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Cloud Systems
Ryangsoo Kim, Hyuk Lim, and Bhaskar Krishnamachari

Abstract—In the last decade, vehicular ad-hoc networks
(VANETs) have been widely studied as an effective method
for providing wireless communication connectivity in vehicular
transportation systems. In particular, vehicular cloud systems
have received abundant interest for the ability to offer a variety of
vehicle information services. We consider the data dissemination
problem of providing reliable data delivery services from a
cloud data center to vehicles through roadside wireless access
points (APs) with local data storage. Due to intermittent wireless
connectivity and the limited data storage size of roadside wireless
APs, the question of how to use the limited resources of the
wireless APs is one of the most pressing issues affecting data
dissemination efficiency in vehicular cloud systems. In this paper,
we devise a vehicle route-based data prefetching scheme, which
maximizes data dissemination success probability in an average
sense when the size of local data storage is limited and wireless
connectivity is stochastically unknown. We propose a greedy
algorithm and an online learning algorithm for deterministic
and stochastic cases, respectively, to decide how to prefetch a
set of data of interest from a data center to roadside wireless
APs. Experiment results indicate that the proposed algorithms
can achieve efficient data dissemination in a variety of vehicular
scenarios.

Index Terms—Vehicular cloud system, data dissemination,
vehicular ad hoc networks, online learning, greedy algorithm,
roadside wireless access point.

I. INTRODUCTION

IN the last decade, vehicular ad-hoc networks (VANETs)

have been widely studied as a method for incorporat-

ing wireless communication capabilities in vehicular trans-

portation systems for safety, energy, and comfort issues [1].

VANETs consist of two types of nodes, i.e., mobile vehicles

and stationary roadside wireless access points (APs); the

wireless APs serve as an infrastructure for network con-

nectivity in VANETs. In VANETs, vehicle-to-vehicle (V2V),

infrastructure-to-vehicle (I2V), and vehicle-to-infrastructure

(V2I) communications are defined depending on the direction

of traffic flow [2]. While V2V is primarily used for exchanging

immediate driving information among neighboring vehicles on
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the road for safety purposes, I2V and V2I aim at data delivery

services from/to the Internet through the roadside wireless APs

in VANETs.

The vehicular cloud system (VCS) is a new emerging

technology that can provide cloud services for various vehicle

information applications such as multimedia streaming, au-

tonomous navigation services, and remote vehicle diagnosis.

The infrastructure for VCS consists of high-performance cloud

servers at a data center and a number of roadside wireless APs

with limited-sized local data storage. If an application requires

high computational power or an extensive amount of data

storage, it is more desirable to be implemented and executed as

a cloud service of VCS because vehicles may have insufficient

data processing and storage capability to run such a heavy

application in a stand-alone manner [3]. When a vehicle needs

data delivery and computing services for vehicle information

applications, it uses the roadside wireless APs to contact

the cloud servers. Moreover, the cloud server can perform

computationally intensive tasks and disseminate output data to

the vehicular subscriber. While the roadside APs are connected

to the cloud servers through wired links, the connection

between the vehicles and the wireless APs is intermittently

available as the vehicle enters and leaves the service coverage

areas of the wireless APs. Thus, owing to vehicle mobility and

intermittent connectivity, data dissemination to mobile vehicles

through the roadside wireless APs is a challenging problem for

successful implementation of vehicular cloud systems [4].

We concentrate our attention on the problem of how to

exploit the local data storages of roadside wireless APs for

efficient data dissemination within the VCS. For illustration,

we consider a data dissemination scenario for VCS as shown

in Figure 1. Suppose a vehicle requests cloud data and the

routing path is determined in advance. All of the wireless

APs located on the path of the vehicle fetch the data from the

cloud servers and attempt to transmit it to the vehicle when

the wireless link to the vehicle is established. This approach

can achieve the highest data delivery success probability, but

it is not practically applicable because the size of local storage

in each wireless AP is too small to store all of the data

requested by multiple vehicles at the same time. Note that

the number of data chunks that can be prefetched from a

cloud server at a single time point is limited by the wired

link capacity of wireless AP, despite the fact that the AP has

a large storage capacity. For example, consider a multimedia

streaming service. If a wireless AP has a gigabit Ethernet link

with 128 GB solid-state drive (SSD) storage, it can prefetch

75 100-MB video clips every minute and can store 2,560

video clips. In such a case, with respect to dissemination
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Fig. 1. Vehicle route and roadside wireless AP based data dissemination
scenario for a vehicular cloud system.

efficiency, it is more desirable to fetch the data requested

by more than two vehicles to the wireless APs located on

the intersection of multiple paths rather than that requested

by only one vehicle. For example, if the vehicles A and B

request the same vehicular cloud service as shown in Figure

1, it is desirable that AP 5 has the data chunk and transmits

it to the vehicles because both vehicles pass by AP 5. It is

also important to consider that vehicles have connectivity to

wireless APs only when they stay for at least a certain time

interval within the service coverage area of the roadside APs;

moreover, the connectivity is susceptible to the time-varying

wireless channel.

In this paper, we devise a vehicle route-based data prefetch

framework for data dissemination in vehicular cloud sys-

tem, which maximizes the aggregate dissemination success

probability in an average sense when the size of local data

storage is limited and wireless connectivity is stochastically

unknown. We formulate this data dissemination as a binary

optimization problem, for which the optimal solution can

be obtained by a deterministic combinatorial algorithm. We

propose a greedy algorithm and analyze its approximate worst-

case performance bound. We also propose an online learning

algorithm based on multi-armed bandits (MABs) to maximize

the aggregate dissemination success probability in an average

sense by capturing the unknown stochastic characteristics

of wireless connectivity. The proposed data dissemination

scheme is applicable to delay-tolerant vehicular data services

such as entertainment content distribution, navigation data

updates, and online travel guide services.

The rest of this paper is organized as follows. First, we

present a survey of related work in Section II. In Section

III, we describe the system models and assumptions for data

dissemination of vehicular cloud systems. In Section IV, we

formulate a data dissemination problem that maximizes the

aggregate dissemination success probability and propose a

greedy algorithm and an online learning algorithm for deter-

ministic and stochastic cases, respectively. In Section V, we

show numerical experiment results followed by conclusions in

Section VI.

II. RELATED WORK

The data dissemination research for VANETs is summarized

into the two categories of V2V and V2I/I2V communications.

The data dissemination research for V2V communications

focuses on how to achieve reliable and timely data delivery

among mobile vehicles on roads over intermittently connected

wireless links [5]–[10]. In [5], the data pouring (DP) algorithm

with intersection buffering was proposed. The vehicles at inter-

sections keep the data sent by the source node in their buffers

and repeatedly rebroadcast it to other vehicles passing the

intersection. In [6], the route information of vehicles, which is

readily available through the GPS enabled navigation system

in the vehicles, is used for alleviating channel congestion in

data dissemination by selecting appropriate routing paths. In

[7], the relative distance between neighboring mobile vehicles

is predicted and exploited for improving reliability of data

delivery. In [8], Schwartz et al. proposed adaptive network

load control for fair data dissemination in VANETs. In [9], Ye

et al. studied a peer-to-peer data dissemination problem and

proposed a network coding based data broadcasting scheme

for improving data reception efficiency. The dissemination

complete time and steady-state data dissemination velocity for

the peer-to-peer data dissemination were also mathematically

analyzed in [9]. In [10], Sathiamoorthy et al. investigated

vehicle-to-vehicle data sharing using erasure codes for re-

ducing data dissemination latency in vehicular networks. In

particular, they focused on the problem of how to store

erasure coded data in vehicles to maximize vehicle-to-vehicle

collaboration opportunities.

