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Abstract—Making idle servers sleep is considered to be a key
approach to reduce energy consumption of various information
and communication systems. Optimal sleeping policies for a single
server have been derived only for non-bursty traffic in prior
work. In this paper, for the first time, we study the optimal
sleeping operation for a single server with bursty traffic to answer
the question of whether server sleeping can bring extra benefit
with bursty traffic or not. Key factors including switchover
energy consumption as well as delay performance are considered.
We formulate the problem as a POMDP (partially observable
Markov decision process), and show that it can be solved by
observing Time Elapsed Since the Last Arrival (TESLA). The
optimal sleeping policy is shown to be a two-threshold policy
with a wait-and-see feature, i.e., the server would wait a period
of time to see if there are any extra arrivals before switching
modes. Simulation results show that with the optimal sleeping
mechanism, traffic burstiness can enhance system performance
on energy cost and delay penalty.

Index Terms—Bursty trafficc POMDP, sleeping mechanism,
two-threshold policy

I. INTRODUCTION

Nowadays, one of the main challenges in communication
networks is to reduce energy consumption. In 5G networks, it
is claimed that energy consumption and cost per bit have to
be reduced by at least 100 times [2], which reveals the great
importance of "greening" the networks.

In cellular networks, about 60-80% of the total energy is
consumed by base stations (BSs) [3]. Moreover, even with
little traffic load, a BS would still consume more than 90% of
the peak energy [4]. As a result, BS sleeping mechanisms have
been studied widely in recent years and are considered as one
of the most efficient methods to enhance energy efficiency. But
they may bring extra delay for the system. Sleeping designs
and the trade-off between energy and delay are studied in
previous work [5]-[7], [16], in which the traffic is modeled as
a random memoryless Poisson process. In practice, however,
traffic arrivals have a bursty nature, especially for data and
video traffic providing multimedia services [8]. Bursty traffic
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could bring in congestion to the networks and worsen system
performance. However, combining sleeping mechanisms and
bursty traffic, there might be more chances for a base station to
sleep. Therefore, in this work, we study the optimal sleeping
policy designed for bursty traffic model and analyze the
influence of traffic burstiness to system performance.

In HetNet (heterogeneous networks) and HCN (hyper-
cellular networks) [9], switching off small BSs in HetNet or
traffic BSs in HCN would not cause a coverage problem,
which makes it rational to apply sleeping schemes in these
scenarios. As a start, cells with no traffic coverage overlap are
considered, in which case, the sleeping operations of different
cells are independently considered. Thus, in this work, a single
base station is considered. Notice that this work could also be
applied to servers in a data center, as these two scenarios share
the same demands in energy efficiency and the same nature in
traffic burstiness [19]. Hence, in the rest of the paper, a whole
BS is considered as a single server.

In [16], the authors discuss multiple hysteresis sleeping
mechanisms and their delay performance under Poisson traffic
arrivals. In [19], the authors consider a single server and find
the optimal sleeping policy with Poisson arrivals by formu-
lating the problem into a continuous-time Markov decision
process (MDP), where the system state only changes when
there is an arrival or a departure. The optimal policy is proven
to be a two-threshold policy, where the queue length in the
server is compared to an active threshold and a sleep threshold,
to decide whether the action is to be active, to sleep or to
stay at the current operation mode. In this situation, if there
are no arrivals or departures for a long time, which would
happen with a higher probability under bursty traffic, keeping
the server active would potentially consume more power. If
the server could make decisions in between the queue length
changes, we might gain higher energy efficiency with more
complex bursty traffic model. In this work, to get the optimal
sleeping policy, models based on MDP are considered.

One of the typical models to analyze traffic burstiness is
the Interrupted Poisson Process (IPP) [10]-[12]. In [10], the
authors studied the sleeping performance of a single server
under bursty traffic with IPP model by assuming an N-based
policy, where the server goes to sleep when the buffer is
empty and wakes up when there are N jobs aggregated in the
buffer. They find the optimal transmit power and the waking-
up threshold N to minimize the energy consumption, with
a certain constraint of delay. However, that work does not
consider whether the N-based policy is the optimal policy
under bursty traffic. But in this work, the optimal policy is



given and analyzed. Moreover, we assume that the arrival
phases are not observable in our system, the probability of
which has to be updated periodically with POMDP. As a result,
we consider a discrete-time Interrupted Bernoulli Process
(IBP), which can reflect the burstiness of traffic. Our result
shows that for the optimal policy under bursty arrivals, the
sleep decision should be made not only based on the queue
length, but also based on the burstiness of traffic arrivals.

A POMDRP is a generalization of an MDP where we cannot
observe the MDP-determined system state directly. Instead,
a probability distribution over the state space is recorded and
updated. POMDP has been used to analyze the communication
systems widely in [13]-[15]. In [14], the authors use POMDP
to analyze opportunistic spectrum access. Decisions of channel
selection are discussed in [13], [15]. To our best knowledge,
our work provides the first optimal solution for the IBP arrivals
with POMDP formulation.

In our previous work [1], we only consider a single server
with symmetrical switching energy cost, and compare the
optimal policy of POMDP formulation with the optimal policy
of memoryless traffic given in prior work [19]. However, the
two-threshold based structure and the insights are not given
and discussed. The optimal policy has not been compared with
the optimal policy if the arrival state is observable, which is
actually the lower bound of system cost. Furthermore, the
trends of thresholds changing with system parameters and
delay performance are not analyzed. In this paper, we make
the following contributions:

« We formulate this decision problem into a POMDP where
asymmetrical switching energy cost, operation energy and
delay penalty are considered. Numerical results for the
optimal sleeping policy are given.

« The optimal sleeping policy is proven to be a hysteretic
policy and a conjecture is given stating that the optimal
policy is a two-threshold policy, where the thresholds not
only depend on the queue length, but also the time elapsed
since the last arrival (TESLA). By numerical results, the
policy is found as a wait-and-see policy. The server would
wait for a period of time to see if there are any extra
arrivals before switching modes.

