
 USC ANRG Technical Report, ANRG 2018-01, 2018

WAVE: A Distributed Scheduling Framework for Dispersed
Computing

Pranav Sakulkar, Pradipta Ghosh, Aleksandra Knezevic, Jiatong Wang,

Quynh Nguyen, Jason Tran, H.V. Krishna Giri Narra, Zhifeng Lin, Songze Li, Ming Yu, Bhaskar
Krishnamachari, Salman Avestimehr, Murali Annavaram

v0: December 29, 2017, v1: January 15, 2018

1. Introduction:
Given a task graph that is represented as directed acyclic graph (DAG) and a network of
network compute points (NCPs), the dispersed computing scheduler needs to figure out a
mapping from the tasks to the NCPs with the goal minimizing the average end-to-end latency of
the incoming data-frames. The scheduler needs to know the computing resources availability at
each of the NCPs and the qualities of the links connecting any two devices in order to come up
with a mapping. The knowledge of the compute resources is important, since different tasks
might be executed on different NCPs. In such a case, the link quality knowledge is especially
important as the output of a task being executed at an NCP will need to be shipped to its
children task being executed at another NCP.

In a centralized schedulers, a central master node needs to know the compute profiles of all the
NCPs and the link qualities for all the links. This assumption is not particularly suited for
dispersed computing applications. Especially as the number of compute nodes grows, the
number of message exchanges required grows quadratically. Also, there may not be direct links
from every node to the master node and their messages would need to be relayed by some
other nodes. In spite of these difficulties, previous work such as [2] has focused solely on
centralized schedulers.

In this report, we consider the case where the scheduling is done in a distributed manner by
multiple collaborating nodes located at different geographical locations. In such cases, each
scheduling node only needs to know about its neighbours, their compute profiles and the link
qualities to them. We implement the distributed scheduler in Python and deploy it on our
Kubernetes cluster of 100 nodes. The schedule determined by our scheduler is used to deploy
the dispersed computing application using the framework CIRCE [1].

The architecture of the dispersed computing testbed is explained in figure 1. We start with the
application DAG, which is used by the computation profiler that profiles the NCPs for their
computing resource availability. The network profiler profiles the links connecting every pair of
NCPs in a distributed manner. This information is the used by the scheduling algorithm HEFT (a
centralized algorithm) and WAVE (a distributed algorithm) to come up with a mapping from the
tasks of the task graph to the NCPs. CIRCE, our dispersed computing deployment framework,
uses this mapping and deploys the tasks over the NCPs. CIRCE also performs run-time profiling

of the task executions over time and logs them centrally, which can then be used for analyzing
the schedules.

Figure 1. Architecture of the dispersed computing pipeline.

2. WAVE: A Distributed Scheduler
Our scheduler is initialized by the WAVE master node, which has the information about the task
graph. Based on the location of the input data, it determines the NCPs for each of the input
tasks in the DAG. Also the master node determines a unique parent controller for each task in te
task graph using following routine 1 shown below. At the WAVE master node, following routine
is executed to determine the controllers for each task.

Routine 1: Controller section routine

1) Iterate over tasks of the the task graph in their topological orders.
2) For each non-input task, check if any of its parent tasks are already controllers.
3) If only one of the parents is already a controller, then appoint that parent as the

controller for this task.
4) If no parent is already a controller, then choose the task with smaller topological index as

the parent.

The task graph, input NCPs and parent controllers for each task are then sent to all NCPs. All
NCPs are waiting to receive their task assignments. Whenever an NCP hears its task
responsibility, it first needs to check if the assigned task is also a controller for any of the other
tasks. The NCP can check this by looking up the parent controller information it has received
from the WAVE master. If the NCP is a controller parent for some tasks of the task graph, it
needs to do a NCP assignment for the children tasks. It runs following routine 2 to perform the
child appointment.

Routine 2: Scheduling algorithm at the controller

1) Iterate over the children tasks in their topological orders.
2) For each task, randomly select an NCP from the neighbouring nodes.

3) Convey the task appointments to the selected NCPs and the WAVE master node.

This is how the NCPs get to know the tasks assigned to them by the controlling parent tasks.
When the WAVE master hears about all the task assignments, it starts the CIRCE deployment
framework by providing the task graph and the mapping of these tasks to the compute nodes.

Note that the step (2) in routine 2 selects the NCPs randomly, however our system
implementation is very modular and we are working on replacing it with a child appointment
algorithm that considers the execution profiles of the neighbours, the link qualities connecting
them and also the computing and communication requirements of the concerned tasks.

