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Optimal Sleeping Mechanism for Multiple Servers
with MMPP-Based Bursty Traffic Arrival

Zhiyuan Jiang, Bhaskar Krishnamachari, Sheng Zhou, Zhisheng Niu, Fellow, IEEE

Abstract—A fundamental problem in green communications
and networking is the operation of servers (routers or base
stations) with sleeping mechanism to optimize energy-delay
tradeoffs. This problem is very challenging when considering
realistic bursty (non-Poisson) traffic. We prove for the first time
that the optimal structure of such a sleeping mechanism for
multiple servers when the arrival of jobs is modeled by a bursty
Markov-modulated Poisson process (MMPP). It is shown that
the optimal operation, which determines the number of active
(or sleeping) servers dynamically, is hysteretic and monotone,
and hence it is a queue-threshold-based policy. This work settles
a conjecture in the literature that the optimal sleeping mechanism
for a single server with interrupted Poisson arrival process, which
can be treated as a special case of MMPP, is queue-threshold-
based. The exact thresholds are given by numerically solving the
Markov decision process.

Index Terms—Green wireless communications, Markov-
modulated-Poisson-process, Markov decision process, threshold-
based policy

I. INTRODUCTION

The reduction of energy consumption has attracted more
and more attention in several engineering fields, e.g., wireless
communication systems and data centers. One of the most
effective approaches is to put idle servers into sleeping mode
due to the fact that a significant amount of energy is wasted
by keeping the idle servers active. Concretely, a base station
(BS) consumes 90% of its peak power even when the traffic
load is low [1], and a typical idle server consumes 50%-60%
of its peak power. On the other hand, the utilization of BSs
and servers is usually low, especially with more and more
densely deployed infrastructures [2]. Meanwhile, the energy
consumption reduction comes with an undesired user delay
increase, due to the extra job queuing time with possibly
sleeping servers. Therefore, the design of sleeping mechanism
should consider the tradeoff between energy consumption and
queuing delay, and in the meantime avoid frequent server mode
switching which costs extra energy.

In practice, the arrival traffic at servers often exhibits a high
level of burstness [3], whereas existing works usually focus on
Poisson-based, non-bursty traffic arrivals. It is important to un-
derstand the impact of traffic burstness since, intuitively, it may
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create more sleeping opportunities. However, the optimization
of the energy-delay tradeoff with bursty, non-Poisson traffic
becomes very challenging and hence few results are available.

A. Related Work and Main Contributions

The BS and server sleeping mechanisms have attracted wide
attention in the literature. It is proved by Kamitsos et al.
[4] that the optimal structure of the sleeping operations for
Poisson arrival and a single server is queue-threshold-based.
The proof is built upon the previous work by Lu, Serfozo [5]
and Hipp, Holzbaur [6]. In the work by Wu et al. [7] and Leng
et al. [8], the arrival traffic pattern is generalized to interrupted
Poisson process (IPP) to capture the traffic burstness. In an
IPP process, jobs only arrive during the ON phase and the
ON and OFF phases transit to each other based on a Markov
process. Specifically, Wu et al. [7] calculate the optimum
queue threshold with IPP arrival and a single server by fixing
the sleeping policy to be N -based, i.e., turning on the server
when there are N jobs and turning it off when the queue
is empty. However, it is shown in the work by Leng et al.
[8] that the optimal sleeping policy with IPP arrival has two
sets of thresholds, meaning that in each phase of the IPP the
thresholds to turn on and off the server are different. Therefore,
the N -based policy [7] is in general not optimal with IPP
arrival. Towards finding the optimal sleeping policy, Leng et
al. [8] adopt a partially observable Markov decision process
(POMDP) formulation and analyze the optimal sleeping policy
with IPP arrivals and a single server numerically. It is proved
that the optimal policy is hysteretic but the monotonicity
property, which together with the hysteretic property proves
the optimal policy structure to be queue-threshold-based, is
left as a conjecture.

In this letter, we generalize the existing work by considering
the Markov-modulated-Poisson-process (MMPP) traffic arrival
and multiple servers. The optimal sleeping policy structure is
proved to be queue-threshold-based, and hence the conjecture
by Leng et al. [8, Conjecture 1] is settled since IPP and a
single server can be considered as a special case. Numerical
results are also given to shed light upon the optimum queue
thresholds.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider M servers, each has two operation modes,
active and sleeping. The M servers serve jobs in a single queue
with a buffer size of B. Denote the number of active servers
as W , and W ∈ {0, ...,M}. We assume that jobs arrive at
the queue according to an MMPP to capture the burstiness of
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the traffic. Jobs arrive during the S-th phase of MMPP based
on the Poisson process with rate λS , where the MMPP arrival
phase is denoted as kS and S ∈ {1, ..., N}. The MMPP is
parameterized by the N -state continuous time Markov chain

with phase transition matrix as R =


−σ1 · · · σ1N

...
. . .