¢ The trends how the thresholds change with system pa-
rameters are analyzed. It is found that a larger switching
cost leads to higher active thresholds, which also indi-
cates higher hysteresis. Increasing the traffic burstiness
or decreasing delay tolerance causes the server to wake
up earlier. When the switching cost is sufficiently large,
once the server start to serve tasks, it would never choose
to sleep.

« We find the system with no bursty information gives the
upper bound of system cost to our POMDP formulation,
while the system with sufficient bursty information (the
observable arrival phases) provides the lower bound.

o The total cost, energy consumption per bit and delay
performance are analyzed by simulation. The system cost
decreases with traffic burstiness, which indicates applying
sleeping mechanisms to a server with bursty traffic can
enhance performance. Even if server is allowed to sleep
only when the queue is empty, which yields the minimum
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Fig. 1. An example of IBP arrivals with parameters (4, a, 8).

delay, more energy can be saved in POMDP formulation
compared to the optimal policy given in [19].

The rest of this paper is organized as follows. The system
model and problem formulation are introduced in Section II.
The state simplification and optimality equation are given in
Section III. We analyze the structure of the optimal policy
in Section IV. In Section V, numerical results of the optimal
policies and simulations of system performance are analyzed.
Conclusions and future directions are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a single server queue with a buffer size of B.
The system is modeled as a discrete-time system where time
is divided into time slots and there is at most one arrival or
departure at one time slot. The length of each time slot is A
seconds.

There are two operation modes for the server, active mode
and sleep mode. The server processes the jobs only when it
is active, with a steady data rate of x bits/s; otherwise, the
server is in sleep mode and no job could be processed. The
server consumes a constant E,.y. energy each time slot when
it is active. No energy would be consumed when the server
is in the sleep mode. Furthermore, asymmetrical switching
cost is assumed, i.e., switching the server from active to sleep
mode, or from sleep to active mode consumes EZ,”* or ES.?
energy, respectively. For example, in [16], the authors claim
that E57% = 0 and E5;* > 0.

Assume that the job arrivals follow an IBP with parameters
(4, @, B), which includes ON phase and OFF phase. As shown
in Fig.1, the time spent in the ON and OFF phases are both
geometrically distributed, with expected durations a~! and g~!
time slots, respectively. That is, given that the process is in the
ON phase (or the OFF phase) at time slot n, it would change
to the OFF phase (or the ON phase) with probability « (or (),
or would remain in the same phase at the next time slot n + 1
with probability (1 — @) (or 1 — ).

In the ON phase, the time interval between two job arrivals
during this period also follows a geometric distribution with
success probability A at each time slot, which is also known
as the arrival rate. That is, the mean interarrival time in the
ON phase is 17! time slots. There is no job arrival in the
OFF phase. Therefore, with varying A, and g, traffic with
different bursty levels is able to be generated. Based on [17],
the average interarrival time, (1’)”!, is given by

la+p

n-1_ =
(1) =18 (1



The squared coefficient of variation (SCV) of the interarrival
time, C2, is given by

al-a-p) B
(a + B)?

The larger C? is, the higher bursty level the arrival process
has.

We also assume that the size of each job is exponentially
distributed with average [ bits. Since the discrete-time system
is considered, the service time for each job will be rounded
up into a geometrically distributed random variable with mean
service time y~! time slots, where u = 1 — exp(—ATx). Assume
that u > A so that the traffic load at the busy phase would not
exceed 1. Note that with arbitrarily small period of one time
slot, the IBP can approximate arbitrarily well the continuous
time interrupted Poisson process (IPP), which is one of the
most typical models to reflect traffic burstiness.

C?=1+1] 1]. )

B. POMDP Formulation

If the state of the arrival process (ON or OFF) can be
observed directly, the optimal operation decision problem for
the server can be formulated into an MDP, by adding the
phase of the arrival process S into the system of MDP problem
with memoryless arrivals studied in [19]. Note that S € {ON,
OFF}. However, in general, the actual phase of the arrival IBP
process cannot be observed directly. As a result, we formulate
this problem as a discrete-time partially observable Markov
decision process.

At each time slot, the server takes a certain action based on
the current state and the system transits to another state with
known transition probabilities. After that, the system would
receive an observation based on the new state and the action,
which helps us determine the underlying state and make the
decision for the next time slot. Finally, the action and the
former state incur a cost for the system. Our objective is to
decide which action to choose at each time slot to minimize
the total expected discounted costs over time. The POMDP
formulation of this optimal operation problem is defined as
follows.

The actual system state is (S, R, Q, W), where the arrival
process is in phase S, the queue length in the server is
0 € {0,1,2,...,B} and the operation state of the server is
W €{active, sleep} in the current time slot. R is a Boolean
variable that R = 1 indicates there is a job arrival in the passing
time slot. Note that departures are assumed to happen earlier
than arrivals at each time slot. Thus, R = 1 indicates there has
to be at least one job in the buffer, that is, Q > 0. We use §,,
R,, O, and W,, to denote the state at time slot 7.

At each time slot, the server takes an action a € ®, where
the action space @ = {active, sleep}. After transiting to a new
state, an observation (R, Q, W) is taken by the server. All the
state elements except the IBP phase S can be observed directly.

The cost function is determined by the current state and the
action. We consider the energy consumption including both the
switching energy and the operation energy when the server is
active. The delay of the jobs are counted in the cost function
as a penalty proportional to the sojourn time of each job.

By changing the weight between energy consumption and the
delay penalty, we are able to model systems with different
emphasis on delay tolerance and energy saving.

The solution to this POMDP is a policy that indicates how
to choose an optimal action at each state, or correspondingly,
at each time slot.

C. Belief-MDP Formulation

In the POMDP formulation, the server would keep a belief
of the probability distribution over the state space at the current
time slot, upon the action taken and the observation (R, Q, W).
It is not hard to find that the only uncertainty in the system
state is the IBP phase S. Therefore, we define p to indicate
the probability of being in ON phase knowing all the past
observations and actions, which is known as the belief, and
pn denotes the belief at time slot n. Because the state is
Markovian and the ON phase probability can be extracted only
from R, but not Q and W, the belief p,, can be updated only
based on the previous belief p,—; and R,. That is,

pn = Pr{S, = ON|Ry, pp-1}. 3)

To solve this POMDP, we formulate this problem into a
belief-MDP where each belief is a system state. As a result,
the state of this belief-MDP is i = (p, R, Q, W). If R,, = 1, the
arrival process has to be in the ON phase, therefore, p, = 1;
otherwise, if R, = 0, p, can be calculated conditionally based
on p,_1, @ and B. Note that i, denotes the system state at time
slot n.

