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Abstract The state-of-the-art for optimal data-gathering

in wireless sensor networks is to use additive increase

algorithms to achieve fair rate allocation while implicity

trying to maximize network utilization. For the quantifi-

cation of the problem we present a receiver capacity model

to capture the interference existing in a wireless network.

We also provide empirical evidence to motivate the

applicability of this model to a real CSMA based wireless

network. Using this model, we explicitly formulate the

problem of maximizing the network utilization subject to a

max–min fair rate allocation constraint in the form of two

coupled linear programs. We first show how the max–min

rate can be computed efficiently for a given network. We

then adopt a dual-based approach to maximize the network

utilization. The analysis of the dual shows the sub-opti-

mality of previously proposed additive increase algorithms

with respect to bandwidth efficiency. Although in theory a

dual-based sub-gradient search algorithm can take a long

time to converge, we find empirically that setting all sha-

dow prices to an equal and small constant value, results in

near-optimal solutions within one iteration (within 2% of

the optimum in 99.65% of the cases). This results in a fast

heuristic distributed algorithm that has a nice intuitive

explanation—rates are allocated sequentially after rank

ordering flows based on the number of downstream

receivers whose bandwidth they consume. We also inves-

tigate the near optimal performance of this heuristic by

comparing the rank ordering of the source rates obtained

from the heuristic to the solutions obtained by solving the

linear program.

Keywords Wireless sensor networks � Optimal rate

control � Distributed dual based algorithms

1 Introduction

The applications envisioned for sensor networks are pri-

marily data gathering applications. For such applications a

common scenario would be multiple sensors sensing the

environment and sending data over a shortest path tree to a

central base station. Since the primary mode of commu-

nication for these devices is the wireless channel and the

current standards (802.15.4) propose rates to the order of

kilo bits per second (*250 kbps), bandwidth is a highly

constrained resource in these networks. Also energy effi-

ciency is a primary concern in these networks and

communication cost is known to be the highest in terms of

energy consumption. Hence it is imperative to maximize

bandwidth utilization in these networks.

One of the primary objectives of a data gathering appli-

cation is to present an accurate view of the sensed

environment. This objective can be achieved only if we are

able to obtain a fair amount of data from each of the sensors

that are part of the network. This leads to the requirement of

fair rate allocation amongst all sources in the network. Hence

rate allocation amongst sources need not only be efficient

(maximize utilization), but also fair [1–3].

Additive increase-based mechanisms for rate control are

popular in the context of wired networks. This is because

they are optimal for lexicographic fairness [4], as well as

for other notions of fairness such as proportional fairness

[5]. The popularity of additive increase algorithms in
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wireline networks have also led to their adaptation to rate

allocation in wireless sensor networks [1, 6].

The main difference between wireless networks and

wireline networks is that flows in a wireless network not

only consume bandwidth usefully on the links they are

active on but also wastefully on links that they interfere

with. Moreover, there is heterogeneity in the amount of

interference (i.e., bandwidth wastage) that each flow may

cause. This fundamental difference between wired and

wireless networks demands a fresh look at the problem of

fair and efficient rate control algorithms for wireless net-

works in general and wireless sensor networks specifically.

In wireless settings, a fair rate allocation may treat equally

flows that cause high interference as well as flows that cause

less interference. On the contrary, a rate allocation that

favors flows causing less interference may be able to provide

higher network utilization (as measured by the total sum of

the flow rates). Hence, there can be a fundamental tension

between fairness and efficiency in wireless networks [7].

Consequently, the additive increase approaches that provide

lexicographic fairness even in the context of wireless net-

works, are not well suited from the perspective of bandwidth

efficiency. In this work, to address both fairness and effi-

ciency goals, instead of looking at lexicographic fairness, we

define the objective as maximizing the network utilization

while ensuring that the rate allocations satisfy a slightly

weaker notion of max–min fairness.

We model the problem as follows: there are n sources in

the network that are trying to send data to a single sink over

a given tree. Every source has a shortest path through one

or more intermediate nodes to the sink. Every receiver in

the network has limited bandwidth. The objective of the

problem is to maximize the sum of the source rates subject

to a constraint of max–min fair rate allocation. We define a

rate allocation to be max–min fair if the minimum rate

allocated to any flow is the maximum over all possible rate

allocations.

One of the challenges of presenting a quantification to

the above problem is to capture the effects of interference

which is so unique to wireless networks. We achieve this

by adding new links to the existing routing tree to represent

interference between any two nodes. Further, instead of

using a link-capacitated view where each link has a finite

capacity we assume a node-capacitated view where each

node has a finite capacity to receive data. This approach is

critical to modeling wireless networks since a wireless

network, unlike a wire line network, is composed of

broadcast domains associated with each receiver instead of

point to point links.

In order to motivate the applicability of the receiver

capacity model in a real system, based on a CSMA based

MAC, we also present empirical results on the Tmote Sky

platforms where we measure the capacity region of the

broadcast domain of a receiver. The empirical results for

the two sender case and the receiver capacity values for the

multiple sender ([2) case suggests that the receiver

capacity of the broadcast domain can be approximated by a

linear relationship of the sender rates belonging to the

specific broadcast domain. This observation corroborates

the applicability of our receiver capacity model.

Using the receiver capacity model we formulate the

above problem as two coupled linear programs—the first

problem identifies the max–min rate allocation, while the

second maximizes the sum-rate subject to the constraint

determined by the solution of the first problem. We prove

that the optimal solution to the first problem is the mini-

mum of ratios of available bandwidths to upstream

demands. This characterization allows for the efficient

solution of the first problem via a tree-based aggregation

and dissemination. We analyze the second problem using

Lagrange duality. The analysis of the dual also presents us

with an intuitive proof of the sub-optimality of additive

increase mechanisms to achieve our objective of maxi-

mizing utilization while achieving a max–min fair rate

allocation. Although solving the dual problem using sub-

gradient search techniques can potentially result in slow

convergence, we find empirically that initializing all sha-

dow prices to a an equal, constant value of 1/(N + 1)

provides near-optimal results within one iteration. This

gives a fast near-optimal distributed heuristic (which pro-

vides solutions within 2% of the optimum in 99.65% of the

cases) that has an intuitive explanation—flows from sour-

ces are scheduled sequentially after rank ordering them on

the number of downstream receivers whose bandwidth they

consume (either directly or via interference).