The data dissemination for V2I and I2V communications

focuses on how to efficiently share the limited resource of

roadside APs to improve the quality of data dissemination

services. In [11], Liang et al. proposed a cooperative data

dissemination approach. At the network level, network re-

sources were cooperatively managed so as to satisfy the quality

of service (QoS) requirements for realtime and non-realtime

traffic. At the packet level, cooperative transmission for the

sake of increasing the high packet transmission rate was

proposed. In [12], rateless coding technology was applied

at roadside wireless APs to improve the efficiency of data

dissemination.

In I2V data dissemination, two important factors that signif-

icantly affect the data dissemination performance are the lim-

ited buffer size of roadside wireless APs and the intermittent

connectivity between the wireless APs and mobile vehicles

[13]–[16]. In [13], a hybrid data dissemination assisted by

static nodes was proposed. When there are no vehicles that

can deliver the data along a routing path, static nodes located

at road intersections keep the data and forward it when the

routing path becomes available. In [14], wireless transmission

characteristics for sending and receiving large amounts of data

from a moving vehicle to the roadside wireless APs were

investigated empirically. In [15] and [16], a wireless measure-

ment study for vehicles under different driving conditions was
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carried out. In [17], Jeong et al. proposed an infrastructure-

based data dissemination that utilizes the trajectory of the

vehicles that the packets with a delay constraint are destined

for. As a vehicle is moving along a pre-determined route

path, one of the relay nodes on the path is dynamically

selected as the destination for each requested data packet such

that the packet delivery delay is minimized while satisfying

the packet reception probability requirement. While the work

in [17] mostly focused on data delivery latency rather than

data dissemination efficiency for the roadside wireless APs

with limited storage capacity, we consider an I2V VANET

scenario where there exists a constraint on the storage size

of roadside wireless APs and the network connectivity is

intermittently available, and propose a deterministic greedy

algorithm and an online learning-based algorithm to achieve

high data dissemination efficiency in the VANETs.

The data dissemination method for VCS has some sim-

ilarities with web caching strategies adopted for enhancing

local access to popular Internet contents via proxy servers.

Depending on user web access patterns and network topology,

the web caching strategies aim to find the best place for web

proxies on the network, and allow the proxies to cache popular

contents for reducing user access latency and the amount

of Internet access traffic [18]. In [19], Li et al. studied an

optimal placement of web proxies among candidate sites in a

tree-based network topology in order to minimize the latency

for target web services. They modeled the optimal placement

problem as a dynamic programming problem, and the optimal

solution could be obtained in polynomial time. In [20], Qui

et al. studied an online placement problem of web server

replicas under imperfect information about client workload

characteristics. They formulated the placement problem as

a minimum K-median graph theoretic problem and devised

algorithms for minimizing the client cost of accessing data

replicated on web servers. In [21], Nimkar et al. focused on

how to place multiple copies of video files on distributed

proxy servers for video on demand (VoD) services, and devised

greedy video placement and disk load-balancing algorithms.

The data dissemination for VCS is also related to the

problem of allocating virtual computing and storage resources

in large-scale distributed systems such as grid and cloud

computing environments. In [22], Giurgiu et al. dealt with

the problem of how to efficiently manage virtual network

infrastructures in large scale data centers while guaranteeing

resource and availability requirements. To make the optimiza-

tion problem more tractable, they reduced the searching space

for optimization by specifying feasible subsets of computing

nodes as the candidate sites, and used a graph-based search al-

gorithm for finding the optimal placement of virtual machines.

In [23], a multi-objective ant colony system algorithm was

adopted to find the optimal placement of virtual machines that

can minimize the aggregate power and resource consumption

in cloud infrastructures.

Our data dissemination method is similar to web

caching/proxy methods in that both deal with a distributed

cache/storage-based data dissemination problem. The dis-

tributed multiple cache/storage devices store a certain amount

of contents to expedite the service response and to reduce the

traffic amount to be downloaded from the central data server.

However, there are significantly challenging issues that need

to be resolved for data dissemination in vehicular network

environments:

• Most web caching/proxy methods focus on maximizing

the hit rate of individual proxy servers for certain content

request statistics. Our VCS is formulated such that it

guarantees that vehicular subscribers receive the data

service successfully from at least one roadside AP while

they pass by multiple APs during their traveling time.

• Web caching/proxy methods are usually designed under

the assumption that proxy servers provide services to their

users through a reliable link without significant loss of

data. In our VCS, the vehicular subscribers communicate

with roadside wireless APs through a unreliable wireless

link. It is assumed that the connectivity is intermittently

available, and its distribution is stochastically unknown in

advance. The stochastic characteristics of wireless con-

nectivity should be taken into consideration for reliable

dissemination services.

• In these vehicular environments, the driving routes of ve-

hicles are assumed to be predicted or obtained using on-

line navigation. This routing information can be exploited

for improving data dissemination performance. For avail-

able routing information of vehicular subscribers, our data

dissemination method cooperatively manages the multiple

roadside APs on the routes of the subscribers, depending

on their intermittent connectivity distribution and storage

capacity, in order to maximize the data service success

rate for all data-vehicle pairs.

In fact, various existing web caching/proxy methods could

be applied for enhancing the dissemination performance in

vehicular network environments because VCS can be con-

sidered as a mobile web caching method that coordinates

distributed roadside storages with network connectivity in

vehicular network environment.

III. SYSTEM MODEL

We consider a VCS that consists of cloud servers at a

data center and roadside wireless APs with local data storage.

Mobile vehicles have intermittent network connectivity to the

cloud system through the wireless APs, which are connected

to the cloud servers by means of wired infrastructure networks.

To expedite data dissemination to vehicles, each AP can

prefetch some data from the data center before they are

requested from vehicular subscribers. We make the following

assumptions for the VCS:

• The data in a cloud system is divided into a number of

small chunks that are the basic units for data delivery

from the data center to vehicles.

• Each AP is placed at an intersection and has limited

transmission coverage such that a vehicle can download

data chunks of interest only when it stays within the

coverage area for at least a certain amount of time.

• Each AP has a stochastic characteristic for communicat-

ing with the mobile vehicle going through its coverage
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TABLE I
PARAMETERS USED FOR MODELING VEHICULAR CLOUD SYSTEMS.

Parameter Description

w Number of wireless APs in the vehicular cloud system

v Number of vehicles in the area of interest

u Number of data chunks served by the vehicular cloud system

b Maximum number of data chunks that can be stored at each local data storage

R
Chunk request matrix R = (ri,j)v×u

where ri,j =1 if the i-th vehicle requests the j-th chunk, and otherwise 0.

S
Vehicle route matrix S = (si,j)v×w

where si,j =1 if the i-th vehicle goes through the j-th wireless AP, and otherwise 0.

θ
Network connectivity success rate vector θθθ = (θk)w×1

where θk is an average rate of successful communications between the k-th AP and mobile vehicles.

X
Binary decision matrix X = (xi,j)w×u

where xi,j = 1 if the j-th chunk is to be prefetched to the i-th wireless AP and otherwise 0.

P
Dissemination failure probability matrix P = (pi,j)v×u

where pi,j is a probability that the i-th vehicle fails to download the j-th chunk.

region due to limited communication capacity and time-

varying wireless channels.

• For effectively using a data dissemination service, the

driving route of vehicles must be available in advance

from online navigation and long-term archived traces.

Each vehicle that uses VCS has to report its driving route

so that the data dissemination algorithm can find the best

APs belonging to that route. Note that the selected APs will

prefetch data chunks from a cloud server and hold the re-

quested chunks requested by a vehicular subscriber. Whenever

the route changes, it has to be reported to the VCS. If a vehicle

does not have a navigation device, its driving route can be

predicted using historical traces.