...
σN1 · · · −σN

,

where σS1S2 denotes the transition rate from phase kS1 to
kS2

of MMPP, and σi =
∑N

j=1, j 6=i σij . The service time
is assumed to be independently and identically distributed
according to an exponential distribution over jobs with mean
service time of µ−1 for each active server. Based on the
queuing theory, the service rate for W active servers is
Wµ. The memory-less property of the arrival1 and departure
processes enables us to formulate the problem as a continuous-
time MDP. The system state is denoted as (S,Q,W ), where
S ∈ {1, ..., N}, W ∈ {0, ...,M} and Q ∈ {0, · · · , B}. The
state (S,Q,W ) denotes that there are Q jobs in the queue, the
number of active servers is W and the arrival MMPP is in the
S-th phase. The control action space is {0, ...,M}, wherein
an action ua turns a servers to the active mode.2 In the case
of a is smaller than the number of current active servers (W ),
the action means to turn W − a servers to the sleeping mode.

We adopt the discrete-time approximation of the continuous-
time MDP, whereby the time is divided into time slots and time
duration of each time slot, i.e., denoted by ∆, is sufficiently
small such that there is at most one event (job arrival,
departure, or arrival phase shift) occurrence in one time slot
[9, Chapter 5.5]. The decision is made at each time slot, and
the time index is conveyed in the brackets. The system states
evolve as follows

W (t+ 1)= a(t), (1)

S(t+ 1) =

{
S̄, if arrival phase transits to kS̄ phase;

S(t), no phase transition happens,
(2)

Q(t+ 1) =


Q(t) + 1, if Q(t) < B and a job arrives;
Q(t)− 1, if Q(t) > 0 and a job is served;

Q(t), otherwise.
(3)

The state transition probability given action ua is (the time
index is omitted for simplicity)

Pr{(S,Q,W )→ (S,Q+ 1, a)} = λS∆1(Q < B). (4)

Pr{(S,Q,W )→ (S,Q− 1, a)} = aµ∆1(Q > 0). (5)

Pr{(S,Q,W )→ (S̄, Q, a)} = σSS̄∆, S̄ ∈ NS . (6)

Pr{(S,Q,W )→ (S,Q, a)}
= 1− aµ∆1(Q > 0)− λS∆1(Q < B)−

∑
S̄∈NS

σSS̄∆,(7)

1Although the arrival MMPP is not a renewal process, the arrival phase
transition is still memory-less based on the MMPP definition.

2Obviously, considering the switching cost, it is better to turn an additional
a −W servers to active mode when there are W (W ≤ a) active servers,
rather than to close some servers and turn on more.

where NS = {1, ..., N}\{S}. All other transition probabilities
are zeros.

We consider the active energy consumption cost, switching
energy cost, and delay cost of the system. The objective is to
minimize the total discounted cost [5], [7], [8], i.e.,

min
a(t)∈{0,...,M}

E

[ ∞∑
t=1

rt−1(max(a(t)−W (t), 0)Esw

+ωQ(t) + a(t)Eon

]
, (8)

where the switching energy consumption is denoted as Esw,
Eon denotes the energy consumption of the server being active
for one time slot, r ∈ [0, 1) is the discount factor which reflects
how important the immediate cost is, and the tradeoff between
delay and energy cost is represented by ω. Although only the
server start-up energy consumption is considered for switching
energy cost based on real systems, the inclusion of shut-down
cost would not affect the results since a start-up is always
followed by a shut-down to complete a busy cycle.

III. OPTIMAL POLICY STRUCTURE

In Theorem 1 of the work by Leng et al. [8], it is proved that
the optimal policy with IPP arrival is a hysteretic policy, i.e.,
if the policy chooses to switch to a better mode, then it would
stay in that mode if it is already in the mode. The extension of
the hysteretic property to the MMPP case is straightforward
given the work by Hipp and Holzbaur [6, Theorem 1] and by
examining the switching cost function which is defined as

s(W (t), a(t)) = max(a(t)−W (t), 0)Esw. (9)

It is conjectured by Leng et al. [8, Conjecture 1] that the
optimal policy for IPP arrival is also a monotone policy, i.e.,
given S(t) the optimal action a∗(t) , f(S(t), Q(t),W (t))
is non-decreasing with Q(t). Consequently, assuming the
conjecture is upheld, it is shown that the optimal policy for IPP
arrival is a threshold-based policy, which is described by the
active and sleeping thresholds at ON and OFF phases of IPP,
respectively. In what follows, we not only settle the monotone
conjecture, but also extend to MMPP arrival case, and thus
prove the optimal policy with MMPP arrival and multiple
servers is queue-threshold-based.