The action space is still ®. The action taken at time slot n
decides the server’s operation mode at time slot n + 1, which
is expressed by:

Wi = Aﬂ(ln)’ 4)

where 7 is a certain policy that determines the rules for the
server to take an action. A, (i,,) denotes the action taken under
state i, based on policy x.

We define C(i, A,(i)) as the cost function received at state i
under policy 7, which is a weighted sum of energy consump-
tion and delay, given by:

C(i, Az (1)) = Cow(W, Az (D)) + wQ + Az (i) Eactives 5

where Csy(m,n),m,n € @ is the function that calculates the
energy consumption caused by the operation mode switching.
The expression is given as:
Cou(m. 1) = {ES:\Z; m = active,n = sle.ep, ©)
ESS? m = sleep,n = active.

w in Eq.(5) is the weight of to the delay penalty caused by
congestion, which is proportional to the queue length Q, and
E\ciive 1s the constant energy consumption per time slot of an
active server.

The objective of choosing the server operation policy is to
minimize the expected discounted sum of the costs over time,
and the value function is shown below.

V(io) = minE[ )" y" Clin, Ax(in))] ()
n=0

where 7y is the discount factor that indicates how important
the future costs are to the value function.



III. APPROACH TO THE OPTIMAL POLICY

In this section, we first simplify the (p, R, Q, W) state by
replacing the (p,R) tuple with TESLA 7. The transition
probabilities and the optimality equation are given next.

A. State Simplification

From the definition of p, in Eq.(3), it is found thatif R, = 1,
then p,, = 1 and if R, = 0, p, can be calculated by iterations,
which is given as follows:

Pn = Pr{Sn = ONan = Oapn—l}
_ Pr{Sn =ON,R, = 0|pn71}
- Pr{R, = Olpn-1}
_ (1 = )Pr{S,, = ON|p,_1}
~ 1-2aPr{S, = ON|p,_1}
(=Dl ~a~Bpur + ]
1-A[(1 - =Bpn-1+p]

Note that Pr{S, = ON|py-1} = pu-1Pr{S, = ONI|S,-; =
ON}+(1=p-1)Pr{S, = ON|S,—i = OFF} = (1—a—B)p,—1+B.
Define a sequence {my } with my = 1, and the iteration between
my and my_; is the same as Eq.(8). It is obvious that all
the possible values of p, are included in {my}. Moreover,
we find the subscript of the sequence k corresponds to the
case TESLA 7 = k, which means there have been k time
slots with no arrivals. It indicates TESLA covers exactly
the same information of the tuple (p, R). Therefore, we are
able to simplify the i = (p = my, R, O, W) system state into
i = (t = k,Q,W) state. It is also shown that the state space
of our belief-MDP is countable, as the values of T are non-
negative integers. In the rest of the paper, we use (r,Q, W)
formulation instead.

®)

B. Transition Probability

One of the most important part in the transition probability
calculation is to calculate the probability of being in the ON
arrival phase at time slot n + 1, given 7,. The calculation is
given below.

gk 2 Pr{S,.1 = ON|r,, = k}
= Pr{S,;1 = ON|S,, = ON, 7, = k}Pr{S, = ON|1,, = k}
+Pr{S,;1 = ON|S, = OFF, 1, = k}Pr{S, = OFF|1,, = k}
= (1 = a)my + B(1 — my). ©)

Since the system state updates at each time slot, the queue
length in the buffer might remain the same in our formulation.
The transition probability at state i, = (v = k,Q,W), are
discussed in three cases based on the value of Q and given as
follows.

(1) For 0 =0,

Pr{in+1 = (0, 1, Aﬂ(k’ 0, W))Iln = (k’ O’ W)} = Qk/l,
Pr{irﬁ-l = (k + 17 07 Aﬂ(k’ 0’ W))Iln = (k’ 09 W)} = 1 - Qk/L

Note that departures take place earlier than arrivals at each
time slot. Therefore, when Q = 0, T cannot be O.
(2) For Q = B,

Pr{i,+1 = (0, B, active)|i,, = (k, B, W)} = g4,
Pr{il‘t+1 = (k + 17 B7 acrive)“n = (ka B’ W)} = (1 - qk/l)(l - :u)’
Pr{in+1 = (k + 1, B - 1, active)|i, = (k, B,W)} = (1 — gz D).

We assume that if there are B jobs in the buffer at the current
time slot, the server will always take the active action to
process the jobs.

(3) For 0 < Q < B,

Pr{in+1 = (Os Q + 1’ sleep)|in = (k’ Q’ W)} = Qk/L (10)
Pr{ipns1 = (k + 1, Q, sleep)lin = (k, O, W)} = 1 — qi 4, (11
Pr{ins1 = (0, Q, active)lin = (k, O, W)} = qidp, (12)
Pr{ins1 = (0,0 + 1, active)lin = (k, O, W)} = qrA(1 — p),

(13)
Pr{in+1 = (k + 1, Q, active)i, = (k, O, W)} = (1 — g A)(1 = w),

(14)
Pr{i+1 = (k + 1,0 — L active)|i,, = (k, O, W)} = (1 — gx ) p.