Given the assumptions outlined above, we first define two

matrices of the chunk request matrix R, the vehicle route

matrix S, and the network connectivity success rate vector θ to

describe a VCS. Let u, v, and w denote the numbers of chunks,

vehicles, and wireless APs, respectively. R = (ri,j)v×u is a

binary matrix where ri,j = 1 when the i-th vehicle requests

the j-th chunk, and otherwise 0. S = (si,k)v×w is also

a binary matrix where si,k = 1 when the i-th vehicle is

expected to go through the k-th wireless AP, and otherwise

0. Last, θ = (θk)w×1 is a vector where θk represents the

average rate of successful communication between the k-th

AP and a mobile vehicle passing by the AP. We summarize

the parameters used for modeling the VCS in Table I.

The data dissemination problem in this paper is to make a

decision on which chunks are to be prefetched to the local

data storages of wireless APs to expedite data dissemination

in the VCS. Let X = (xi,j)w×u denote a binary decision

matrix where xi,j = 1 if the j-th chunk is to be prefetched

to the i-th wireless AP, and otherwise 0. For example, if xi,j

= 1 for all i’s and j’s, it means that all the data chunks are

distributed to every local data storage. In this case, vehicles are

supposed to successfully receive as many requested chunks as

possible, but this may not be efficient because all the chunks

are unnecessarily copied to every local storage. In particular,

the data storage capacity of roadside wireless APs is limited,

and thus all of the data chunks cannot be stored in all the APs.

By using R, S, θ, and X, we derive the dissemination failure

probability matrix denoted by P = (pi,j)v×u where pi,j is

the probability that the i-th vehicle fails to download the j-th

chunk. Then, pi,j is given by the product of the probabilities

that the i-th vehicle fails to download the j-th chunk at every

AP that it goes through as follows:

pi,j = ri,j ×

w
∏

k=1

hi,j,k(si,k, θk, xk,j), (1)

where hi,j,k is the probability that the i-th vehicle

fails to download the j-th chunk at the k-th AP, and

hi,j,k(si,k, θk, xk,j) = 1− si,k · θk · xk,j .

IV. PROPOSED DATA PREFETCHING SCHEME

In vehicular cloud systems, local data storages in roadside

wireless APs are essential resources for expediting data dis-

semination from a data center to mobile vehicles. If more

wireless APs that are located on the routes of a vehicle

have data chunks, it is more likely that the vehicle can

successfully download the data chunks. On the other hand,

if too excessive data chunks are transferred to wireless APs,

it is a resource waste of local data storage and may cause

an increase in network delay from a data center to wireless

APs. In this paper, we consider an optimization strategy that

maximizes data dissemination success probability when the

data storage size of each local data storage is limited. The data

dissemination problem is formulated as a binary maximization

over X ∈ {0, 1}w×u.

The objective of the data dissemination problem described

in this paper is to maximize the dissemination success proba-

bility in the VCS. Due to the stochastic characteristics of θ in

P, it is not possible to perfectly guarantee data chunk delivery.

Instead, we maximize the dissemination success probability

under the assumption that there exists a maximum boundary

(or quantity) of data storage in roadside wireless APs. Let bi
denote the maximum number of data chunks that can be stored

at the local data storage of the i-th AP. Note that bi is also

bounded by the maximum number of data chunks that can be

downloaded from a cloud server during each decision round.

Under the assumption that all APs have the same storage

capacity, bi is set to b for all i = {1, · · · , w}. Then, we impose

a constraint on the selection of the binary decision matrix such

that the feasible candidates are from a finite set Forg, which
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is represented as follows:

Forg = {X : X ∈ {0, 1}w×u, ||X · 1u||max ≤ b}, (2)

where 1l ∈ R
l is an all-ones column vector. Let g(X) denote

the aggregate dissemination success probability for all the

vehicles and data chunks. Then, g(X) is given by

g(X) =

v
∑

i=1

u
∑

j=1

ri,j · (1− pi,j). (3)

We also define a set function ga(AX) for g(X), i.e., ga(AX) =
g(X) where AX = {(i, j) : xi,j = 1, 1 ≤ i ≤ w, 1 ≤ j ≤ u}
is the index set for xi,j = 1 in X. The optimal binary decision

matrix X∗ that maximizes g(X) is to be selected from Forg

as follows:

X∗ = arg max
X∈Forg

g(X). (4)

A. Deterministic greedy data dissemination for VCS

For simplicity, we first assume that the stochastic charac-

teristics of the network connectivity success rate θ between

APs and vehicles are completely observed, thereby being able

to exploit the deterministic statistics for data dissemination.

In other words, the values θ = [θ1, · · · , θw] are completely

known to the data center in advance. Then, the data dissemina-

tion problem is a binary optimization problem, and its optimal

solution can be obtained by a deterministic combinatorial

algorithm. One may attempt to solve this binary optimization

by a brute-search algorithm, which enumerates all possible

candidates and checks whether each candidate satisfies the

problem statement. However, the complexity grows exponen-

tially with respect to the dimension of X, and thus it is

not scalable and limited in applicability to small vehicular

systems with only a few tens of (w× u). To make this binary

optimization problem more tractable, we derive the following

proposition and then propose a greedy algorithm based on the

proposition.

Proposition 1: For maximizing data dissemination success

probability, a finite set of binary decision matrices can be

reduced as follows:

F = {X : X ∈ {0, 1}w×u,X · 1u = b · 1w}.

Proof: Suppose that an element xy,z ∈ X is 0. When

xy,z is changed from 0 to 1, the variation of the cost function

g(X) in (3) with respect to xy,z is
∑v

i=1 ri,z ×
∏w\y

k=1(1 −
si,k · θk · xk,z) × (si,y · θy), which is greater than or equal

to 0. This implies that as more elements in X change their

value to 1, the variation of g(X) is greater than or equal to 0
(the equality holds when ri,z or si,y is equal to 0 for all i ∈
{1, · · · , v}). This means that the cost function g(X) increases

over X. Therefore, the cost function in (4) can be maximized

with the largest number of 1’s in X that satisfies X·1u = b·1w

in the constraint.

Based on the above proposition, we propose a greedy

algorithm that iteratively finds the sub-optimal solution on F
by setting one element of X to 1 at each iteration. The detailed

procedure is given in Algorithm 1. The algorithm starts with

X∗
g , which is one that gives the largest dissemination success

Algorithm 1 Deterministic greedy data dissemination for VCS

1: // Initialization

2: X∗
g = arg maxX∈{X:X∈{0,1}w×u,|AX|=3} g(X)

3: AXC = φ;
4: // Main loop

5: for l = 4 to w × b do

6: {(y, z)} = arg max{(i,j)}∈A1w×u
\(AX∗

g
∪A

XC )

7:

(

ga(AX∗

g
∪ Axi,j

)− ga(AX∗

g
)
)

;

8: if (X∗
g1u)y >= b then

9: AXC = AXC ∪Axy,z
;

10: Go back to line 6.

11: end if

12: AX∗

g
= AX∗

g
∪ Axy,z

;
13: X∗

g(y, z) = 1;
14: end for

probability among all the feasible X’s with |AX| = 3 on line

2. 1 Then, at each iteration, the algorithm picks one element

xy,z ∈ A1w×u
\(AX∗

g
∪AXC ) maximizing the increment of dis-

semination success probability, i.e., ga(AX∗

g
∪Axy,z

)−ga(AX∗

g
)

where 1w×u is an all-ones w × u matrix, and AXC is the

index set for all xi,js in X∗
g that are 0 but are prohibited from

being converted to 1 due to the limited storage capacity of the

roadside wireless APs. On line 7, if the number of ones in the

y-th row of X∗
g is less than b (i.e., (X∗

g1u)y < b where (a)y
represents the y-th element of vector a), then we set the xy,z

in X∗
g to 1 (i.e., AX∗

g
= AX∗

g
∪Axy,z

). Otherwise, we set xy,z

in X∗
g to 0 (i.e., AXC = AXC ∪ Axy,z

) and repeat the above

steps. This algorithm terminates when the number of ones in

each row of X∗
g is equal to b.