Theorem 1: The optimal policy to the formulated MDP is
a monotone policy, i.e., ∀ S, W , and Q1 ≥ Q2,

f(S,Q1,W ) ≥ f(S,Q2,W ). (10)

Proof: The main technique to prove the theorem is
inspired by the proof of Theorem 1 in the work by Lu and
Serfozo [5]. However, the arrival process is Poisson-based
and the cost-to-go function is required to be submodular [5].
In fact, it can be shown through numerical simulations that
the cost-to-go function with MMPP arrival is, in general, not
a submodular function. To address this issue, we present a
stronger result in Lemma 1 (Appendix) which indicates that
only a partial submodular condition is sufficient, i.e., it suffices
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that the cost-to-go function is submodular with respect to Q
and a. Define the cost-to-go function as

Vt(S,Q,W ) = min
a∈{0,...,M}

{s(W,a) + wt−1(S,Q, a)}, (11)

wt(S,Q, a) = ωQ+ aEon + r

 ∑
S̄∈NS

σSS̄∆Vt(S̄, Q, a)

+λS∆1(Q < B)Vt(S,Q+ 1, a)

+aµ∆1(Q > 0)Vt(S,Q− 1, a)

+

(
1− aµ∆1(Q > 0)− λS∆1(Q < B)

−
∑

S̄∈NS

σSS̄∆

Vt(S,Q, a)

 , (12)

and define

ut(S,Q,W, a) , s(W,a) + wt(S,Q, a). (13)

To prove Theorem 1, we will first show that Theorem 1 is true
in a finite horizon of length T by induction. The generalization
to infinite horizon follows standard methods as shown by Lu
and Serfozo [5, Theorem 2]. In particular, we will show that
the following statements are valid.

(i) The optimal policy is non-decreasing in Q.
(ii) ∀S, t, and Q1 ≤ Q2, W1 ≤ W2, Vt(S,Q2,W1) −

Vt(S,Q1,W1) ≥ Vt(S,Q2,W2)− Vt(S,Q1,W2).
(iii) Define V ′t (S,Q,W ) = Vt(S,Q+1,W )−Vt(S,Q,W ).3

Then ∀t, S and Q, 0 ≤ V ′t (S,Q, 0) ≤ V ′t (S,Q+ 1,M).
Induction basis: For t = 1, the one-step cost-to-go function
is

V1(S,Q,W ) = min
a1∈{0,...,M}

{max(a1 −W, 0)Esw

+ωQ+ a1Eon} . (14)

It is obvious that the optimal control action a∗1 to minimize
V1 does not depend on Q. Therefore, (i)-(iii) are satisfied with
equality.
Induction steps: Suppose (i)-(iii) are valid for k ≤ t. Then,
for ∀a ≤ b, and S,

w′t(S,Q, b)− w′t(S,Q, a)

= r

 ∑
S̄∈NS

σSS̄∆(V ′t (S̄, Q, b)− V ′t (S̄, Q, a))

+λS∆(V ′t (S,Q+ 1, b)− V ′t (S,Q+ 1, a))

+aµ∆(V ′t (S,Q− 1, b)− V ′t (S,Q− 1, a))

+µ(b− a)∆(V ′t (S,Q− 1, b)− V ′t (S,Q, b))

+

1− aµ∆− λS∆−
∑

S̄∈NS

σSS̄∆


·(V ′t (S,Q, b)− V ′t (S,Q, a))

]
≤ −rµ(b− a)∆(V ′t (S,Q, b)− V ′t (S,Q− 1, b)), (15)

3Increment of other functions over Q is denoted identically.

where the inequality is based on the induction hypothesis (ii).
Combining the induction hypotheses (ii) and (iii), it follows
that

V ′t (S,Q− 1, b) ≤ V ′t (S,Q− 1, 0) ≤ V ′t (S,Q,M)

≤ V ′t (S,Q, b). (16)

Therefore, we obtain w′t(S,Q, b)−w′t(S,Q, a) ≤ 0, and it fol-
lows that ut(S,Q,W, a) satisfies the conditions in Lemma 1.
Hence, (i) and (ii) are proved by noticing that the minimization
operation preserves partial submodularity.