(15)

C. Optimality Equation

In the afore-mentioned formulation, we are facing a belief-
MDP problem with a finite action space and an infinite but
countable state space, because the value of # can be arbitrarily
large. Based on [20, pp. 236], it is proven that the optimality
equation [20, pp. 146] still holds and there exists a stationary
optimal policy. The optimality equation is given by:

V(i) = min{C(i,a) +y Z PEL V(D) (16)
J

where a is the action taken by the server and P;’_)]. is the
transition probability from state i to state j. The two terms on
the right hand side of Eq.(16) denotes the immediate cost at
the current time slot and the expected future cost, respectively.
As a result, the optimal operation policy 7 is

A (i) = arg min{C(i.a) + Z PEV(j)}.Vi. (17)
J

IV. PROPERTIES OF OPTIMAL POLICY

In this section, it is shown that the optimal policy under
IBP traffic model has similar properties with the optimal
policy under memoryless traffic model, which is proven to
be a two-threshold policy in [19]. Firstly, we prove that the
optimal policy has the hysteretic property in Section IV-A.
Furthermore, we give a conjucture on the optimality of two-
threshold based policy, by bringing in the optimality analysis
and proofs for the MDP problem with known arrival state in
Section IV-B.



A. Hysteretic Property

Due to the switching cost between operation modes, the
server should not change modes too frequently. This leads to
hysteretic property, which is defined as follows.

Definition 1: A policy n is hysteretic if for some b € O,
An(1,0,b) = a implies A,(1,Q,a) =a, a € D.

Even though there is switching cost, with certain 7 and Q, if
the server chooses to switch to the better mode, then the server
would stay in this "better" mode if it is already in this status.
Theorem 1 and the corresponding proof are given accordingly.

Theorem 1: The optimal policy defined by Eq.(17) is
hysteretic.

Proof: Eq.(17) can be rewritten as

Ap(i) = argmin{o(W.a) +7(r.Q.a)}.  (18)
where
a(W,a) £ Cow(W, a), (19)
0(t,Q,a) £ w0 + aBeive +v ), PLLV(G).  (20)
J

It is found that function o has the following properties:
o(c,d) < o(c,e)+ s(e,d), Ve,de €, 21)
o(c,c)=0, VYced. (22)

According to Lemma 1 in [18], the optimal policy is hysteretic.
|

B. Two-threshold Based Policy

In the following analysis, to dig deeper into the structure
of the optimal policy, we start with investigating the optimal
policy structure of an MDP with system state defined as
{(Sy, On, W), n > 0}, where the arrival phase is observable,
instead of the belief-MDP {(7,,, Q,, W,,), n > 0}. In the belief-
MDP problem, TESLA 7 is introduced to approximate the
probability of the arrival phase. With same cost function and
optimization objective, the optimal policy structure for the
MDP {(S;, On, Wy),n > 0} should give hints on studying the
derived belief-MDP problem.

For this MDP {(S,,, O, Wy,,), n = 0}, to distinguish some of
the notations from Section II, the system state is expressed as
[ = (S, @, W). The action taken based on the system state at
time slot n, under a certain policy 7, is given by:

Wis1 = Az(in). (23)

The cost function consists of the same three parts as the
belief-MDP cost function given by Eq.(5). The transition prob-
abilities under different Q values can be calculated similarly as
the belief-MDP problem. The optimality equation still holds
in this case and there exists a stationary optimal policy.

With the same factors considered in the cost function
between (S, Q, W) formulation with IBP arrival and (Q, W)
with memoryless traffic model [19], the following conjecture
is given that the optimal policy of MDP (S, Q, W) is also a
two-threshold based policy.

Conjecture 1: The optimal policy of MDP {(S,, On, Wy),
n > 0} is a state-based two-threshold policy. Concretely, for

each S € {ON, OFF}, there exist two thresholds 0~ < 93{[‘;}]’ <
{s}
0

active

such that for W € {active, sleep},

A7 (5,0.W) = active, for 0 2 015, @
i ~ (s}

Az-(S, Q. W) = sleep,for Q < 6], . (2)
Ar(S.0.W) = W,for 6557 <0 <95} = (26)

sleep

When a sleep threshold is 07, it indicates that the server
would never switch to sleep mode from active mode. Once
the server turns into active mode, it will never sleep.

Remark 1: This conjecture follows the following insights.
With a given arrival phase S and a certain server mode W,
the decision at each state only depends on the current queue
length. Therefore, the optimal policy has to be a threshold-
based policy, where with different queue length, the server
would take corresponding actions.

Why two-threshold, yet not three-threshold? The key factor
that forms a two-threshold policy is that there are only two
possible actions in the action space @ and the switching costs
considered here are constant. If there are more possible actions
considered, the structure for the optimal policy has to be more
complex. Moreover, if the switching cost for a certain switch,
e.g. from active to sleep mode, is varying with queue length
instead of a constant, the threshold structure might be much
more complicated, and there might be more thresholds. Yet
with constant switching costs, intuitively, the server would
choose to turn into active mode to avoid huge delay penalty,
which might go to infinity when the queue length is sufficiently
large. With increasing queue length, there is no reason for the
server to turn into sleep from active mode. As a result, the
optimal policy should be a two-threshold policy.

Why two-threshold, yet not one-threshold? Imagine the
case of zero switching cost, only delay and operating energy
consumption are considered. The decision of each time slot
will only depend on the current queue length, but no longer
be influenced by the current operating mode of the server.
As a result, the optimal policy should be a one-threshold
policy instead of a two-threshold policy. However, we consider
nonzero switching cost, which leads to two-threshold optimal
policy eventually.

In fact, the N-policy mentioned in [10] with bursty traffic
model is also a two-threshold policy with active threshold
N and sleep threshold O for both arrival phases. Since the
variation of active and sleep thresholds gives the system
more flexibility in sleeping mechanism design, the state-based
two-threshold policy should outperform N-policy when other
system parameters are fixed.

More structural results can be given as follows.

Theorem 2: If the buffer size is infinite and Conjec-
ture 1 holds, then the optimal sleep thresholds G{S} VS €

sleep’
{ON, OFF} have the property min{&jl(e) g)}, g0 } <0.

sleep

Proof: Assume VS € {ON, OFF}, HS{;Z e}p > 0. When
the buffer size B is infinite, obviously all the states with
0 < min{é)s{lggj}ﬂs{gg}} are transient states. In this case,
by reducing all the active and sleep thresholds by 1, the
total system cost could be reduced by the delay penalty of

one job. That is, replacing (S, Q, W) with (S,Q — 1, W), the
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holding cost of one job could be saved, which contradicts
the optimality of this policy. Therefore, VS € {ON, OFF},
min{6 {0, 0107} < 0 holds. n

Theorem 2 indicates that with infinite buffer size, the
optimal policy for at least one arrival phase is either non-
sleeping policy (sleep threshold is 07, once the server turns
into active, it never turns to sleep), or an N-policy mentioned
in [10], under which the server will go to sleep when the queue
is empty (the sleep threshold is 0) and turn into active mode
when N jobs have been accumulated in the queue.