The near optimal performance of the heuristic was quite

surprising. On further investigating the results, obtained

from the heuristic, and comparing the results with the

optimal solution the following hypothesis was formulated;

as long as the heuristic is able to generate a rank ordering

of the sources ‘similar’ to the rank ordering of the optimal,

the solutions obtained by the heuristic would be very close

to the optimal. Further the structure of the problem itself

lends to a solution where a majority of the sources are

actually allocated the max–min rate in the final solution.

Thus the rank ordering is limited to a small subset of

sources, which helps the heuristic achieve a rank ordering

similar to the optimal solution.

This paper is organized as follows: In Sect. 2 we present

our receiver bandwidth capacity model that will be essen-

tial in modeling the interference constraints in our

optimization problem. In Sect. 3 we empirically motivate

our receiver capacity model in terms of its applicability to a

real CSMA based wireless network. In Sect. 4, using the

bandwidth capacity model we formulate the problem

of maximizing network utilization while allocating a
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max–min fair rate as two coupled linear programs. In

Sect. 5 we present a lemma that helps us calculate the

max–min rate in a tree. In Sect. 6 we present an example to

motivate our claim that additive increase algorithms while

providing a max–min fair rate allocation but do not max-

imize network utilization. In Sect. 7 we take a dual based

approach to design a near optimal heuristic for our prob-

lem. We also use the dual to present an intuitive proof for

the sub-optimality of the additive increase algorithms. In

Sect. 8 we present simulation results to highlight the per-

formance of our algorithm. In Sect. 9 we investigate the

near optimal performance shown by our 1-step shadow

pricing algorithm. In Sect. 10 we present the related work

pertinent to this problem. Finally in Sect. 11 we present our

conclusions and the future for this work.

2 Modeling receiver bandwidth consumption in

wireless networks

In this section we present a model that captures the band-

width consumption at a receiver in a tree T rooted at the

sink. The essence of the model is that it captures the

interference observed by a receiver. This model is identical

to the one proposed by us in [6] and is similar to the one

used by Rangwala et al. [1] to capture the effects of

interference. We define a communication graph G as a set

of nodes V and a set of communication links E. To keep

the analysis tractable we assume that all communications

links are perfect. A routing tree T � G is created over the

existing communication graph by selecting edges that

would give the shortest hop count from a node to the root

chosen randomly from the set of nodes V. The assumption

is that the tree T once selected remains fixed for the entire

life time of flows existing in the network.

Every receiver in the network is considered to have a

constant finite receiver capacity B (this receiver capacity

could be different for different nodes in the network). Due

to the broadcast nature of wireless links, any flow from a

child i to its parent j on the tree T consumes bandwidth on

all receivers that are neighbors of i on the graph G (we

assume here that the neighbor set captures all interfering

nodes, and therefore refer to the edges in E that are not part

of T as noise edges). It is this feature that makes the

problem of rate allocation in a wireless network very dif-

ferent from that observed on a wired network.

We illustrate our model, which we refer to as the

‘‘Receiver Capacity Model’’ for the remainder of this work,

with an example. Figure 1 shows a six node topology. The

solid lines indicate a parent–child relationship in the tree.

The dashed line represent noise links. For each source, any

rate consumed by the source on the link with its parent would

result in consumption of an equal rate on the noise links. Thus

when node 2 sends its data to node 1, node 2 not only con-

sumes capacity at node 1 but also at node 3, since the same

flow exists over link 2?1 and noise link 2?3.

The radios are assumed to be half duplex. The half

duplex nature of the radio forces flows to be received at a

particular rate in a particular slot and then forwarded at the

same rate in the next available slot. This results in flows,

originating from the child, consuming twice the allocated

rate at the parent.

Based on our model the constraint on the rates at node 3

would be as follows:

r
ð2Þ
noise þ r

ð3Þ
noise þ rð6Þsrc �Bð3Þ ð1Þ

where B(3) is the receiver capacity of node 3 and r
ð6Þ
src is the

source rate of node 6. r
ð2Þ
noise and r

ð3Þ
noise are the output rates at

node 2 and node 3 respectively and are given by:

r
ð2Þ
noise ¼ rð2Þsrc þ rð4Þsrc þ rð5Þsrc

and

r
ð3Þ
noise ¼ rð3Þsrc þ rð6Þsrc

The half duplex assumption for the radios forces the

term r
ð6Þ
src to appear twice in Eq. 1. Once independently to

account for the consumption of bandwidth during reception

at node 3 and once as part of the term r
ð3Þ
noise to account for

the forwarding of the flow originating at node 6.

In general the receiver capacity constraint at a node i can

be given as follows:
X

j2CðiÞ

rðjÞsrc þ
X

j2NðiÞ

X

k2CðjÞ

rðkÞsrc þ
X

j2NðiÞ

rðjÞsrc�BðiÞ ð2Þ

where N(i) is the set of all neighbors of i. The half duplex

assumption implies that i [ N(i). C(i) is the set of all nodes j

that have i in its path to the sink. r
ðjÞ
src represents the rate at

which data generated at node j is being transmitted.

Fig. 1 A six node topology: an illustrative example of the receiver

capacity model
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3 Empirical validation of the receiver capacity model

In order to ascertain the efficacy of the above model in a

real system we performed an experiment using three Tmote

Sky’s in a two sender, single receiver configuration. The

Tmote Sky’s have a CC2420 radio which is compatible

with the IEEE 802.15.4 MAC protocol. The Tmote Sky’s

were running TinyOS-2.x (2.0.1) which has a default

CSMA stack available for the CC2420 radio’s. By making

the sender motes transmit at different combination of

source rates, we were able to plot the capacity region of the

CC2420 CSMA stack for the TinyOS-2.x (2.0.1) platform

shown in Fig. 2(a). The x and y axis represent the good put

achieved by each of the sources. Thus a cross in Fig. 2(a)

represents a combination of source rates that was achieved

by each of the sources.