In Algorithm 1, the number of iterations is equal to (w ×
b− 3) because each local data storage in the wireless AP has

b number of 1’s in its corresponding X’s row. In each iteration

inside the loop, the maximum from the vector of (w×u) needs

to be searched. The evaluation of ga(·) incurs the complexity

of O(v×u) from (3). As a result, the computational complexity

of Algorithm 1 becomes O(w2u2bv), which corresponds to

quadratic complexity with respect to w and u. Even though

we assume that all the wireless APs have the same data storage

capacity b in (2), Algorithm 1 can be easily extended to the

case in which the capacities are not the same without any

significant modification. Because the storage capacity of the

i-th AP is bi, the number of iterations for finding the optimal

solution is set to (
∑w

i=1 bi−3). Note that the local data storage

of the i-th AP has bi number of 1’s in its corresponding X’s

row.

As greedy algorithms may fail to find the globally optimal

solution, it is necessary to check the worst-case performance

of a greedy algorithm by checking its approximation factor. If

its approximation is bounded by a constant factor, the greedy

algorithm is capable of finding the sub-optimal solution in

polynomial-time. To derive its approximation, we derive the

following proposition.

1Note that the reason for enumerating all the feasible X’s with |AX| = 3
in the first iteration is to make it possible to derive an approximation of the
proposed greedy algorithm, as described in Appendix A.
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Proposition 2: The proposed dissemination problem in (4)

can be transformed into a submodular maximization problem

(SMP).

Proof: Submodularity is an intuitive notion of diminishing

returns, which implies that adding an element to a small set

gives more returns than adding that same element to a larger

set [24]. It is defined as follows: A real-valued set function

H , defined on subsets of a finite set S, is called submodular

if it satisfies

H(B1 ∪ s)−H(B1) ≥ H(B2 ∪ s)−H(B2) (5)

for all B1 ⊆ B2 ⊆ S and for all s ∈ S \ B2. To verify

submodularity, we consider the problem in (4) as follows:

max
X∈F

ga(AX) subject to X1u = b · 1w. (6)

Note that ga(AX) is also a nondecreasing set function be-

cause g(X) is a nondecreasing function over X as shown

in Proposition 1. Consider AX1
⊆ AX2

⊆ A1v×u
and

Axy,z
∈ A1w×u

\ AX2 . Then, we have the following:

ga(AX1
∪Axy,z

)− ga(AX1
)

=

v
∑

i=1

ri,z · si,y · θy · xy,z ·
∏

k∈{k|(k,z)∈AX1
}

(1 − si,k · θk · xk,z),

(7)

where the right-hand side is greater than or equal to zero.

Then, we can show the following inequalities:

{ga(AX1
∪ Axk′,j′

)−ga(AX1
)}−{ga(AX2

∪ Axk′,j′
)−ga(AX2

)}

=

v
∑

i=1

ri,j′ · si,k′ · θk′ · xk′,j′ ·
∏

k∈{k|(k,j′)∈AX1
}

(1− si,k · θk · xk,j′ )

· (1−
∏

k∈{k|(k,j′)∈AX2
\AX1

}

(1 − si,k · θk · xk,j′ )) ≥ 0. (8)

According to (8), the function ga(AX) is a sub-modular set

function, and the problem in (6) is an SMP.

Based on the above proposition, the greedy algorithm is

able to achieve a constant factor (1 − e−1) approximation of

the optimal value of (4). The detailed procedure to achieve

such an approximation bound is described in Appendix A.

However, in practice, it is desirable to deal with the network

connectivity success rate θ as a random process because

its statistical property is unknown in advance. In such a

case, it is not possible to directly determine how many data

chunks are prefetched to the local data storages. In the next

subsection, we propose an alternative way to observe and

exploit the stochastic characteristics of θ for maximizing the

dissemination success probability in an average sense.

B. Online learning-based data dissemination algorithm

In this paper, we adopt the stochastic multi-armed bandit

(MAB) based online learning framework presented in [25]

to solve the data dissemination problem in (4). MABs are

widely used to solve combinatorial optimization problems for

cost functions with unknown random variables. The MAB

framework gradually learns the stochastic characteristics of

random variables with unknown distribution and then deter-

mines an optimal policy to maximize the cost function in

an average sense. The performance of the MAB is evaluated

by analyzing the regret, which is defined as the aggregated

difference between the maximum costs given by a globally

optimal solution and those by the MAB over time. If the regret

increases sub-linearly, it implies that the solution of the MAB

gradually converges to a globally optimal solution in a certain

number of iterations. In this subsection, we propose an MAB-

based online learning algorithm for the data dissemination and

perform the regret analysis to show that the solution of our

proposed algorithm converges to a globally optimal solution.

1) Policy design: In our data dissemination problem, the

network connectivity success rate θ for roadside wireless APs

is a random variable with unknown distribution that changes

over time. Let n be a time index representing a decision

period for online learning iterations and t = (tk)w×1 denote

the random variables representing network connectivity of

the APs, where θk = E[tk] for all k = {1, · · · , w}. The

proposed MAB-based online learning algorithm measures the

mean network connectivity success rate θ at each decision

period and finds an optimal solution on F that maximizes a

cost function with mean network connectivity success rate.

The globally optimal binary decision matrix X∗ is given by

X∗ = arg max
X∈F

v
∑

i=1

u
∑

j=1

ri,j · (1−

w
∏

k=1

hi,j,k(si,k, θk, xk,j)).

(9)

The detailed procedure is given in Algorithm 2. The idea

for this algorithm was inspired by algorithm CWF2 in [25],

which exploits the information gained from the operation of

each action to determine a dependent action and achieves a

logarithmically growing regret.

In Algorithm 2, the initial learning process is performed for

each AP, so that at least one data chunk may be downloaded

from the AP to vehicles. On lines 3 – 8, at the p-th iteration, an

arbitrary binary decision matrix X ∈ F is chosen such that the

number of data chunks downloaded from the p-th AP, which

is ({(ST R)⊙X}1u)p, is greater than or equal to 1 in order to

measure and estimate the initial values of the instantaneous

network connectivity success rate θ′k and the accumulated

mean network connectivity success rate θk. Subsequently, the

selected arm X(n) is played, and θ′k and θk are measured and

updated. The instantaneous network connectivity success rate

θ
′ = [θ′1, · · · , θ

′
w]

T is given by

θ′k =

∑v
i=1

∑u
j=1 ri,j · (1− hi,j,k(si,k, tk, xk,j(n)))

({(ST R)⊙ X(n)}1u)k
. (11)

The accumulated mean network connectivity success rate θ =
[θ1, · · · , θw]

T is updated as follows:

θk =
θk ·mk + θ′k · ({(S

T R)⊙ X(n)}1u)k

mk + ({(ST R)⊙ X(n)}1u)k
, k = {1, · · · , w},

(12)

where m = [m1, · · · ,mw]
T is the number of observation

times up to the current iteration for the APs. Based on θ,

an optimal binary decision matrix is determined as described

in (10) on line 12. The proposed online learning algorithm



7

Algorithm 2 Proposed online learning algorithm

1: // Initialization

2: n = 0;
3: for p = 1 to w do

4: n := n+ 1;
5: Play any arm X ∈ F such that ({(ST R)⊙ X}1u)p ≥ 1;

6: θ′k =
∑v

i=1

∑u
j=1 ri,j ·(1−hi,j,k(si,k,tk,xk,j(n)))