Remark 2: In the belief-MDP formulation, TESLA 7 is
brought up to approximate the arrival phase at each time slot.
With 7 = 0, the arrival phase has to be ON, while with
sufficiently large 7, the arrival phase is more likely to be OFF.
Therefore, the optimal policy for each possible 7 should be
in between the optimal policies for arrival phases ON and
OFF. In addition, the insights of the two-threshold policy given
above still hold for the belief-MDP problem. Thus, based on
Conjecture 1, the optimal policy for the unobservable-arrival-
phase case should also be a two-threshold based policy, which
can be described as below.

The optimal policy for the belief-MDP {(t,,, Q,,, Wy,),n >
0} is a TESLA-based two-threshold policy. For each 7 €

{0,1,2, ...}, there exist two thresholds 0~ < 95{; ip < ngive
such that for W € @,
Are(1,0, W) = active,for Q = ') | 27
Ap(1,Q,W) = sleep, for Q < Hs{;ip, (28)
Ar(r.Q.W) = W.for 0} <0 <6}, (29

The active and sleep thresholds vary with 7.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we first give numerical results of the optimal
policy based on the given belief-MDP formulation, under
different system parameters. System performance based on
simulations are then analyzed. We compare the performance
of the optimal policy with the queue-based policy in the prior
work [19] and the (S, Q, W) formulation with known arrival
phases explained in Section I'V-B.

Value iteration algorithm for MDP is applied to get our
numerical results. The optimal policy and the value function

are updated every iteration, until the value function converges.
The details of the algorithm has been given in [19]. To apply
the algorithm, we have to restrict the maximum recorded
TESLA as M and set a finite buffer size to get a finite state
space. To show an intact optimal policy, the buffer size B is
set to be 80 to make sure the maximum active threshold in
our simulation would not exceed the buffer size. The mean
durations of the ON phase and the OFF phase, o~ and 7!,
are set to be 20 time slots and 40 time slots, respectively. The
average interval of job arrivals 17! is 2 time slots. The average
job size is / = 1MB and the steady data rate x is 143Mbps.
The length of one time slot A is assumed to be 0.1s. As a
result, the mean service time ,u‘l is 1.2 time slots. Therefore,
the traffic load of the system is assumed to be A’ /u = 0.2.

Based on [19], the energy consumption for an active server
in a time slot E,cgve 1S 25J. According to [16], the switching
cost only incurs when the server wakes up (setup power),
EZ.7% is set as 0, while ES. is set to be 200J based on [19].
The weight between energy and delay penalty w is 2 and the
discount factor y is 0.99, which is chosen to be close to 1,
similar to the discount factor taken in [19]. The larger the
discount factor is, the more future system cost would be taken
into account. The value of the discount factor does not effect
the structure of the optimal policy.

As for the maximum recorded TESLA M, the evolution of
the ON phase probability {g,} calculated from the parameters
above is given in Fig.2. The curve decreases sharply at first
and converges to 0.05 when k is larger than 10. Therefore, M
is set as 30 to guarantee the convergence of {g;}.

All the numerical and simulation results are divided into
three parts. In the first subsection, the numerical results of
the optimal policy under the proposed POMDP formulation
are given. After that, how the optimal policies change with
system parameters and the comparison between the optimal
policies under other formulations are discussed. At last, we
focus on analyzing the influence of the sleeping mechanism
on the system performance, including the total system cost,
energy consumption per bit and average delay, etc.

A. Optimal Policy Structure

Fig.3 shows the optimal policy of belief-MDP formulation
under default parameters. To get a clearer vision of the
structure, we only give the zoomed-in version of the optimal
policy in Fig.3, which shows how the decision changes with
TESLA 7 and Q in details. The decisions for larger 7 and Q
that are not included in the figure follow the same decisions
with the same Q with largest 7, and the same 7 with largest
0, respectively. It is shown that when the current server mode
is active, the server would choose to sleep only if O = 0 and
T > 4, and if the server is in sleep mode at the current time
slot, the server would wake up only if 0 > 6 and 7 < 2, or
O>5and3 <7<5 0orQ >4and 7> 6. Note that these
decision thresholds depend on the parameters of the arrival
process.

It is obvious that the optimal policy displayed in Fig.3
follows the TESLA-based two-threshold structure mentioned
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Fig. 3. Zoomed-in optimal policy for (7, O, W) belief-MDP formulation.

in Remark 2. In this case, the sleep thresholds for different T
can be expressed as:

0l =07, T<2, o)
oft —0, 7>
sleep

Note that states with Q = 0,7 = 0 do not exist, the
sleep threshold cannot be determined clearly from the optimal
policy. It is only known that Gs{l: ip < 0. The active thresholds
are given as follows:

{r} _
Hactive - 6’ T<2,
eti‘crti:ve = 5’ 3 <7< 5’ (31)
o) —4 r>6.

active

Notice that both the active and sleep thresholds are monotone
with 7, because the probability of being in ON phase is
monotone decreasing with 7.

From Fig.3, it is found that the optimal policy can be
explained as a wait-and-see policy regardless of the current
operation mode. Even an arrival happens at some queue length
(for Q > 0, 7 = 0; for Q = 0, T = 1 instead), the server
prefers waiting for several time slots to see if there is any
arrival. If there is no arrival, the server would finally choose
to switch its operation mode. In short, the server would hold
the operation mode for a certain period before it switches to
the other mode. For instance, in Fig.3(a), when the queue

is empty and an arrival just took place one time slot ago
(state (r = 1,0 = 0,active)), instead of turning to sleep
mode at once, the server would hold the active mode for
two more time slots. If there is still no arrival in these two
time slots, the server would finally choose to sleep at state
(t = 3,0 = 0,active). In this way, the server avoids to switch
too frequently, so that switching cost can be saved. In [16], this
period is called close-down time, which is a random variable.
However, the length of the waiting period in our scheme is a
constant corresponding to a certain Q.