The receiver capacity is determined by the boundary of

the capacity region (set of achievable rate vectors) of the

MAC protocol. This plot shows that the capacity region can

be divided into three regions. When s1 and s2 are compa-

rable to each other (region II), the capacity region is

s1 þ s2� 110 pkts/s; where 110 pkts/s is the receiver

capacity in this region. Region I/III corresponds to rate

vectors (s1, s2) where s2 [ 4s1 (s1 [ 4s2).

An interesting observation that can be made from

Fig. 2(a) is that although the receiver capacity in regions I

and III is greater then the receiver capacity in region II, if

we simply extend the boundary of region II into regions I

and III the loss in capacity would be small. We can

therefore represent the boundary of the capacity region by a

linear combination of the source rates of sources 1 and 2.

The empirical evidence presented in Fig. 2(a) justifies

our linear approximation of the receiver capacity (currently

for the two sender single receiver case). With the simple

two sender experiments we can further show that the

receiver capacity is equal to the saturation throughput of

the CSMA MAC. The saturation throughput of the MAC, is

the overall throughput seen by the receiver when the sys-

tem is overloaded, i.e. each source in the broadcast domain

always has a packet to transmit. Figure 2(b) presents the

load versus throughput curves for the two sender, single

receiver case. The x-axis plots the sum load on the system

(the sum rates of the two sources) and the y-axis plots the

overall throughput observed at the receiver. As can be seen

the saturation throughput coincides with the observed

receiver capacity. We were able to equate the points that

correspond to the saturation throughput in Fig. 2(b) to the

points on the boundary of the capacity region II in

Fig. 2(b), validating our observation. Thus, the receiver

capacity of a broadcast domain can be equated to the sat-

uration throughput of the MAC protocol.

Although the above relation, between the receiver

capacity and the saturation throughput, is inferred from an

experiment where only two senders were present, we claim

that this relationship holds for n [ 2 senders as well. To

justify this claim we measured the saturation throughput

for multiple senders ([2), for the TinyOS-2.x CSMA stack

in Fig. 2. Figure 2 shows that the degradation in saturation

throughput with increasing number of senders is relatively

small. For e.g. the drop in saturation throughput when 8–20

senders are present in a broadcast domain as compared to

when only three senders are present is just 20%. This

suggests, that at the edges of the capacity region, when one

sender’s source rate is negligible as compared to the source

rate of all the other senders, the receiver capacity is not

much larger than the receiver capacity at the middle of the

capacity region where the source rates are comparable

(This is similar to the comparison of regions I and III with

region II in the two sender case). Thus the capacity region

for a multi sender case could be approximated by a plane

with boundary of the capacity region represented by a

linear combination of the source rates. Hence, the moti-

vation to use the equivalence between the saturation

throughput and the receiver capacity holds for the multi-

sender case as well.

4 Problem formulation

Using the receiver capacity model we can now formulate

the maximization of the network capacity utilization while

maintaining max–min fairness as two coupled constrained

optimization problems P1 and P2. The variables used in

our formulation are presented in Table 1.

The optimization problem is formulated as follows:

P1 :
max Y s.t.

Rin þ N� Rnoise � B
Rin ¼ C� Rsrc

Rnoise ¼ C� Rsrc þ Rsrc

r
ðiÞ
src� Y 8 i 2 T

P2 :
max

P
i2T r

ðiÞ
src s.t.

Rin þ N� Rnoise � B
Rin ¼ C� Rsrc

Rnoise ¼ C� Rsrc þ Rsrc

r
ðiÞ
src� Y� 8 i 2 T

The constraints of our optimization problem come

directly from our bandwidth consumption model that we

had presented in Sect. 2. The problem P1 is the max–min

rate problem. The optimal solution Y* to P1 gives the

highest possible minimum rate achievable amongst all

possible rate allocation vectors. The problem P2 uses Y* as

a constraint in order to guarantee the best possible

minimum rate to all its sources and presents a rate
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allocation vector that will maximize the sum rate, thus

maximizing utilization. In the following section we present

a lemma showing that the solution to P1 can be found by

taking the minimum of the ratios of the available

bandwidths to upstream demands. The algorithm itself

can be implemented by using a tree-based aggregation and

dissemination mechanism.

5 Calculating the max–min source rate on a tree

The max–min rate is the optimal solution to the problem

P1 denoted by Y*. In order to calculate the max–min rate

for a given tree we define the term available bandwidth at a

receiver ðBðiÞavailableÞ as follows:
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Fig. 2 Receiver capacity for senders [2. (a) Capacity region for two senders single receiver. (b) Saturation throughoutput for the two sender

single receiver

Table 1 List of variables used in formulating problems P1 and P2

Rsrc An N 9 1 vector representing the rate allocated to each source

i 2 V

N An N 9 N matrix representing the presence of a noise edge nij

[ N between two nodes i; j 2 V

C An N 9 N matrix that gives the parent–child relationships on

the data gathering tree

cij [C(i) is 0 if node i is not in node j0s path to the sink and cij

= 1 otherwise

Rin An N 9 1 vector, representing the total input rate arriving at

each node

Rnoise An N 9 1 vector, representing to total output rate exiting from

a node

Y A scalar, representing the minimum rate among all flows
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B
ðiÞ
available ¼

BðiÞ

CðiÞ
ð3Þ

where CðiÞ is defined as:

CðiÞ ¼
X

j2CðiÞ;i6¼j

cij þ
X

j2NðiÞ

X

k2CðjÞ;k 6¼j

cjk þ
X

j2NðiÞ

nij

CðiÞ is the sum of the total number of immediate children of

node i, the total number of neighbors of node i and the total

number of children of each of node i’s neighbors.

The optimal solution of P1 could be found by observing

the available bandwidth B
ðiÞ
available at each receiver in the

network and selecting the minimum of these. The follow-

ing lemma justifies our claim.