({(ST R)⊙X(n)}1u)k
, k = {1, · · · , w}

7: θk =
θk·mk+θ′

k·({(ST R)⊙X(n)}1u)k
mk+({(ST R)⊙X(n)}1u)k

, mk = mk + ({(ST R)⊙ X(n)}1u)k, k = {1, · · · , w};

8: end for

9: // Main loop

10: while 1 do

11: n := n+ 1;
12: Play any arm X ∈ F which solves the following maximization problem:

max
X∈F

v
∑

i=1

u
∑

j=1

ri,j ·

(

2−

w
∏

k=1

hi,j,k(si,k, θk, xk,j)−

w
∏

k=1

max{hi,j,k(si,k,

√

(w + 1) lnn

mk
, xk,j), 0}

)

; (10)

13: θ′k =
∑

v
i=1

∑

u
j=1 ri,j ·(1−hi,j,k(si,k,tk,xk,j(n)))

({(ST R)⊙X(n)}1u)k
, k = {1, · · · , w}

14: θk =
θk·mk+θ′

k·({(ST R)⊙X(n)}1u)k
mk+({(ST R)⊙X(n)}1u)k

, mk = mk + ({(ST R)⊙ X(n)}1u)k, k = {1, · · · , w};

15: end while

iteratively finds a globally optimal binary decision matrix that

maximizes the aggregate dissemination success probability in

an average sense. Note that θk gradually converges to the

actual mean network connectivity success rate as θk is updated

over time. The proposed online learning algorithm needs two

storage units of size w × 1 to store θ and the number of

observation times m.

2) Regret analysis: We perform the regret analysis to show

that the solution of the proposed online learning algorithm

converges to a globally optimal solution in a certain number of

iterations. The regret of the proposed algorithm is an aggregate

discrepancy between the maximum aggregate dissemination

success probabilities by a globally optimal solution and by

the proposed algorithm in Algorithm 2. The regret after N
iterations is given by

R(N) = N · g(X∗)−
N
∑

n=1

g(X(n)), (13)

where g(X∗) = maxX∈F g(X) is the maximum aggregate dis-

semination success probability by the optimal binary decision

matrix X∗.

The regret analysis derives the upper bound of the regret

after N iterations. The upper bound can be obtained as a

function of the upper bound of the number of times for

which a non-optimal binary decision matrix is selected. Let

TNO(N) denote the number of times for which a non-optimal

binary decision matrix is selected for the first N iterations.

To show the upper bound of TNO(N), we define Tk(N) as

a counter for the k-th wireless AP. Once the online learning

algorithm selects a non-optimal binary decision matrix, the

index j such that j = arg mink∈{1,·,w} mk is selected, and

the corresponding counter Tj(N) is increased by 1. If there are

more than two indexes, one index is selected arbitrarily and

the corresponding counter is increased by 1. Then, only one

counter will increment its value when the non-optimal binary

decision matrix is selected, and the following equation must

hold:

TNO(N) =

w
∑

k=1

Tk(N).

Based on the above equation, the upper bound of regret is

given by

R(N) ≤ ∆max ·

(

w
∑

k=1

Tk(N)

)

, (14)

where ∆max = g(X∗) − minX∈F g(X). Under the above

inequality, an upper bound of the regret function R(N) is

determined by the upper bound of the counter Tk(N), which

is given as follows:

E[Tk(N)] ≤
(w + 1) lnN

θ2min

+ 1 +
π2

3
(w2b), (15)

where θmin is a constant less than or equal to 1. The detailed

derivation of the upper bound for the counter Tk(N) is

described in Appendix B. The upper bound of the regret is

as follows:

R(N) ≤ ∆max ·

(

w(w + 1) lnN

θ2min

+ w +
π2

3
(w3b)

)

. (16)

As shown in the above equation, the regret function R(N)
increases sub-linearly with respect to the number of iterations.

This sub-linear increase implies that the optimal solution of the

proposed algorithm gradually converges to a globally optimal

binary decision matrix after a certain number of iterations.

3) Comparison with other learning algorithms: While the

proposed algorithm was inspired by the CWF2 algorithm

in [25], there are two major enhancements in our proposed

algorithm. First, the cost function of the optimization problem

in (10) designed for finding the optimal data dissemination
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Fig. 2. Map of the roadside wireless APs randomly deployed at the
intersections of roads in Beijing.

strategy is too complicated to be solved by the CWF2 al-

gorithm. This is because the CWF2 algorithm deals with a

cost function that consists of a weighted linear combination

where each term is a function of a single random variable. On

the other hand, our algorithm deals with a more complicated

cost function with nonlinear dependencies that include the

multiplication of unknown random variables and linear reward

terms. Other online learning algorithms such as UCB1 [26]

and LLR [27] are limitedly applicable when the cost function

is a function of one random variable and is a weighted linear

combination of random variables, respectively.

Second, in the CWF2 algorithm, each arm is associated

with one unknown random variable, and thus each unknown

random variable can be explored only one time in each

decision period when the online learning algorithm decides to

exploit the corresponding arm. In contrast, our online learning

algorithm can explore multiple unknown random variables

several times in one decision period because each unknown

random variable is associated with multiple arms. As a result,

our online learning algorithm finds the features of unknown

random variables more rapidly than the CWF2 algorithm.

V. PERFORMANCE EVALUATION

A. Experiment Environment

In this section, we present the results of real-life vehicle-

trace based experiments designed to evaluate the efficiency

of the proposed data dissemination methods for VCSs. It

is assumed that the roadside wireless APs are deployed on

the intersections of roads, and the vehicular subscribers drive

along routes, which are guided by navigation system and

are provided to the cloud service center when the vehicular

subscribers request their cloud services. The vehicular sub-

scribers can communicate with the APs located nearby at the

intersections on their route.

For vehicle traffic trace, we use GPS traces of 2,060 taxis
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Fig. 3. Simulation results of network connectivity for different propagation
models and vehicular subscriber densities.

in Beijing as done in [28].2 We randomly deploy 40 roadside

wireless APs at the intersections as shown in Figure 2. The

vehicular route matrix S is obtained from the route of vehicular

subscribers where si,j = 1 if the i-th vehicular subscriber goes

through the intersection at which the j-th AP is deployed.

For data dissemination, it is assumed that the data chunks

have the same size and the data rates of the APs are identical.

The APs access the wireless channel using IEEE 802.11 DCF.

The network connectivity success rate θ = [θ1, · · · , θw] has a

positive value in the range of [0, 1]. The chunk request matrix

R is randomly set to either 0 or 1 under the assumption that

the vehicular subscribers randomly request data chunks.

We used the ns-2 network simulator to characterize the

network connectivity distribution of the wireless APs. The

wireless channels of the links from wireless APs to vehic-

ular subscribers are modeled as either a Rayleigh fading or

shadowing model with a path-loss exponent. The path-loss

exponent for the wireless channel varies from 2 to 4. Figure

3 shows the simulation results for network connectivity of

the 40 wireless APs for different wireless link models and

vehicular subscriber density. The cumulative density function

(CDF) in Figure 3 indicates that the network connectivity

depends heavily on both wireless link characteristics and the

number of vehicles passing by the APs. For each wireless

link model, the network connectivity becomes worse when

the number of vehicles increases. In the shadowing model,

the network connectivity becomes worse when the path-loss

exponent increases because the communication range of APs

decreases due to the significant signal attenuation.

B. Experiment Results for Deterministic Greedy Data Dissem-

ination for VCS

In this subsection, we focus on the deterministic greedy

data dissemination algorithm and numerically evaluate its

performance in various data dissemination scenarios. Each

2This vehicle-trace dataset was obtained from research conducted by the
University of Southern California’s Autonomous Networks Research Group,
http://anrg.usc.edu.
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point in Figures 4-9 is the average value of 10 runs for different

R’s.