Similarly, in Fig.3(b), at state (r = 0,0 = 5, sleep), even
there is a job arrival at the current time slot, the server would
not turn to active mode immediately, but wait for another 3
time slots. If there is still no arrival in this period, it finally
choose to be active at (t = 3,0 = 5,sleep). At state (1 =
0,0 = 5, sleep), the server would hesitate either to aggregate
more jobs to serve together (in order to save switching cost),
or to turn active (in order to avoid large delay penalty since
the OFF period might begin soon). With 3 more time slots
with no arrivals, the server cannot afford to wait for another
job arrival anymore, thus turn to active at (t = 3, Q = 5, sleep)
at last.

With massive numerical tests with different system param-
eters, it is confirmed that this property always holds. Firstly, it
is found that the sleep thresholds for 7 = M are always equal
to or larger than those for 7 = 0, i.e., the sleep thresholds
increase monotonely with 7. This is because there is no traffic
arrival in the OFF phase, and the server is always more willing
to sleep and save energy. When HS{[?? ip * QS{ZZ;, there would be
a non-zero waiting period for H‘V{lg(}jp <0< GEIZP}.

When the active thresholds decrease monotonely with T,
there would be a non-zero waiting period for Higive <0<
ngt}lﬁve, which is the case of Fig.3(b). Furthermore, even if the
active thresholds increase monotonely with 7, we claim that
the policy still has the wait-and-see property with zero waiting
period for all possible Q. In this situation, there might be
states with certain Q = x and W = sleep, where the optimal
decisions switches from active to sleep mode with increasing
7. It is found that all the states (7 > 0, x, sleep) are transient
states. Therefore, when the queue length is x, the server would
not hesitate and turn to active mode, which means the waiting
period is zero. The explanation of transient states is given in
Appendix A.

Further, we would like to compare the optimal policy under
the belief-MDP (7, O, W) state and the optimal policy proposed
in [19], which gives the best mapping from tuples of the form
(Q,W) to actions. This (Q, W) formulation is sufficient for
Bernoulli traffic because of its memoryless property.

In the discrete time (Q, W) formulation, we consider the
arrival process as memoryless Bernoulli arrivals with the
average interarrival time (1’)~!, which means this system state
has no information of traffic burstiness, but only the average
arrival rate. The results show that in (Q, W) formulation, the
server would turn to sleep from active mode only if Q = 0 and
switch to active mode from sleep mode only if Q > 6, under
the same system parameters introduced at the beginning of
this section. The optimal policy is a two-threshold policy with
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Fig. 4. Zoomed-in optimal policy for (S, Q, W) MDP formulation with
observable arrival phases.

active threshold 6 and sleep threshold 0. Comparing this policy
and the optimal policy of the belief-MDP formulation shown
in Fig.3, when 7 < 2, the server would not sleep because
of traffic burstiness. With TESLA, the server knows within 2
time slots, there would be traffic arrivals with a large chance.
Thus, staying at active state is a better choice to save switching
cost. However, if the server is currently asleep, in the belief-
MDP formulation, the server would turn to active mode earlier
than the (Q, W) formulation, e.g., when 7 is larger than 2 and
Q = 5. This is because when ¢ > 2, the arrival state might
be OFF with larger probability. If the server still stays asleep,
the system might wait for a longer time until the next job
arrives and the server turns to active with Q = 5. Thus, the
delay penalty will be quite large and have a bad impact on
the total cost. As a result, in this belief-MDP formulation, the
server switches to active earlier from sleeping than the (Q, W)
formulation.

To further give some insights of the threshold values listed
in Egs.(30-31), Fig.4 shows the optimal policy for the (S, Q, W)
formulation where the arrival phase is observable, with the
same system parameters as in Fig.3. Fig.4(a) displays the
optimal policy for the states with S = ON. Further, the dashed
line with circles gives the corresponding actions for the states
with W = active. Based on Conjecture 1, it is obvious that

the sleep threshold 9‘\{,18 S)} = (7. Meanwhile, the dotted line

with diamonds in Fig.4(a) shows how the policy varies with
O when § = ON and W = sleep, from which we can tell

{ON} _ .. . {OFF} _
waive = 2+ Similarly, it can be observed that Gsleep =0 and

6!} = 4 from Fig.4(b).

Compared the optimal policies for (S,Q,W) and (Q, W)
formulation, all of the thresholds for (S,Q,W) case are
correspondingly equal to or smaller than the thresholds in
(Q,W) formulation. It means that with sufficient burstiness
information, the server prefers staying active without sleeping
when the arrival phase is ON, and turning to active mode from
sleeping earlier in both arrival phases.

Furthermore, focusing on the active and sleep thresholds of
Fig.3 and Fig.4, the sleep thresholds of belief-MDP formula-
tion transits from 05{;327} =0 to Gil?epp} = 0, with increasing
TESLA 7. However, the values of active thresholds for the
belief-MDP formulation given in Eq.(31) could be larger, nut
not exactly the same with the active thresholds in (S, Q, W)

formulation. With smaller T, sztffve is closer to the active

threshold of the ON phase, while with larger 7, Qi;l}'ve is closer
to the active threshold of the OFF phase.

In summary, with information of traffic burstiness in the
system state, the server prefers staying active for a long
period before sleeping to avoid frequent switches, and turning
to active mode from sleeping earlier to avoid large delay
penalty. The (S,Q,W) formulation has sufficient burstiness
information, while the (Q, W) formulation has no burstiness
information. The belief-MDP formulation with TESLA only
has partial information of traffic burstiness. Therefore, the
values of the active and sleep thresholds for the belief-MDP
sit in between the active and sleep thresholds of (S, Q, W) and
(Q, W) formulations, respectively.

B. Influence of System Parameters on Thresholds

Through numerical results, we try to find out how the active
and sleep thresholds for the belief-MDP problem change with
system parameters. Since the thresholds are monotone with
TESLA 7. The thresholds of the boundary TESLA’s 7 = 0
and 7 = M are analyzed. The influence of traffic burstiness,
switching cost and weight between energy and delay are
studied.