Lemma 5.1 The optimal solution Y* of the primal P1 is

the minðBðiÞavailableÞ 8 i 2 V:

Proof We define a node k as a bottle neck node if:

k ¼ argminðBðiÞavailableÞ 8 i 2 V

• Case 1: Assume:

Y�\ minðBðiÞavailableÞ 8 i 2 V

We can do a rate allocation for all sources j that are

children of the bottle neck node k or the children of the

neighbor of the bottle neck node k such that r
ðjÞ
src ¼

B
ðkÞ
available without violating the bandwidth constraint on

node k. Since k is the bottle neck node, rj
src will be the

minimum of all rates allocated to all sources. This

implies that we have a rate allocation where

minðri
srcÞ; 8 i 2 V [ Y�

Thus we have a contradiction.

• Case 2: Assume Y�[ minðBðiÞavailableÞ 8 i 2 V: Then for

node k,
X

j2CðkÞ

rðjÞsrc þ
X

g2NðkÞ

X

z2CðgÞ

rðzÞsrc þ
X

j2NðkÞ

rðjÞsrc [ BðkÞ

Thus the bandwidth capacity constraint is violated for

node k.

Hence Y� ¼ minðBavailableðiÞÞ 8 i 2 V: (

Based on this lemma a simple algorithm can be devel-

oped to calculate the max–min rate on a tree. In order to

find the max–min rate every child calculates its available

bandwidth ðBðiÞavailableÞ and forwards it to the parent. The

parent computes the minimum of these and compares it

with its own available bandwidth. It then forwards the

minimum of these two quantities to its parent. The parent

thus performs an aggregation on the available bandwidth in

its sub-tree and forwards the minimum to its own parent.

Since a parent does not calculate its available bandwidth

and forward the aggregated minimum available bandwidth

to its parent, till it receives information from all its chil-

dren, the aggregation process proceeds sequentially. The

algorithm to calculate the max–min rate terminates at

the root. The minimum available bandwidth calculated by

the root would then be the minimum of all available

bandwidths and hence would quantify the max–min rate of

the tree. The root can now disseminate this information to

every node in the tree by sending it downstream over the

tree.

6 Additive increase algorithms and max–min fairness

Currently proposed solutions that achieve max–min fair-

ness while implicitly trying to maximize network

utilization [1, 6] use the following additive increase

mechanism. Sources in the network are allowed to increase

their rates equally by a small value e. When a receiver in

the network is constrained, it constrains all its neighbors,

its neighbors children and its own children. This process

continues till the point, when all nodes in the network are

constrained. Since all nodes have equal increments and the

first node to exhaust its bandwidth would be the bottle neck

node, algorithms using additive increase technique would

achieve the optimal solution to P1. Even though additive

increase algorithms can achieve a solution to P1, while

consuming the network capacity, we claim that it will not

necessarily achieve a solution for P2. In this section we

present insights into our claim through an example and

present a more quantitative argument in Sect. 7. Assume

all nodes except node 1 are sources in Fig. 3. Let node 5 be

the bottleneck node. For this topology any increment in the

rate of node 3 will consume bandwidth at node 2 and node

4. For e.g. if we increment the rate at node 3 by e we will

be consuming a bandwidth e at receiver 2, a bandwidth e at

receiver 4 and a bandwidth e at receiver 1. Thus an

increment e in source rate of node 3 will result in wastage

of network capacity equal to 2e. A higher throughput could

be achieved by simply allocating all nodes the max–min

rate and then giving the remaining capacity to nodes 2 and

4. It is easy to see that this allocation would ensure that for

increment e in source rates of 2 and 4 they would not be

wasting any bandwidth. The example shows that there exist

topologies where additive increase mechanisms might be

sub-optimal.

Apart from the sub-optimality another draw back of

additive increase algorithms is the estimation of the

increment e. In real systems an accurate estimate of e is

critical to avoid oscillations [1]. Moreover the convergence

of these algorithms is O B
�

� �
where B is the maximum
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receiver bandwidth, which implies a trade off between the

speed of convergence and the accuracy of the solution

depending on the choice of e.

7 A dual based approach

In order to gain insights into the dynamics of the problem

we plan to adopt a dual based approach. The shadow price

interpretation of the Lagrange multipliers [8] from the dual

will present us with mechanisms to design distributed

algorithms that maximize the network utilization while

guaranteeing a max–min fair rate to all sources.

7.1 The Lagrange dual

We introduce Lagrange multipliers in order to relax con-

straints in the primal P2 to obtain the Lagrange dual

function. We will concern ourselves only with the dual of

P2 and assume that the optimal max–min rate will be

calculated from the primal P1 using Lemma 5.1. The

Lagrange dual function of the primal P2 is:

DðkÞ¼ max
Rsrc�Y�

X

i2T

rðiÞsrc	kT�ððN�ðCþ1ÞþCÞ�Rsrc	BÞ
 !

On expanding the matrix notation we get:

DðkÞ ¼ maxRsrc�Y� ð
P

i2T r
ðiÞ
src

	
P

i2T kið
P

j2CðiÞ r
ðjÞ
src

þ
P

j2NðiÞ
P

k2CðjÞ r
ðkÞ
src

þ
P

j2NðiÞ r
ðjÞ
src 	 BðiÞÞÞ

ð4Þ

We can rearrange Eq. 4 to obtain:

DðkÞ ¼ maxRsrc�Y� ð
P

i2T r
ðiÞ
srcð1

	ð
P

i2CðjÞ kj

þ
P

i2CðjÞ
P

k2NðjÞ kk

þ
P

i2NðjÞ kjÞÞ þ
P

i2T kiB
ðiÞÞ

ð5Þ

Since the original problem is a linear program the dual

will also be an LP given by

D : min
k�0;

DðkÞ

Also since the solutions are feasible for both problems the

duality gap would be zero [8]. Hence our objective would

be to minimize the dual instead of maximizing the primal.