To prove (iii), we obtain

w′t(S,Q, 0)− w′t(S,Q+ 1,M)

= r

 ∑
S̄∈NS

σSS̄∆(V ′t (S,Q, 0)− V ′t (S,Q+ 1,M))

+λS∆(V ′t (S,Q+ 1, 0)− V ′t (S,Q+ 2,M))

+µM∆(V ′t (S,Q+ 1,M)− V ′t (S,Q,M))

+

1− aµ∆− λS∆−
∑

S̄∈NS

σSS̄∆

 (V ′t (S,Q, 0)

−V ′t (S,Q+ 1,M))

]
≤ −rµM∆(V ′t (S,Q,M)− V ′t (S,Q− 1,M)) ≤ 0, (17)

where the inequality stems from combining the induction
hypothesis (ii) and (iii). It follows that V ′t+1 is non-negative
since V ′t is. Denote

x , f(S,Q,W ), y , f(S,Q+ 2,W ), (18)

we obtain

V ′t+1(S,Q, 0)

= min
a
ut+1(S,Q+ 1,W, a)−min

a
ut+1(S,Q,W, a)

≤ ut+1(S,Q+ 1,W, x)− ut+1(S,Q+ 1,W, x)

= w′t(S,Q, x) ≤ w′t(S,Q, 0) ≤ w′t(S,Q+ 1,M)

≤ w′t(S,Q+ 1, y) = u′t+1(S,Q+ 1,M, y)

≤ V ′t+1(S,Q+ 1,M). (19)

Therefore, the hypothesis (iii) is proved. Note that the corner
cases wherein Q = 0 or Q = B can be dealt with appropri-
ately, and for brevity the details are not shown. With this, the
induction proof is completed.

IV. NUMERICAL RESULTS

In this section, the MDP is solved numerically to obtain the
optimum queue thresholds. Each time slot is 10 milliseconds.
Two arrival phases are considered in the MMPP, where the
arrival rates are 5 (ON phase) and 0 (OFF phase) jobs per
second, respectively. The definition of ON and OFF phases is
identical with that in the IPP; jobs only arrive during the ON
phase based on the Poisson model; the duration of both phases
obeys i.i.d. exponential distributions. The phase transition rates
are 0.5 s−1 and 0.25 s−1 in ON phase and OFF phase,
respectively. The mean service time for a single server is
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Fig. 1. Optimum queue thresholds for turning on servers.
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Fig. 2. Optimum queue thresholds for turning off servers.

0.12 s. The number of available servers is 15. The buffer size is
250. The turn-on energy consumption of a server is 200 joules.
The energy consumption of an active server in a time slot is 2.5
joules. The tradeoff parameter ω = 0.2. These parameters are
obtained from realistic cellular systems [8], [10]. The discount
factor r = 0.999. The solution to the MDP is obtained by
standard policy iterations over infinite horizon. In Fig. 1, it
is shown that the optimum turn-on queue thresholds, both in
ON phase and OFF phase, are almost linear with the number
of active servers. The threshold to turn on one server in OFF
phase is smaller than that in ON phase, indicating that the
optimal action in OFF phase with no active server is to turn on
service sooner to reduce the delay cost. The gap between other
thresholds in ON phase and OFF phase, which correspond
to turning on more than one servers, is constant. Moreover,
servers are turned on more aggressively in ON phase with at
least one active servers. The turn-off thresholds are shown in
Fig. 2. It is observed that the optimal action is not to turn
off all the servers until the queue is emptied in OFF phase.
Compared with the turn-on thresholds, the optimal action is to
turn off servers only when the queue length is relatively quite
small, and the servers are turned off very quickly when the

queue length decreases beyond a certain point (about 10 jobs
in Fig. 2).

V. CONCLUSIONS

In this letter, we prove that the optimal sleeping mechanism
with MMPP arrival and multiple servers is queue-threshold-
based. This result settles a conjecture in the literature and ex-
tends to MMPP and multiple-server scenario. Through numer-
ical results, it is shown that the optimal sleeping mechanism
with multiple servers exhibits a slow activation, rapid and late
(only when the queue length is quite small) shutdown feature.

APPENDIX

Lemma 1 (Partial submodular condition): If ∀ S, W , t, and
Q1 ≤ Q2, a1 ≥ a2,

ut(S,Q2,W, a1)− ut(S,Q1,W, a1)

≤ ut(S,Q2,W, a2)− ut(S,Q1,W, a2), (20)

the optimal policy is a monotone policy.
Proof: Given ∀ S, W , and t, define

g(Q) , arg min
a∈{0,...,M}

ut(S,Q,W, a). (21)

Then ∀ Q1 ≤ Q2,

ut(S,Q1,W,min[g(Q1), g(Q2)])− ut(S,Q1,W, g(Q1))

= ut(S,Q1,W, g(Q2))− ut(S,Q1,W,max[g(Q1), g(Q2)])

≤ ut(S,Q2,W, g(Q2))− ut(S,Q2,W,max[g(Q1), g(Q2)])

≤ 0. (22)

This implies that min[g(Q1), g(Q2)] = g(Q1), and thus
g(Q1) ≤ g(Q2).
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