1) Traffic Burstiness: Fig.5 displays how the active and
sleep thresholds change with the burstiness of traffic. The
thresholds for the (Q, W) formulation are also given in the
figure as a reference. By adjusting arrival rate at the ON phase
A and expected duration for the OFF phase 8! at the same
time, the traffic burstiness can be adjusted. It is shown that
when C?2 is close to 0, the active and sleep thresholds for the
belief-MDP are the same as the reference thresholds, since the
traffic arrivals are closer to memoryless Bernoulli arrivals. Yet,
as the burstiness goes up, both the active and sleep thresholds
for both 7 = 0 and 7 = M cases would decrease. When C?
is sufficiently large, the sleep threshold when TESLA 7 = 0
becomes 07, which means the server would not turn into sleep
mode even if the queue is empty. The server is more willing
to begin serving tasks at a lower queue length, with larger
burstiness.
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Fig. 5. The thresholds of optimal policies changing with traffic burstiness in
(S, Q, W) and (Q, W) formulations.

2) Switching Cost: By numerical methods, the thresholds of
the optimal policies with different "waking up" switching cost
ES.? are shown in Fig.6. From Fig.6(a), the active thresholds
become higher with a larger switching cost, because the server
would like to aggregate more jobs and serve together, avoiding
frequent switches between active and sleep.

In Fig.6(b), we find that sleep thresholds become 0~ for
7 = 0 with GS{IZP} = 0 if ES® is sufficiently large. In this
case, even if the queue is empty, the server would hold the
active mode for several time slots before going to sleep, i.e.
the waiting period is nonzero. That is because with increasing
switching cost, the server starts to become more "hesitating"

about switching to sleep mode when the queue is empty.

Further, from Fig.6(a), with small switching cost (under
around 500J), the active thresholds decrease with 7, which
indicates under these parameters, the system follows wait-
and-see property with W = active. In contrast, with larger
switching cost, the active thresholds increase with 7. Based on
the explanation of transient states with W = sleep in Appendix
A, these cases do not violate the wait-and-see property.

In addition, when the switching cost is sufficiently large
(e.g. 10000J), the sleep thresholds for T = 0 and 7 = M are

both 0~. Once the server start to serve tasks, it would never
choose to sleep.
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Fig. 6. The thresholds of optimal policies changing with switching cost E5y,?
in (S, Q, W) formulation.

3) Weight of Delay Penalty: If adjusting the weight between
energy consumption and delay penalty, w, the thresholds are
given in Fig.7. Note that the lower w is, the more delay-
tolerant the system would be. Both the active and sleep
thresholds become lower with larger w, as the delay penalty
is large, and the system would want to serve the jobs in the
queue as quickly as possible. Especially, the active thresholds
in Fig.7(a) would decrease severely when w is very small.

To summarize, a larger switching cost E§.’? leads to higher
active thresholds, while increasing the traffic burstiness c?,
the weight between energy and delay w (i.e. decreasing delay
tolerance) causes the active and sleep thresholds to decrease.

C. Influence of System Parameters on System Performance

Except for the optimal policies, we also compare the system
performance of the optimal policies under (7, Q, W), (S, Q, W)
and (Q, W) formulations. A sequence of random arrivals fol-
lowing IBP are generated. These three optimal policies under
different scenarios are applied at each time slot to decide
whether the server would be in the active or sleep mode in
the next time slot. To further explain the scenarios involved,
the optimal policy of (Q, W) formulation demonstrates how
the server works assuming the traffic arrivals are memoryless.
In this case, the system has no information of burstiness at
all. However, (S, Q, W) formulation demonstrates the system
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Fig. 7. The thresholds of optimal policies changing with the weight between
energy and delay, w, in (S, Q, W) formulation.

has sufficient bursiness information, i.e., the arrival phase is
observable. The (1, Q, W) formulation represents the scenario
that the system only has partial information on burstiness. The
simulation runs for 200000 time slots. To eliminate the impact
of traffic randomness, the simulation is run for at least 15
times to get the average of system performance results. The
total cost, energy consumption per bit and average delay are
evaluated.

1) Traffic Burstiness: In Fig.8, we give the comparison of
the accumulated cost among optimal policies under the follow-
ing three formulations, the (7, Q, W) belief-MDP formulation,
(S, Q, W) formulation with sufficient information on burstiness
and (Q, W) formulation with no information on burstiness. On
each curve, the total cost varies with the SCV of the interarrival
time C2, while the average interarrival time (1’)~! remains 6
time slots. Obviously, the total system cost decreases with traf-
fic burstiness, which means combining traffic burstiness with
sleeping mechanism would bring performance enhancement.
Note that even if the system has no information on arrival
phases, i.e. in (Q, W) formulation, the total cost still decreases
with traffic burstiness. The curve for (7,0, W) formulation
always lies between (S, Q, W) formulation and (Q, W) formu-
lation. Since (S, Q, W) formulation has sufficient information
of traffic burstiness, it actually provides the lower bound of
the system cost performance for the belief-MDP. Similarly, the
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Fig. 8. The comparison of total system cost under different traffic burstiness,
among three optimal policies, which are based on (7, Q, W) POMDP formu-
lation, known-arrival-phase (S, @, W) formulation and (Q, W) formulation
without bursty information (from [19]).

(Q, W) state considers no information of burstiness, it provides
the upper bound of the system cost performance for the belief-
MDP problem.

Figs.9(a) and 9(b) display the total energy consumption per
bit and average delay for each job under three formulations
same as Fig.8. For the (Q, W) formulation, with larger bursti-
ness, the average delay and energy consumed per bit decrease.
However, if having information about the arrival phases, the
energy and average delay are not simply monotone decreasing
with the traffic burstiness C? anymore. Compared to the active
and sleep thresholds shown in Fig.5, once the thresholds
change, there would be a jump in the curves of energy and
average delay. Once the thresholds become lower with larger
C?, the system would consume more energy to exchange for
lower average delay and lower system cost eventually, which
shows the tradeoff between delay and energy. The reason is
that with larger burstiness, the active and sleep thresholds
decrease, so that the server switches more frequently and stays
at active mode for longer time (corresponding to the energy
performance) and the server starts to serve at a lower queue
length (corresponding to the lower average delay).