Let

fiðR�srcÞ ¼
X

j2Ci

rðjÞ
�

src þ
X

j2NðiÞ

X

k2CðjÞ

rðkÞ
�

src þ
X

j2NðiÞ

rðjÞ
�

src

From the Lagrange dual function it can be seen that the

sub-gradient w.r.t ki is:

oD

oki
¼ 	ðfiðR�srcÞ 	 BðiÞÞ ð6Þ

Since the dual is a linear program, the objective of

minimizing the Lagrange dual can be achieved by tracing

the graph in the direction of the negative gradient. We will

use the above fact to develop our distributed algorithm.

7.2 Analyzing the dual to design a distributed

algorithm

The Lagrange dual function can be rewritten as:

D : min
k�0

max
Rsrc�Y�

X

8 i

rðiÞsrcli

 !
þ
X

8 i

kiB
i

 !

where li is given by:

li ¼ 1	
X

i2CðjÞ

kj þ
X

i2CðjÞ

X

k2NðjÞ

kk þ
X

i2NðjÞ

kj

 !
ð7Þ

To solve the dual D we could use sub gradient

techniques. Sub gradient techniques are iterative, where

at each step t we increment the shadow prices ki in the

direction of the negative gradient as follows:

kiðt þ 1Þ ¼ ½kiðtÞ þ atðfiðR�srcÞ 	 BiÞ
þ ð8Þ

where R�src are the optimal source rates that solves:

max
Rsrc�Y�

X

8 i

rðiÞsrcli

 !
ð9Þ

At every step t we are required to find the R�src that

solves Eq. 9. The resulting fiðR�srcÞ would then be used

to calculate a new value of k using Eq. 8. If the li in

Fig. 3 An example depicting the sub-optimality of the additive

increase technique for maximizing network utilization while main-

taining a max–min fair rate allocation
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Eq. 9 are negative the optimal value of R�src ¼ Y�: This

would result in a decrement of ki(t), since fiðR�srcÞ\Bi:

If all li are positive, in order to optimize Eq. 9, we

could set R�src ¼ inf: This however would result in a

large increment in the value of ki(t) since fiðR�srcÞ � Bi:

Thus, when all li are positive we should choose an R�src

such that fiðR�srcÞ�Bi: In other words, although we could

simply run the iterative algorithm and allow ki to

oscillate around the optimum value and converge over

some number of iterations (which could be potentially

large), we can be more intelligent and never allow

fiðR�srcÞ to exceed Bi. Further given a fixed ki and a

positive li, in order to find a feasible solution for Eq. 9,

assuming k is fixed, we will require to allocate all r
ðiÞ
src at

least the max–min rate Y*. Given that all sources are

allocated at least the max–min rate, we would require to

allocate the maximum available bandwidth to the source

i having the highest li. We would then proceed,

allocating the remaining bandwidth to the source with

the second highest li. We continue allocating bandwidths

to sources till all sources have been constrained. Thus

bandwidth allocation is based on an ordering of the

sources based on their coefficients li. Also, instead of

looking at li for each source i we could assign each

source i a weight wi given by:

wi ¼
1P

i2CðjÞ kj þ
P

i2CðjÞ
P

k2NðjÞ kk þ
P

i2NðjÞ kj
ð10Þ

The ordering, and the prioritization of rate allocation, in

order to maximize Eq. 9, can now be done based on the

weights wi for each source i.

To achieve the optimal D we should be running the sub-

gradient algorithm for multiple iterations (t [ 1), solving

the maximization problem in Eq. 9, till the shadow prices

converge. Fortunately through simulations we can show

that by setting ki ¼ 1
Nþ1

; 8 i in our specific problem,

99.65% of the time we achieve close to 2% of the optimal

in the very first iteration. The details of the simulation and

its performance with respect to the optimal are presented in

Sect. 8. Thus, instead of running the sub-gradient algo-

rithm for multiple iterations, we set the shadow prices

ki ¼ 1
Nþ1

; 8 i and perform only the first iteration of the

sub-gradient algorithm. Our algorithm for maximizing

network utilization with max–min fair rate allocation

therefore simply consists of optimizing Eq. 9 by setting the

shadow prices to 1/N+1. The specifics of the algorithm

have been provided in Sect. 7.4.

Setting the shadow prices ki ¼ 1
Nþ1

; 8 i; presents an

intuitive explanation to the algorithm. When we set all

shadow prices to an equal constant (ki ¼ 1
Nþ1

; 8 i), the

weight wi is inversely proportional to the number of

receivers node i interferes with during its data transmission

to the sink. Thus, the ordering suggests that we allocate the

maximum bandwidth to nodes that cause the least amount

of interference.

7.3 Sub-optimality of the additive increase algorithms

In Sect. 6 we presented a motivating example for the sub-

optimality of additive increase algorithms. Our analysis of

the dual in the previous section provides a more quantita-

tive argument for this claim. Primarily it suggests that the

rate allocations in the network need to follow an ordering

based on the amount of interference that each source

generates while transmitting data to the sink. On the con-

trary, in additive increase algorithms no such ordering

exists since all sources are allowed to increment by the

same amount. The lack of prioritization in rate allocation is

the primary cause for the sub-optimality of additive

increase algorithms.

7.4 The algorithm

We now present an algorithm for the maximization of

Eq. 9. The algorithm ‘Maximization of Network Utiliza-

tion’ presented in Fig. 4 proceeds as follows; in the

initialization phase all sources in the network set their

‘CONSTRAINED’ flag to ‘FALSE’. Every node i calcu-

lates its weight wi using Eq. 10 and setting the shadow

price ki ¼ 1
Nþ1

; 8 i: In order to calculate the weight wi, the

node i requires information about the number of parents it

has (the number of nodes between itself and the sink), and

the number of neighbors of each of its parents and the total

number of its neighbors. Each of the three quantities can be

obtained by the node during the process of tree formation

itself. In effect, every node during the tree formation pro-

cess, needs to forward the total number of neighbors it

possesses and the number of hops to the sink. These two

quantities can be used by the nodes to calculate the quan-

tities mentioned above for calculating the weight wi at the

end of the tree formation.

