly dominated by B,
then by Theorem 2 we have

E [g(DA)] > E [g(DB)] . (37)

However, from the optimality of A with respect to g,

E [g(DA)] ≤ E [g(DB)] , (38)

which contradicts (37). To complete the proof of Theorem 3
we need to show the strict dominance of B over A. Since the
error CDFs are right continuous, for any ε > 0 there exists a
δ > 0 such that

FB(d) − FB(d ′) < ε ∀d ∈ [d ′, d ′ + δ], (39)

and

FA(d) − FA(d ′) < ε ∀d ∈ [d ′, d ′ + δ]. (40)

Choosing ε < FB (d
′)−FA(d

′)

2 implies

FB(d) > FA(d) ∀d ∈ [d ′, d ′ + δ], (41)

which proves that B strictly dominates A. �

A P P E N D I X D
P R O O F O F T H E O R E M 4

Since A2 does not stochastically dominate A1, there exists
some d1 ∈ Q such that

FA1 (d1) > FA2 (d1) . (42)

Since A1 does not stochastically dominate A2, there exists some
d2 ∈ Q such that

FA1 (d2) < FA2 (d2) . (43)

Define the cost functions g1 and g2 as

g1 (D) =

{
0 if D ≤ d1

1 if D > d1,
(44)

and

g2 (D) =

{
0 if D ≤ d2

1 if D > d2.
(45)

Thus,

E
[
g1(DA1 )

]
= 1 − FA1 (d1) (46)

< 1 − FA2 (d1) = E
[
g1(DA2 )

]
, (47)

where the inequality follows from (42). Similarly,

E
[
g2(DA2 )

]
= 1 − FA2 (d2) (48)

< 1 − FA1 (d2) = E
[
g2(DA1 )

]
, (49)

where the inequality in the second step follows from (43). �
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A P P E N D I X E
P R O O F O F T H E O R E M 5

As F∗ dominates every other algorithm, the area under the
CDF curve of any other algorithm is no greater than the
area under F∗. Consequently, maximizing RA is equivalent
to maximizing the area under the CDF curve of the algorithm.
We use this fact to show that the expected distance error
of algorithm A, E [DA] is a linear function of RA. Thus an
algorithm that minimizes RA minimizes E [DA] as well and
vice versa. More formally, for all A ∈ A

RA =

d∗∫
0

(F∗(x) − FA(x)) dx (50)

=

d∗∫
0

(1 − FA(x)) dx +

d∗∫
0

(F∗(x) − 1) dx (51)

= E [DA] + α, (52)

where the last equality follows from the fact that the random
variable DA is non-negative and α is the constant given by
α =

∫ d∗

0 (F
∗(x) − 1) dx. �

A P P E N D I X F
AT TA I N A B I L I T Y O F T H E O P T I M A L E R R O R C D F

As indicated in Section IV-C, if we have a symmetric
unimodal distribution over a circular area with the mode located
at the center, then the MAP estimate is optimal. On the other
hand, from an algorithmic perspective, MEDE has the nice
property, following Theorem 3, that if there exists an algorithm
that attains F∗, then the MEDE algorithm will attain it as
well. However, it is not clear a priori if F∗ is attainable. A
sufficient and necessary condition for the attainability F∗ may
be obtained in light of the following observations:
• By design, the MP(d) estimate matches the performance

of F∗ for the specific distance d ∈ Q. However, there are
no guarantees on the performance the estimate at other
distances.

• The MP(d) algorithm need not return a unique location
estimate. This reflects the fact that there may be multiple
locations in S that maximizes the P(d) metric for the
given posterior distribution.

Consequently, consider a modified version of the MP(d)
algorithm that enumerates all possible MP(d) estimates for the
given distance d. If F∗ is attainable by some algorithm A, then
the estimate returned by A, say r̂A, must exist in the list returned
by the MP(d) algorithm. Note that this condition holds for any
distance d ∈ Q used for the MP(d) algorithm. Consequently,
if the intersection of the estimate list returned by MP(d) for
all d ∈ Q is non-empty, then we conclude that F∗ is attained
by each estimate in the intersection. If the intersection is a null
set, then we conclude that F∗ is unattainable, thereby giving
us the necessary and sufficient condition for the existence of
F∗.

While the above test calls for the repeated execution of the
MP(d) algorithm over a potentially large search space, we may
exploit the fact that each execution is independent of each

other, thereby gaining considerable speed improvements by
utilizing parallel processing. In some cases, it may be possible
to carry out this test analytically. The condition enumerated
in Section IV-C is a case in point. The task of identifying the
cases when we can obtain the algorithm that attains F∗ is a
topic of future research. A slight generalization of the example
given in Section IV-C leads to the following conjecture.

Conjecture 1. If the posterior distribution fR(r |O = o) is
continuous, symmetric and unimodal with the mode located at
the centroid of a convex space S, then the MAP estimate is
optimal.

Let d ′ be the maximal radius of a neighbourhood Nd(c) ⊆ S
centered on the centroid (c) of our space S. For all d ≤ d ′

inf
r∈Nd (c)

fR(r |O = o) ≥ sup
r∈Nd (r′)\Nd (c)

fR(r |O = o), (53)

for any r′ ∈ S. Note that this follows directly from the
assumption that the posterior is unimodal. Consequently, for
all d ≤ d ′ the MAP estimate is one of the best performing
estimates. The optimality of MAP at distances beyond d ′

follows immediately if∫
S∩(Nd (c)\Nd (r′))

dr ≥
∫

S∩(Nd (r′)\Nd (c))

dr, (54)

for any r′ ∈ S. We intuit that the above condition holds since
c is the centroid of S, but a proof remains elusive.
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