3. Network Anomaly Detection DAG:
For evaluation of our dispersed computing framework, we consider a network anomaly detection
application, where the goal is to monitor the traffic flowing in a network and detect any network
flow anomalies. An observation point, such as a router, monitors the packets and logs some
information from the headers like the source IP address, the source port number, the destination
IP address and the destination port number. This log is the used by the task graph to detect the
anomalies in the network traffic. The source code for a version of this DAG is available online
[4].

Figure 2. DAG for the Application

1. Local Processing (LP): The local processing unit hashes the traffic using the IP address.
The traffic is then split into 3 independent streams based on the evaluated hash value and sent
to 3 different aggregation points as shown in figure 2.

2. Aggregation Point (AP): In this example, we have considered only one observation point.
However, in general, there can be several observation point and an aggregation point is needed
to merge the traffic coming from several sources. The aggregated traffic is then sent to the
detectors.

3. Detectors: Any network anomaly detector is bound to have false alarms and missed
detections. Using several detectors in parallel and combining their outputs together is intended
to provide more robustness to the detection performance. We use four different detectors on
each data-stream: simple detector, Astute detector, DFT-based detector, TeraSort-based
detector. It must be noted that the DFT-based and the TeraSort-based detectors use coded
computing and currently are run on 4 different nodes, where there are one master and 3 worker
nodes for each of the detectors.

4. Fusion Point (F): Fusion center combines the detected anomalies from different detectors
together. This indicates the detected anomalies for the particular data-stream.

5. Global Inference (G): The global inference unit combines the detected anomalies for each
stream into one global inference about the observed traffic.

4. Experimental Setup:
In order to test and evaluate our novel framework, we have created a 100-node cluster of
geographically separated droplets on DigitalOcean. We use droplet with 8GB RAM and 80GB
storage as our master node for the Kubernetes cluster. This the central node that orchestrates
the execution of all the different components of our framework. The worker nodes have 2
different profiles: 2GB RAM with 40GB storage and 3GB RAM with 20GB storage. We run
different containers on these nodes for each of the components of our system. Since we need to
profile all the nodes and the links, there is one profiler container running on each of the nodes.
There is also one WAVE container on each of the nodes. Some of these WAVE containers will
become controllers when the task assignments take place in a distributed manner. Finally when
the tasks assignment is completed, CIRCE deploys its own containers on the nodes that have
been assigned some tasks.

5. Results:
We compare two different types of scheduling algorithm: centralized algorithm and WAVE
(decentralized algorithm). Note that the decentralized algorithm is currently naive, doing random
child appointments (this will be improved in the future). We test our system twice with 5
sequential input files provided in each test.

The average end-to-end execution times for the 2 tests are provided here:

 Centralized Algorithm WAVE

Test 1 126.61 sec 135.82 sec

Test 2 127.59 sec 136.37 sec

As we can see, the mapping provided by the centralized takes 9.01 seconds fewer than that
coming from the WAVE algorithm.

6. Conclusion:
In our work, we have developed a 100-node Kubernetes based cluster that integrates into a
system, 3 components: a profiling module that monitors the resources and network links, a
scheduler module that can use the profiled information to come up with a mapping of the tasks
to NCPs and CIRCE, a deployment module that implements the mapping over the NCPs.

A centralized algorithm that assumes the availability of all profiling information locally performs
better than WAVE, our decentralized algorithm. It must be noted that the distributed algorithms
in general can only be as good as the centralized algorithms. In our case, the gap between
these allocations can be bridged by using the profiling information of the neighbours in making
the child appointment decisions in WAVE.

Acknowledgement
This material is based upon work supported by Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001117C0053. The views, opinions, and/or findings expressed
are those of the author(s) and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

References
[1] Aleksandra Knezevic, Quynh Nguyen, Jason A. Tran, Pradipta Ghosh, Pranav Sakulkar, Bhaskar
Krishnamachari, and Murali Annavaram, “DEMO: CIRCE – A runtime scheduler for DAG-based dispersed
computing,” The Second ACM/IEEE Symposium on Edge Computing (SEC) 2017.

[2] Topcuoglu, Haluk, Salim Hariri, and Min-you Wu. "Performance-effective and low-complexity task
scheduling for heterogeneous computing." IEEE transactions on parallel and distributed systems 13.3
(2002): 260-274.

[3] Fontugne, Romain, Johan Mazel, and Kensuke Fukuda. "Hashdoop: A mapreduce framework for
network anomaly detection." Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE
Conference on. IEEE, 2014.

[4] Open Source code release: Distributed Network Anomaly Detection DAG for Dispersed Computing

https://github.com/ANRGUSC/DNAD

https://github.com/ANRGUSC/DNAD