In Step 1, each node calculates its per node available

bandwidth. The bottle neck bandwidth is then the minimum

of all the available bandwidths. From Lemma 5.1, this

bottle neck bandwidth is the max–min rate and hence is

allocated to every source in the network. An algorithm to

calculate the minimum available bandwidth on a tree using

a tree-based aggregation and dissemination mechanism is

presented in Sect. 5.

In Step 2, we calculate the pending bandwidth at each

node in the network. To calculate its pending bandwidth

every receiver notes the total output rate from each of its

children and the total output rate from each of its neigh-

bors. The pending bandwidth is then the difference
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between the bandwidth capacity of the receiver and the

sum of the output rates from all its children and its

neighbors. For any receiver if the pending bandwidth is

negative or zero it constraints all its neighbors their chil-

dren and its own children. A constrained node can no

longer increment its source rate.

In Step 3, for every node in the network we look at the

pending bandwidth at every node that is on the path from the

source to the sink, and nodes that are neighbors to these

intermediate nodes, and set the pending available bandwidth

to the minimum of these. In case the pending available

bandwidth is positive, we compare its weight with every

other source that is not constrained and increment its band-

width only if it has the maximum weight. From an

implementation perspective, for this step we require that

every node has information about the maximum weight

currently active in the network. This can be done by pushing

the information about the weights to the root and the root then

disseminating the maximum weight to all its children. The

calculation of the minimum pending bandwidth, described

above, can also be done using a tree-based implementation.

Every node starting from the root needs to gather its own

pending bandwidth and its neighbors pending bandwidth,

passing on to its children the minimum of these quantities.

Once a node has incremented its bandwidth (since it was

the node with the highest weight), it would become con-

strained since it would have consumed the maximum

available bandwidth in its path. Therefore it would require

to remove itself from the list of active sources allowing

some other node to become the source with the highest

weight. It can perform this operation by informing the root

and allowing the root to disseminate this information over

the tree.

In Step 4, we check the constrained flag for all nodes in

the network and if all nodes have been constrained the

algorithm terminates, else we repeat the algorithm from

Step 2.

While describing the various steps of the algorithm we

have presented an implementation perspective to these

steps as well. The implementation description gives an

operational picture of the algorithm in a real system. This

description suggests that although the algorithm is not

completely distributed (the decision making is not com-

pletely local, it relies on information exchange with the

root) it would be more scalable than an implementation

where all the computation is done centrally—maintaining

the complete topology information centrally and running

an LP solver to compute the optimum. By allowing

information exchange between the root and the various

nodes we have made most of the computation distributed

(the pending bandwidth and the weights are calculated

locally at the nodes) and have reduced the complexity of

the computation at the root. Our asymptotic analysis of the

algorithm suggests that the over head of this information

exchange is not high, giving us an acceptable polynomial

bound on the number of messages exchanged.

Fig. 4 Algorithm for the

maximization of network

utilization
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7.5 Asymptotic bounds for the dual based algorithm

The asymptotic bounds on the dual based algorithm can be

calculated as follows: Step 1 of the algorithm would take

O(n) transmissions to calculate the max–min rate. Step 2 of

the algorithm would take O(n) transmissions to calculate

the pending bandwidth at each of the intermediate nodes.

In Step 3 of the algorithm once a source node is con-

strained it needs to populate this information to all nodes in

the tree in order to remove itself from the list of source

nodes. In order to achieve this goal, a simple mechanism

would be to propagate this information to the root which

will collate this information into a new list of sources that

are capable of incrementing their bandwidth. This new list

could than be propagated to all sources in the tree. Since

the total edges in a tree having n nodes are n - 1, the total

number of transmissions to accomplish Step 3 would be

O(n).

The algorithm terminates when all sources are con-

strained. Thus Step 3 and Step 2 will be executed O(n)

times. Hence the algorithm would converge to the solution

within O(n2) transmissions.

8 Performance evaluation

In order to evaluate the performance of our algorithm we

choose network sizes ranging from 6 to 70. For each net-

work size we choose nine instances of trees obtained by

running a shortest path algorithm on a random deployment.

For each instance of a tree we give every receiver in the

tree a bandwidth uniformly chosen between 10 and 250.

We choose 20 such bandwidth distributions for each tree.

Thus, for each network size we have nine different trees,

for each tree there are 20 different instances (each with a

different bandwidth distribution) giving a total of 180

instances for each network size. Since our network size

ranges from 6 to 70, we have a total of 180 9 65 = 11,700

different trees for our evaluation.

In order to evaluate the performance of our algorithm

for each of the 11,700 instances we generated an LP for

the problem P2. Using a centralized solver LP SOLVE1

we obtained the optimal solution for the max–min rate

Y* and the solution to the problem P2. We then ran our

dual based algorithm and an additive increase algorithm,

described in Sect. 6, on each of the 11,700 instances to

solve the problem P2 in a distributed manner. Fig-

ure 5(a) shows the CDF of the error between the

optimal solution from a centralized solver and the

solutions obtained from our dual based algorithm, and

the additive increase algorithm. For the dual based

algorithm the CDF in Fig. 5(a) shows that for 99.65%

of the instances we are able to achieve close to 2% of

the optimal throughput. Of the instances that had greater

than or equal to 10% error, we were close to 10% of

the optimal throughput in 18 instances and close to 20%

in two of the instances. Figure 5(a) also highlights the

sub-optimality of the additive increase algorithms. It

shows that in more than 15% of the runs we experi-

enced an error greater than 20%, 10% of the runs which

experienced an error greater than 30% and 5% of the

runs experienced an error greater than 40%. As high-

lighted in Sect. 6 the sub-optimality of the additive

increase algorithm is due to the lack of prioritization of

the sources during rate allocation.

In Fig. 5(b) we plot the number of packets transmitted

before the dual based algorithm converges to a solution.

Based on a regression fit, we estimate that it grows as

O(n2). These bounds match the asymptotic bounds that

were obtained analytically in Sect. 7.5.