Figure 4 depicts the mean dissemination success probability

for different numbers of data chunks with respect to the

number of roadside wireless APs, for the case when the

roadside wireless APs are randomly chosen from the 40 APs

depicted in Figure 2 and the size of the local data storage is

set to 3 (b = 3). In Figure 4, we observe that as more APs are

deployed on the intersections of the road, the performance of

the data dissemination algorithm is enhanced. This is because

the vehicular subscribers have more opportunities to download

the requested data chunks due to the increasing number of

APs located on the route of the vehicular subscribers. This

result implies that the proposed algorithm will continue to

achieve better data dissemination performance by employing

more roadside wireless APs for the VCS.

Figure 5 depicts the average value of dissemination success

probability for different sizes of data storage with respect

to the number of data chunks served by the vehicular cloud
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servers. It shows that the data dissemination performance is

degraded when the number of data chunks served by the

cloud servers increases. The reason for this deterioration is

that the vehicles request more chunks that are diverse while

the capacity of local storage at each AP is limited. In order to

improve data dissemination performance, the size of the local

data storage needs to be increased, and the number of data

chunks served by the VCS needs to be decreased.

Figure 6 depicts the average probability of dissemination

success with respect to the size of local data storage. In Figure

6, the mean probability of dissemination success increases as

the size of local data storage increases. This is because the

roadside wireless APs can store more data chunks requested

by the vehicular subscribers as the size of local data storage

increases. However, the increase of data storage size incurs

additional costs for the VCS infrastructure. It implies that

there is trade-off between the infrastructure expenditure for

data storage capacity and the data dissemination performance

in VCS.
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For comparing the proposed data dissemination solution

with web caching/proxying methods, we implemented a simple

caching method. In general, most caching/proxy algorithms

have a caching policy to make each proxy server keep the most

popular contents so as to maximize the average hit rate of the

contents requested by the users. The simple replica placement

method was implemented to allow each AP to identify and

keep the b chunks with the largest number of requests at

each AP. In Figure 7, as the capacity of data storage for

roadside wireless APs increases, both dissemination schemes

achieve better dissemination performance. In the entire range,

the proposed dissemination scheme outperforms the simple

caching method. Under the simple caching method, each AP

knows the accurate chunk request information of vehicular

subscribers, but it does not consider whether its neighboring

APs have the same copy of the chunks in their buffers.

Furthermore, the simple caching method does not reflect

the different network connectivity statistics for the caching

decision. This experiment result indicates that it is important

to exploit the information about the prefetching of data chunks

in neighboring APs and the non-identical wireless connectivity

statistics in the data dissemination decision.

We next evaluated data dissemination performance with

respect to the storage size for the wireless channel models and

vehicular subscriber densities. In Figure 8, the dissemination

success probability is higher when the number of vehicular

subscribers v is smaller for both two channel models. In

addition, for the shadowing model, the dissemination perfor-

mance is better when the path-loss exponent α is smaller. The

reason is that, as shown in Figure 3, the network connectivity

increases when v and α decrease. This implies that if the net-

work connectivity between vehicular subscribers and roadside

wireless APs increases, the dissemination method achieves

better dissemination performance.

Finally, we verified the sub-optimality of the proposed

greedy data prefetching algorithm. We compared the dissem-

ination success probabilities of the greedy based prefetch-

ing algorithm with those of a brute search algorithm. Note

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  1.5  2  2.5  3  3.5  4  4.5  5

m
e

a
n

 d
is

s
e

m
in

a
ti
o

n
 s

u
c
c
e

s
s
 p

ro
b

a
b

ili
ty

size of local data storage (b)

Greedy algorithm (w=5)

Brute search (w=5)

Greedy algorithm (w=6)

Brute search (w=6)

Greedy algorithm (w=7)

Brute search (w=7)
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search algorithms (Rayleigh fading, v = 2060, u = 6).

that the brute search algorithm enumerates all the possible

data prefetching cases and then chooses the optimal data

prefetching decision that gives maximum data dissemination

performance. Figure 9 depicts the average data dissemination

success probabilities of the proposed greedy algorithm and

brute search algorithm with respect to the data storage size,

for the case in which the number of data chunks served by

the cloud servers is 6. Figure 9 shows that the dissemination

performance of the proposed greedy algorithm is almost the

same as that of the brute search algorithm. This result implies

that the proposed greedy algorithm near-optimally distributes

the data chunks to the local storage of the APs with reasonable

computational complexity as compared to the brute search

algorithm.

C. Experiment Results for Online Learning-Based Data Dis-

semination

In this subsection, we focus on the proposed online learning-

based data dissemination algorithm and numerically evaluate

its performance in a VCS. For this experiment, we set the

number of the data chunks served by the cloud servers to

5, and the data storage size is set to 3 (u = 5, b = 3). The

proposed online learning algorithm iteratively estimates the

network connectivity success rate θ.

For the performance evaluation, we compare the regret

value of the proposed algorithm with that of a naive online

learning approach using the UCB1 policy in [26]. The naive

online learning approach is designed to learn the aggregate

data dissemination success probability for all possible data

prefetching sets. Note that the proposed algorithm learns the

network connectivity characteristics themselves rather than the

aggregated data dissemination probabilities. Table II represents

the data storage size required to store the information learned

and updated by the algorithms. Under the UCB1 policy, the

data prefetching set that maximizes Y k +
√

2 lnn/mk is

selected at each decision period for prefetching data chunks

to the APs, where n is the number of decision periods, Y k
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TABLE II
SIZE OF DATA STORAGES TO STORE THE INFORMATION LEARNED BY THE

PROPOSED ALGORITHM AND THE NAIVE APPROACH UCB1.

Parameters Proposed algorithm Naive approach

w = 5, u = 5, b = 3 5 1.024 × 108

w = 6, u = 5, b = 3 6 4.096 × 109

w = 6, u = 10, b = 3 6 8.021× 1056
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represents the mean observed aggregate data dissemination

success probability of the k-th data prefetching set, and mk

is the number of times that the k-th data prefetching set has

been selected as the decision. As shown in Table II, the naive

approach requires two data storages of size
(

u!(u−b)!
b!

)w

×1 to

store Y k and mk while the proposed algorithm requires two

w × 1 data storages. Therefore, the proposed online learning

algorithm is more efficient than the naive approach in terms

of memory resource usage.

Figure 10 depicts the simulation results of the regret divided

by the number of iterations, where the vehicle route matrix
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S and the chunk request matrix R are unchanged during the

simulation. Figure 10 shows that the regret of the proposed

algorithm divided by the number of iterations converges to

zero very rapidly in comparison with UCB1. It implies that

the proposed online learning algorithm achieves better data

dissemination performance than UCB1 in terms of conver-

gence speed. Because the search space for UCB1 includes

all possible data prefetching sets, UCB1 incurs a tremendous

time cost to find the optimal data prefetching decision. Figure

11 depicts the regret divided by the number of iterations

in a dynamically changing scenario where R changes at the

20,000-th iteration. As shown in Figure 11, the regret of the

proposed algorithm converges consistently while that of the

naive approach starts to increase after the 20,000-th iteration

due to the change of R. This arises because UCB1 needs to

re-learn all the aggregate dissemination success probabilities

when the chunk requests change.

Figure 12 depicts the estimated network connectivity suc-

cess rate of each AP during the iterations of the proposed

online learning algorithm for the scenario in which R is

changed for every iteration. Figure 12 shows that the estimated

network connectivity success rate of the APs rapidly converges

to their mean values even though R changes over time. This

result implies that the proposed online learning algorithm is

capable of finding the unknown network connectivity success

rate of each AP in dynamically changing vehicular cloud ser-

vice scenarios. The experiment results with real-life vehicle-

traces and realistic wireless models indicate that the proposed

dissemination method is applicable to data dissemination for

VCSs.