Focusing on the belief-MDP formulation, different from
system cost, the energy and delay performance curves do
not lay between the other two formulations all the time.
Comparing to the case that the server never goes to sleep, if
the thresholds do not change, the larger the traffic burstiness
is, the more energy would be saved. At the largest burstiness in
the figure (around C? = 15), with the optimal sleeping policy
given by (7, Q, W) belief-MDP, the system would save up to
70% energy.

2) Switching Cost: Fig.10 gives the delay and energy
performance varying with waking up switching cost ES’? in
three different formulations. With increasing switching cost,
the delay performance gets worse because the active thresholds
get higher and more jobs wait in the queue until the server
switches to active mode. Because of the higher switching
cost, the energy consumption per bit also goes up. That
is, increasing switching cost incurs both energy and delay
performance deterioration.
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Fig. 9. Energy consumption per bit and delay performance changing with
burstiness under three optimal policies, which are based on (7, Q, W) POMDP
formulation, (S, Q, W) formulation and (Q, W) formulation.

3) Weight of Delay Penalty: The influence of the weight w
is studied in Fig.11. With default traffic burstiness, the system
energy consumption per bit and average delay under different
w are evaluated in Fig.11(a) and Fig.11(b), respectively. With
larger w, the delay penalty plays a more important role in
the system cost, the average delay for each job decreases
in Fig.11(b). Thus, in exchange for the delay performance
improvement, the energy consumption per bit goes up as
shown in Fig.11(a). Comparing with Fig.7, it can be found
that both the energy and delay performance stay steady if
the active and sleep thresholds do not change. With smaller
thresholds, the energy consumption per bit is higher, while the
average delay becomes lower. The simulation results for the
belief-MDP formulation basically stay in between the other
two curves.

Delay performance for all these three formulations shown
in Fig.11(b) converges to the same level with sufficiently large
w, after that, further increasing w would not bring delay
performance gain anymore. The thresholds will not change
either. It indicates there exists a best average delay for each
group of system parameters. In this situation, whenever there
is any job in the queue, the server is guaranteed in the active
mode, so that all the jobs can be served as soon as possible.
E.g., for the (S, Q, W) formulation shown in Fig.7, when w is
very large, the server must be in active mode when there is any
job in the queue, since both the active thresholds are 1. Only in
the OFF arrival phase with no job arrivals, the server would
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Fig. 10. The comparison of energy consumption per bit and average delay
with waking up switching cost Eg; %, among three optimal policies, which are
based on (7, Q, W) POMDP formulation, (S, Q, W) formulation and (Q, W)
formulation.

turn to sleep mode if the queue becomes empty. Therefore,
the average delay in this case should be exactly the same
with a single server system without sleeping mechanisms.
However, even in this case, there will be energy saving because
the queue could be empty and the server could go to sleep.
The differences between the energy performance of the three
formulations are caused by different sleeping mechanisms.
Here in the belief-MDP formulation, compared to the server
with no sleeping mechanism, there is still 49% energy saving
with the same average delay.

To conclude, from all the performance analysis given in this
section, it is found that (Q, W) formulation provides the upper
bound of system cost to the (7, Q, W) belief-MDP formulation,
while (S, Q, W) formulation gives the lower bound. However,
the relationship of these three formulations in the perspectives
of energy consumption per bit and average delay is not that
simple, since there exists tradeoff between energy and delay.
Furthermore, increasing switching cost causes both energy and
delay performance deterioration.

VI. CONCLUSIONS

In this paper, we consider a single server queue with bursty
traffic,which is modeled as IBP arrivals, and formulate the
operation decision problem into a partially observable Markov
decision process (POMDP), where the arrival phases of IBP
are partially observed by the Time Elapsed Since the Last
Arrival (TESLA). The optimal policy is proven to be hysteretic
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Fig. 11. The comparison of energy consumption per bit and average
delay with different weight w, among three optimal policies, which are
based on (7, Q, W) POMDP formulation, (S, Q, W) formulation and (Q, W)
formulation.

and conjectured as a TESLA-based two-threshold policy. The
active and sleep thresholds of queue length would change with
TESLA.

By numerical results, we find the optimal policy is a wait-
and-see policy. The server would wait for several time slots
to see if there are extra arrivals before switching. The active
thresholds increase with larger switching cost, while all the
thresholds decrease with higher traffic burstiness, or lower
delay tolerance.

System performance including total cost, energy consump-
tion per bit and average delay are analyzed. The system with
no bursty information provides the upper bound of system cost,
while the system with observable arrival phases provides the
lower bound. The total cost decreases with traffic burstiness,
which indicates applying sleeping mechanisms to a server with
bursty traffic would bring performance enhancement.

As for the next step of this work, we would like to
consider other bursty traffic models, such as MMBP (Markov
Modulated Bernoulli Process) to extend our results. Moreover,
considering multiple servers with overlapping traffic load is
another important direction which would reveal some insights
in traffic offloading.

APPENDIX A
EXPLANATION OF TRANSIENT STATES

If the optimal policy of the belief-MDP is a TESLA-
based two-threshold policy and the active thresholds change

monotonely with TESLA, states (7 > y, O, sleep), where
y = arg miln{A;r*(T', 0, sleep) = active},

are transient states.

Intuitively, this says for a certain Q, if the server is currently
asleep and would not turn to active mode until some 7 = y,
the states with 7 > y are transient states.

Let’s take state (t = 6,0 = 4,sleep) in Fig.3(b) as an
example. From Eq.11, this state can only be obtained from
(t =5,0 =4,5sleep). Based on Theorem 1, once the decision
for (1 = 5,0 = 4, sleep) is active, the decision for (t = 5,0 =
4, active) must be the same, which means (7 = 6,0 = 4, sleep)
is a transient state. Similarly, the states (r > 6,0 = 4, sleep)
are also transient states.
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