We define the fraction of error as follows:

fraction of error ¼ joptimal sum rate	 heuristic sum ratej
optimal sum rate

Figure 6(a) and (b) shows the average fraction of error

and maximum fraction of error observed while running the

dual based algorithm and the additive increase algorithms

across different network sizes. For the dual based algorithm

Fig. 6(a) reiterates the results of Fig. 5(a) showing that

across different network sizes the average percentage error

remains very close to zero. The additive increase algorithm

however becomes progressively worse as the size of the

network is increased. Although the average error exhibited

by the additive increase algorithms is not large (*10–12%),

the maximum error exhibited is quite large (*40–55%). The

performance of the additive increase algorithm depends on

the placement of the bottleneck node in the topology. If the

bottleneck node is very close to the root, in most cases all

sources would not be able to get more than the max–min rate

even in the optimal solution. In these scenarios the additive

increase algorithm would be able to achieve the optimal.

However as the bottleneck node starts moving away from

the root, the rate distribution among sources would change

with a few sources getting very high rates in the optimal

solution. Under such a scenario the additive increase

algorithm seems to fail. For small networks, since the

average diameter of the network is also small, the bottleneck

node would be close to the root. However for large networks

since the diameter is large, chances of the bottleneck node

being farther away from the root are higher leading to an

uneven distribution of source rates. This reasoning throws

light on the performance of the additive increase algorithm

as the network size is increased.
1 http://www.lpsolve.sourceforge.net/5.1/
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9 Investigating the efficacy of 1-step shadow pricing

Our performance analysis of the heuristic shows that even

though we have assigned equal shadow prices to all sources

in the network, we are still able to achieve near optimal

results. Ideally, if we had run the sub-gradient algorithm, at

every step of the algorithm each source would have

achieved a new shadow price. Hence, when the algorithm

converges the optimal shadow price for sources need not be

equal. This in turn implies that the rank ordering of the

sources in the optimal solution and the heuristic could be

different depending on the network topology and receiver

bandwidth distributions for the specific network topology.

The above observation encourages us to formulate a

hypothesis that we would be verifying through comparison

of our results with the optimal solution. The observation

suggests that the end solution is insensitive to the actual

rank ordering of the sources. As long as we are able to

achieve a relative ordering that is ‘similar’ to the optimal

rank ordering we can achieve a utilization that is very close

to the optimal.

The ability of the heuristic to achieve a ‘similar’ rank

ordering comes from the structure of the optimization

problem. The objective of the problem is to maximize the

sum rate while ensuring that every source in the network

gets at least the max–min rate. In the optimal solution a
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Fig. 6 Performance analysis of the dual based algorithm and the additive increase algorithm on the basis of the percentage error generated for

different network sizes. (a) Average percentage error versus network size. (b) Maximum percentage error versus network size
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majority of the sources are allocated the max-min rate.

Therefore, as long as the rank order of the remaining

sources obtained by assigning equal shadow prices are

similar to the rank order obtained in the optimal solution,

the heuristic will present near optimal solutions.

In order to validate the above hypothesis, and present a

credible argument for the performance of the heuristic, we

compared different metrics related to rank ordering of the

sources obtained from the heuristic algorithm and the

optimal solutions.

Figure 7 shows the cumulative percentage bandwidth

allocated to sources versus the number of sources when

arranged in sorted order. In order to present this compari-

son only the optimal values were used, which in turn were

obtained by solving the LP for each of the 11,700 network

instances. As can be seen even if we consider 10 sources

these sources account for approximately 50% of the total

allocated bandwidth. This clearly implies that in the final

solutions a small percentage of sources are allocated

majority of bandwidth and the selection of these sources

would determine the final solution.

In Fig. 8(a)–(c) we dig a bit deeper and highlight the

above trend on a per source basis. The X-axis in Fig. 8

represents the rank allocated to each source based on the

source rate allocated to each source in the final solution. A

lower rank represents a higher source rate. On the Y-axis

we plot the average percentage of the total allocated

bandwidth that was given to a single source belonging to a

particular rank. We perform this analysis for networks of

different sizes ranging from 10 to 70. We plot the values

for the optimal solutions as well as the solutions obtained

by running the heuristic. The data presented strengthens

our claim that the higher rank sources account for a

majority of the allocated bandwidth. Also the trend in the

bandwidth distribution amongst ranks, for different net-

work sizes, remains the same.

Another question we would like to ask is, what is the

distribution of the number of sources belonging to different

ranks? Figure 9(a)–(c) answers this question. In contrast to

the bandwidth distribution it can be observed that a

majority of the sources (on an average 85% of the sources)

belong to the highest rank. As in Fig. 8 the trend remains

the same across different network sizes. Since in the

optimal as well as the heuristic all the sources are assured

at least the max–min rate, Fig. 9 implies that a majority of

the sources in the network are allocated the max–min rate.

There are only *15% of the sources who have a rate

different then the max–min rate whose ordering matters in

the final solution. Further as can be seen from Figs. 8–9

since the distribution of the heuristic and the optimal are

quite similar it would appear the optimal values are quite

insensitive to exact ordering of the sources.

Finally in order to quantify our investigation we require

to know the identity of the sources that are actually

belonging to the higher ranks. To answer this we plot the

average number of hops versus the rank of the sources in

Fig. 10(a)–(c). Figure 10 suggests that higher rank nodes

have a much larger hop count as compared to sources

belonging to other ranks. This makes intuitive sense as well

since a larger hop count implies a larger amount of inter-

ference, which in turn implies allocating the minimum

possible (max–min) rate to sources having the highest rank.

The above comparison of various metrics related to rank

ordering, between the heuristic and the optimal solutions,

justifies our claim that the accuracy of the solution obtained

by the heuristic depends solely on the ‘similarity’ of the

ordering obtained by the heuristic as compared to the

optimal source rate ordering. Figures 9 and 10 show that,

for the network sizes under consideration, since the number

of sources that affect the solution are small and are pri-

marily within a few hops from the sink, the heuristic is able

to achieve an ordering that is similar to the optimal solution

resulting in near optimal performance.

10 Related work

Application of optimization theory to the design and

analysis of rate control algorithms was first introduced in

the wireline context in the seminal paper by Kelly et al.