VI. CONCLUSION

In this paper, we have presented a prefetch-based data dis-

semination method for VCSs consisting of roadside wireless

APs with local data storages. We formulated the data dissemi-

nation problem as a combinatorial optimization that maximizes

the aggregate data dissemination success probability when the

size of local data storage is limited. Under the assumption
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that the routes and data request information of vehicle sub-

scribers are readily available, we devised two algorithms to

determine how to prefetch a set of data from a data center

to roadside wireless APs. The first is a greedy algorithm

that solves the dissemination problem when wireless network

connectivity characteristics are known deterministically. We

proved that this algorithm could find a sub-optimal solution

in a polynomial-time by deriving the approximation bound

of the greedy algorithm. The second one is an MAB based

online learning algorithm that gradually learns the unknown

network connectivity success rate at each iteration and then

determines an optimal binary decision matrix. In addition,

we proved that its optimal solution converges to a globally

optimal solution in a certain number of iterations using regret

analysis. Finally, we presented numerical results of real-life

vehicle-trace experiments to demonstrate the performance of

the proposed algorithms in a variety of data dissemination

scenarios in VCSs.

APPENDIX A

APPROXIMATION OF THE GREEDY ALGORITHM

In this appendix, we show the worst-case performance of

the greedy algorithm described in Algorithm 1 by deriving its

approximation factor. The problem in (4) can be re-written as

the following optimization problem:

max
X∈F

ga(AX) subject to X1u = b · 1w, (17)

where ga(AX) =
∑v

i=1

∑u
j=1 ri,j

∏w
k=1(1 − si,k · θk · xk,j)

is a nonnegative, nondecreasing, and submodular set function;

thus, it satisfies the following condition:

ga(T ) ≤ ga(S) +
∑

i∈T\S

(ga(S ∪ {i})− ga(S)), (18)

where T and S are arbitrary sets. Assume that X∗ is an optimal

solution of the problem in (17), and Xi
g is a solution of the

greedy algorithm after the i-th iteration. We sort the index set

of {(m,n)}is for X∗ such that

ga({(m,n)1, · · · , (m,n)i})

= max
(m,n)∈AX∗\{(m,n)1,··· ,(m,n)i−1}

ga({(m,n)1, · · · ,

(m,n)i−1} ∪ {(m,n)}), i ∈ {1, · · · , w · b}. (19)

Let Z = {(m,n)1, (m,n)2, (m,n)3} be the set that consists

of the first three elements of the index set AX∗ .3 Then for any

element (m,n)k ∈ AX∗ , k ≥ 4, and the set Y ⊂ A1w×u
\(Z∪

3Note that the greedy algorithm enumerates all feasible X ∈ {X : X ∈
{0, 1}w×u, |AX| = 3}, and then iteratively finds a sub-optimal solution
starting from one of the feasible X’s that gives the maximum of the cost
function ga(AX). Thus, the first three elements of the set Z ∈ AX∗ are also
included in the index set of the greedy solution A

Xi∗
g

.

{(m,n)k}), the following inequalities hold:

ga(Z∪Y ∪ {(m,n)k})− ga(Z ∪ Y )

≤ ga({(m,n)k})− ga(φ) ≤ ga({(m,n)1})

ga(Z∪Y ∪ {(m,n)k})− ga(Z ∪ Y )

≤ ga({(m,n)1} ∪ {(m,n)k})− ga({(m,n)1})

≤ ga({(m,n)1} ∪ {(m,n)2})− ga({(m,n)1})

ga(Z∪Y ∪ {(m,n)k})− ga(Z ∪ Y )

≤ ga({(m,n)1} ∪ {(m,n)2} ∪ {(m,n)k})

− ga({(m,n)1} ∪ {(m,n)2})

≤ ga({(m,n)1} ∪ {(m,n)2} ∪ {(m,n)3})

− ga({(m,n)1} ∪ {(m,n)2}).

By summing up all above inequalities, we obtain the following

inequality:

ga(Z ∪ Y ∪ {(m,n)k})− ga(Z ∪ Y ) ≤
1

3
ga(Z). (20)

Let i∗ = w · b − 3 be the total number of iterations of

the greedy algorithm and define a new function fa(S) =
ga(S) − ga(Z), which is also a nondecreasing, nonnegative,

and submodular set function if and only if Z ⊆ S ⊆ A1w×u
.

According to the inequality (18), the following inequalities

also hold:

fa(AX∗)

≤ fa(AXi
g
) +

∑

(m,n)∈AX∗\A
Xi
g

(fa(AXi
g
∪ {(m,n)})− fa(AXi

g
))

= fa(AXi
g
) +

∑

(m,n)∈AX∗\A
Xi
g

(ga(AXi
g
∪ {(m,n)})− ga(AXi

g
))

≤ fa(AXi
g
) + (w · b− 4)× ϑi+1, ∀i ∈ {0, · · · , i∗ − 1},

(21)

where ϑi represents the maximum increment of the set func-

tion at the i-th iteration as follows:

ϑi = max
(m,n)∈A1w×u

\(A
X
i−1
g

∪A
X
i−1
c

)
ga(AX

i−1
g

∪ {(m,n)})

− ga(AX
i−1
g

), (22)

where AXi
c
= {(m,n)|xm,n /∈ AXi , (Xi−1

g ·1u)m ≥ b, ∀m,n}

is an index set for the elements of which the value is 0 in Xi
g

but at the same time are prohibited from being included in

the index set AXi
g

due to the limited storage capacity of the

roadside wireless APs. Thus, we obtain g(AXi
g
) =

∑i
j=1 ϑi

for all i ∈ {1, · · · , i∗}.

To derive an approximation of the greedy algorithm, we

use the inequality in [29]. If P and D are arbitrary positive

integers, ρis are arbitrary nonnegative reals for i = 1, · · · , P ,

and ρ1 > 0, then

∑P
i=1 ρi

mint=1,··· ,P (
∑t−1

i=1 ρi +Dρt)
≥ 1−

(

1−
1

D

)P

> 1− eP/D. (23)
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Using (21) and (23), we obtain the following inequalities:

fa(AX
i∗−1
g

∪ {(m,n)i∗})

fa(AX∗)

≥

∑i∗

j=1 ϑi

mink=1,··· ,i∗
∑k−1

j=1 ϑj + (w · b− 4)× ϑk

≥ 1− e−1. (24)

By combining (20) and (24),

ga(AXi∗
g
)

= ga(Z) + fa(AXi∗
g
)

≥ ga(Z) + fa(AX
i∗−1
g

∪ {(m,n)i∗})

− (fa(AX
i∗−1
g

∪ {(m,n)i∗})− fa(AX
i∗−1
g

))

= ga(Z) + fa(AX
i∗−1
g

∪ {(m,n)i∗})− (ga(AX
i∗−1
g

∪ {(m,n)i∗})

− ga(AXi∗−1
g

))

≥ ga(Z) + (1− e−1)fa(AX∗)−
1

3
ga(Z)

= (e−1 −
1

3
)ga(Z) + (1 − e−1)ga(AX∗)

≥ (1− e−1)ga(AX∗). (25)

This demonstrates that the greedy algorithm achieves a con-

stant factor approximation bounded by (1− e−1).