[5]. This seminal work established that distributed additive

increase-multiplicative decrease rate control protocols can

be derived as solutions to an appropriately formulated

optimization problem. The application of duality and the

sub-gradient approach to solve the same problem was then

introduced in the classic work by Low and Lapsley [9].

Since these two works, there has been considerable
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research primarily in the wired context in understanding

not only rate control algorithms but network protocols in

general and their interaction across multiple layers from the

perspective of the optimization problem they aim to solve.

A detailed survey of this literature is presented in an article

by Chiang et al. [10].

For wireless networks, the problem of cross layer opti-

mization has been addressed in the works by Chiang [11],

Johansson et al. [12] and Wang and Kar [13]. These works

introduce the dual decomposition technique to address the

problem of cross layer optimization in wireless networks

and present algorithms for performing joint transport and

power control [11] or joint transport and MAC layer design

[13].

The problem of rate allocation in particular has been

looked at from different perspectives in the domain of

wireless networks. Liao and Campbell [14] look at the

max–min fair rate allocation problem for packet based

wireless access networks. They achieve their goal by

assigning the flows at the access point a concave utility

function and applying a max–min fair criteria on these

flows. However [14] addresses the problem for fixed

infrastructure based wireless access networks which is

different from our scenario of a data gathering tree in

wireless sensor network. Moreover their objective is to

maximize the minimum utility of all flows and not to

maximize the network utilization.

In [15] Curescu and Nadjm-Tehrani propose a routing

scheme that can optimize resource allocation in a wireless

ad-hoc network in order to maximize the aggregate utility

of all flows in the network. They use the shadow price

interpretation of the dual to present a bidding scheme that

allows for a combined routing and rate control heuristic.

This work assumes a concave utility function resulting in a

notion of proportional fairness. We differ from [15] since

in this work we explicitly try to maximize the network

utilization while maintaining a weaker notion of the max–

min fairness criterion.

Kun et al. propose EWCCP [16], a congestion control

algorithm for wireless ad-hoc networks designed to provide

proportional fairness to flows in the network. The similarity

between EWCCP and the algorithm proposed in this work

Fig. 8 The distributions of the

percentage of the total rate that

was allocated to a source

belonging to a particular rank

for different network sizes.

The skewed distributions

highlight that a few sources

are allocated a large percentage

of the available bandwidth in

order to maximize the

utilization. (a) Network

size = 10; (b) network

size = 40; (c) Network

size = 70
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is that congestion signaling in EWCCP explicitly takes into

account the interference set of a node while generating a

congestion signal for flows traversing that specific node.

This is similar to our ordering of the sources for rate

allocation based on the amount of interference generated

by each source. The difference between the two works is

that EWCCP is designed to work within the context of an

AIMD protocol, namely TCP, whereas we show in our

work that additive increase algorithms are sub-optimal to

the joint problem of maximization of network utilization

and achieving the highest minimum rate possible. More-

over the notion of fairness achieved by EWCCP is

proportional fairness as opposed to max–min fairness.

Wang et al. [17, 18] present algorithms for achieving

max–min fairness and lexicographic max–min fairness [4]

for Aloha random access networks. However the objective of

[17] and [18] is to ensure fairness of link rates and not end-to-

end flows. In [19] Tassuilas and Sarkar present a centralized

algorithm for achieving lexicographic max–min fairness in

wireless ad hoc networks. Our objective in this work differs

from that of [19], since the objective here is to maximize

network utilization while maximizing the minimum rate.

Moreover our aim is to present a distributed solution as

compared to the centralized solution presented in [19].

The problem of max–min fair rate control has been

looked at in the context of wireless sensor networks. In an

earlier work [6], we presented an additive increase-based

rate allocation scheme that guarantees a weaker notion of

max–min fairness. In [6] we present a TDMA-based MAC

which guarantees a max–min rate allocation by assigning

slots to various sources. The number of slots correspond to

a source rate that is calculated using an additive increase

scheme. Rangwala et al. [1] also present an additive

increase-multiplicative decrease solution for fair conges-

tion control. The source rates in IFRC are allowed to

increase using an additive increase algorithm similar to the

one described in Sect. 6. Both these works try to achieve a

max–min fair rate allocation while trying to implicitly

maximize network utilization. As shown in Sect. 6 these

techniques are sub-optimal when the dual objective of

maximization of network utilization and fairness are taken

into consideration.

In the field of wireless sensor networks duality based

approaches are not limited to designing and analyzing rate

Fig. 9 The distributions of the

percentage of the total sources

that belong to a particular rank

for different network sizes. The

skewed distributions highlight

that most of the sources belong

to the highest rank, while only

a few belong to the lowest.

(a) Network size = 10;

(b) network size = 40;

(c) Network size = 70
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control algorithms. Our approach of analyzing the dual to

achieve a distributed solution follows the approach pre-

sented by Ye and Ordonez [20], where a distributed dual

based gradient search algorithm is proposed for the prob-

lem of maximizing data extraction under energy

constraints.

11 Conclusion and future work

We have formulated the problem of maximizing network

utilization while guaranteeing the best possible minimum

rate to sources in a wireless sensor network. We model the

problem as two coupled linear programs. By analyzing the

dual we are able to show that existing additive increase

techniques are provably sub-optimal. Moreover our anal-

ysis of the dual results in a heuristic that presents near

optimal performance.

There are several directions in which we could extend

this work. One of our goals is the implementation of our

dual based algorithm on a real sensor network test bed. The

objective of such an implementation would be to do a

performance comparison with existing rate control mech-

anisms, such as IFRC [1], that have additive increase

algorithms at the core of their design. A real test bed

implementation would also help validate the assumptions

we have made while modeling the constraints in our

problem. In our modeling we have made an implicit

assumption that every receiver can hear every interferer

that is consuming bandwidth at the receiver. In a real

deployment this assumption might be weak since trans-

mitters can cause interference in receivers that are not

within range. A real test bed environment would help us

ascertain the affects of such phenomenon on the results

obtained from our algorithm.

In the current problem formulation we have focused on

transport layer optimization alone. Interesting extensions to

this work include joint transport/routing/MAC cross-layer

design.
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size = 70
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