APPENDIX B

UPPER BOUND OF THE COUNTER Tk(N)

In this appendix, we derive the upper bound of the counter

Tk(N). Let cn,mk
denote

√

(w+1) lnn
mk

and In denote the index

of the counter selected at the n-th iteration. Then, the upper

bound of the counter Tk(N) can be derived as the following

inequalities:

E[Tk(N)] = 1 +

N
∑

n=w+1

P{In = k}

≤ l +

N
∑

n=w+1

P{In = k, Tk(n− 1) ≥ l}

≤ l +

N
∑

n=w+1

P

{ v
∑

i=1

u
∑

j=1

ri,j

(

1−

w
∏

k=1

hi,j,k(si,k, θk, x
∗
k,j)

+ 1−
w
∏

k=1

max{hi,j,k(si,k, cn,mk
, x∗

k,j), 0}

)

≤

v
∑

i=1

u
∑

j=1

ri,j ·

(

1−

w
∏

k=1

hi,j,k(si,k, θk, xk,j(n))

+ 1−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, xk,j(n)), 0}

)

,

Tk(n− 1) ≥ l

}

≤ l +

N
∑

n=w+1

P

{

min
1<m1,··· ,mw<t

v
∑

i=1

u
∑

j=1

ri,j

×

(

1−

w
∏

k=1

hi,j,k(si,k, θk, x
∗
k,j) + 1

−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, x∗

k,j), 0}

)

≤ max
l≤m1,··· ,mw<t

v
∑

i=1

u
∑

j=1

ri,j

×

(

1−

w
∏

k=1

hi,j,k(si,k, θk, xk,j(n))

+ 1−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, xk,j(n)), 0}

)}

≤ l+
∞
∑

n=1

n−1
∑

m1=1

· · ·
n−1
∑

mw=1

n−1
∑

m1=l

· · ·
n−1
∑

mw=l

P

{ v
∑

i=1

u
∑

j=1

ri,j ·

(

1−

w
∏

k=1

hi,j,k(si,k, θk, x
∗
k,j)

+ 1−
w
∏

k=1

max{hi,j,k(si,k, cn,mk
, x∗

k,j), 0}

)

≤

v
∑

i=1

u
∑

j=1

ri,j ·

(

1−

w
∏

k=1

hi,j,k(si,k, θk, xk,j(n))

+ 1−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, xk,j(n)), 0}

)}

,

(26)

where l is an arbitrary positive integer. In order to satisfy the

inequality in (26), at least one of the followings must hold:

v
∑

i=1

u
∑

j=1

ri,j · (1 −

w
∏

k=1

hi,j,k(si,k, θk, x
∗
k,j))

≤ g(X∗)−

v
∑

i=1

u
∑

j=1

ri,j

× (1−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, x∗

k,j), 0}) (27)

v
∑

i=1

u
∑

j=1

ri,j · (1 −

w
∏

k=1

hi,j,k(si,k, θk, xk,j(n)))

≥ g(X(n)) +
v
∑

i=1

u
∑

j=1

ri,j

× (1−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, xk,j(n)), 0})

(28)

g(X∗) < g(X(n)) + 2

v
∑

i=1

u
∑

j=1

ri,j

× (1−
w
∏

k=1

max{hi,j,k(si,k, cn,mk
, xk,j(n)), 0}).

(29)
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We next derive the upper bound of the probabilities for (27),

(28) and (29). The upper bound for (27) is given by

P

{ v
∑

i=1

u
∑

j=1

ri,j · (1−

w
∏

k=1

hi,j,k(si,k, θk, x
∗
k,j)) ≤ g(X∗)

−

v
∑

i=1

u
∑

j=1

ri,j · (1−

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, x∗

k,j), 0})

}

≤

v
∑

i=1

u
∑

j=1

ri,j · P

{

1−

w
∏

k=1

max{hi,j,k(si,k, θk + cn,mk
,

x∗
k,j), 0} ≤ 1−

w
∏

k=1

hi,j,k(si,k, θk, x
∗
k,j)

}

≤

v
∑

i=1

u
∑

j=1

ri,j · (

w
∑

k=1

P{θk + cn,mk
≤ θk}+ P{1 ≤ θk})

≤

v
∑

i=1

u
∑

j=1

ri,j · (

w
∑

k=1

P{θk + cn,mk
≤ θk}). (30)

We use the Chernoff-Hoeffding bound in (30). Let

X1, · · · , Xn be random variables in the range [0, 1] such that

E[Xt|X1, · · · , Xt−1] = µ, and Sn = X1 + · · · +Xn. Then,

for all a ≥ 0

P{Sn ≥ nµ+ a} ≤ e−2a/n and P{Sn ≥ nµ− a} ≤ e−2a/n.
(31)

By the above inequality, the upper bound of the probability

P{θk + cn,mk
≤ θk} for all k = {1, · · · , w} is given by

P{θk + cn,mk
≤ θk} ≤ e

−2m2
k·
(√

(w+1) lnn

mk

)2
· 1
mk

= e−2(w+1) lnn = n−2(w+1). (32)

Similarly, the upper bound of the probability for (28) is also

given by

P{θk ≥ θk + cn,mk
} ≤ e

−2m2
k·
(√

(w+1) lnn

mk

)2
· 1
mk

= e−2(w+1) lnn = n−2(w+1). (33)

Last, we consider the last inequality in (29). Because the dis-

semination failure probability pi,j(θ) is a decreasing function

with respect to θ for all i and j, there exists θij for the i-j
pair such that the following inequality holds:

pi,j =

w
∏

k=1

hi,j,k(si,k, (θij)k, xk,j) ≥ 1−
δmin

2wb
, (34)

where δmin = g(X∗)−maxX∈F\X∗ g(X). By (34), the follow-

ing inequalities hold:

v
∑

i=1

u
∑

j=1

ri,j · (1 −

w
∏

k=1

hi,j,k(si,k, θmin, xk,j), xk,j))

≤

v
∑

i=1

u
∑

j=1

ri,j · pi,j(θij) ≤
δmin

2
, (35)

where θmin = min(i,j,k)∈{(i,j,k)|1≤i≤v,1≤j≤u,1≤k≤w}(θij)k. If

we choose the integer l ≥
⌈

(w+1) lnN
θ2
min

⌉

in (26), the inequality

in (29) does not hold:

g(X∗)− g(X(n))− 2

v
∑

i=1

u
∑

j=1

ri,j

× (1 −

w
∏

k=1

max{hi,j,k(si,k, cn,mk
, xk,j(n)), 0})

= g(X∗)− g(X(n))− 2
v
∑

i=1

u
∑

j=1

ri,j

× (1 −

w
∏

k=1

max{hi,j,k(si,k,

√

(w + 1) lnN

mk
, xk,j(n)), 0})

≥ g(X∗)− g(X(n))− 2

v
∑

i=1

u
∑

j=1

ri,j

× (1 −

w
∏

k=1

max{hi,j,k(si,k,

√

(w + 1) lnN

l
, xk,j(n)), 0})

≥ g(X∗)− g(X(n))− 2
v
∑

i=1

u
∑

j=1

ri,j

× (1 −

w
∏

k=1

max{hi,j,k(si,k, θmin, xk,j(n)), 0})

≥ g(X∗)− g(X(n))− δmin ≥ 0.

Therefore, we do not need to consider the last case in (29).

Based on the above inequalities, the upper bound of the

counter E[Tk(N)] is given as follows:

E[Tk(N)]

≤ l +

∞
∑

n=2

n−1
∑

m1=1

· · ·

n−1
∑

mw=1

n−1
∑

m1=l

· · ·

n−1
∑

mw=l

{ v
∑

i=1

u
∑

j=1

ri,j

× (

w
∑

k=1

P{θk + cn,mk
≤ θk}+ P{θk ≤ θk + cn,mk

})

}

≤

⌈

(w + 1) lnN

θ2min

⌉

+
∞
∑

n=2

n−1
∑

m1=1

· · ·
n−1
∑

mw=1

n−1
∑

m1=l

· · ·
n−1
∑

mw=l

2

× (w2 · b)n−2(w+1)

≤
(w + 1) lnN

θ2min

+ 1 + (w2 · b)

∞
∑

n=1

2n−2

≤
(w + 1) lnN

θ2min

+ 1 +
π2

3
(w2 · b). (36)
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