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Abstract

The recent advancement in semiconductor technologiegidmmore and more smart devices
everywhere around us. Many emerging networks of such deegieenvisioned to bring forward
the era when we can gather information from everywhere,gg®¢hem in real-time to make
better decision on our activities, and tap into the necgdgsfmrmation from anywhere, whether
at a standstill or moving around. In this dissertation, wasider two such promising networks
— Wireless Sensor Networks (WSN) and Vehicular Networks -se®e how they can effectively

share the information they produce and consume.

First, we investigate how to search efficiently for the iating information generated by mon-
itoring the physical world through WSNs and look into the liwation of our findings. We
derive mathematical models for communication costs inrmétion sharing (through search and
replication) and optimize the energy-wise communicatiost€ when the WSN operates as a dis-
tributed database system. The optimization results areuked to reveal the scaling laws of the

network in terms of energy requirements.

As a second study we investigate how to effectively dissateiover a vehicular network the in-
formation (e.g. multimedia files) that a group of people wantonsume while they are moving

Xi



around in the vehicles. We consider a hybrid network of Meki which vehicles are equipped
with two kinds of radios: a high-cost low-bandwidth, lorepage cellular radio, and a free high-
bandwidth short-range radio. We formulate an optimizapooblem to maximize content dis-
semination from central servers to vehicles within a precgheined deadline while minimizing
the cost associated with communicating over the cellulaneotion. We mathematically ana-
lyze the dissemination process and derive a closed-forimapsolution. We also develop a
polynomial-time algorithm to obtain the optimal discretdusion better suited for practice and

verify our results using real GPS traces of taxis.
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Chapter 1

Introduction

It has been of great interest for people to obtain, sharecansume useful information efficiently
and effectively. Thanks to the recent advancement in serdictior technologies, we have a
plethora of smart devices everywhere around us. In develgpentries, people are starting
to have multiple computers including portable laptop cotamuand mobile handheld devices.
It is no longer in the realm of dreams or science fiction thatoar gather information from

everywhere, process them in real-time to make better aectsi our activities, and tap into the

necessary information from everywhere, whether at a st#iratsmoving around.

There are two emerging networks of devices that may bringdat the realization of this vision;
one is the wireless sensor network (WSN) and the other is¢he&ular network. The wireless
sensor network is a new paradigm of collecting informatiamT environments and monitoring
the physical world, and the vehicular network is a new dontaivard the world of ubiquitous

connectivity to virtual information.



In this dissertation we consider mainly two problem domamshese two types of emerging
networks. First, we investigate how to search efficientlyifiteresting information generated by
monitoring the physical world and look into the implicatioh our findings. We optimize the
communication search costin WSN and derive the scaling ddyse network in terms of energy
requirements. Second, we investigate how to effectivedgatninate over the vehicular network
the information that a group of people want to consume wlhigy tare moving around in the

vehicles.

In this chapter, we introduce wireless sensor networks ahdtular networks, and their relevant
preliminaries for this dissertation. Thereafter, we pnéske summary of our contributions and

the organization of this dissertation.

1.1 Wireless Sensor Networks

Recently, semiconductor technology has been greatly deedl so that devices of tiny form
factor can be equipped with general processors, multipless, wireless communication capa-
bilities, and other features that previous sensors couldhfford to have with such small form
factor. Because of their small footprint and inexpensivstcih has been envisioned to deploy
a large number of such devices to gather, process, and détieegrained information on the
interested environments. The network of these sensinge®es referred to as Wireless Sensor

Network (WSN) [8], and it has been under extensive studydemeyears.



A sensor device in the wireless sensor network typically matiple sensors for monitoring
surroundings like temperature, humidity, pressure, a@mulgght, and vibration; a low-power
embedded microprocessor for processing local sensingadatgerforming advanced computa-
tions like data compression and aggregation; and low ddtatlow-power wireless transceivers
for cooperating with other nodes and delivering the datasdme cases, it may have actuators
such as speakers, buzzers, and LEDs to notify users directlgcalization system like Global
Positioning System (GPS) for geotagging the captured dBite sensor device is powered by
small batteries with supply voltage as small as 3V becausigeafform factor and their intended

independence to the power grid so that WSN may be deployadhfarus environments.

For example, Tmote Sky is one of the popular devices in the \i&Sdarch community. It has
a 16-bit TI MSP430 F1611 RISC microcontroller which featutew active and sleep current
consumption, a Chipcon CC2420 radio module for the IEEE BR2.compliant wireless com-
munication with 250kbps data rates in the 2.4GHz frequeanyinternal Inverted-F microstrip
omni-directional antenna that may reach up to 50 metersoindwr 125 meters outdoor, and
several integrated sensors for temperature, humiditylightidetection. Its storage consists of

10KB RAM and 40KB Flash memory.

Many applications of WSN consisting of such devices havenl@eposed, implemented, and
studied to examine the usability and potential of sensorowds and to find out challenges and
their solutions in various areas. The applications inclind@strial structure monitoring [69, 87,
96], habitat monitoring [57, 85, 112, 113, 116, 122, 136}i®mment monitoring [38, 54, 116,
124, 133], structure health monitoring [29, 67, 91, 111inoee surveillance [14, 55], personal

health monitoring [40, 86], and so forth.



The wireless sensor networks are envisioned to be largedsaamposed of thousands, millions
of the aforementioned tiny form-factor devices. Such laggle is considered to obtain the fine
resolution monitoring to the extent that traditional sagsapproaches would not imagine. How-
ever, this large scale and the form factor of each devicas itheir own fundamental constraints

and challenges:

Limited energy: Each sensor device operates typically with small battevieigh are not re-

plenishable except in some rare cases where the deviceswezqu by renewable energy such
as solar power through solar panels. Even using energy $targetechnologies, devices face
limited energy because of the natural fluctuation of the wettde energy and the small buffer
for each device. The energy constraints require WSN to eneixiely energy-efficient. Sensors
are normally put into sleep mode most of time minimizing thokity cycle. Computation and

communication should be energy-aware and minimize unsacg®perations. Otherwise, the

lifetime of the network will be prohibitively short.

Limited computing power: The microcontroller in the device has limited computing pow
due to their small form factor and limited energy supply. sTimplies that it is not realistic to
apply highly sophisticated techniques (for data compoessiaggregation, or classification) that
demand intensive computation. The protocols and algosdtehould be designed to be simple
and effective for WSNs exploiting the collaboration of niplk devices, rather than relying on

(extensive) computation on a single node.



Limited communication capability: The wireless transceiver in the sensor node is low-power
and low-data rate. The energy consumption of wireless camgation is much larger (in orders
of magnitude) than that of computation. The energy cost $prdportionate with respect to
the communication range: r2 (short range) vs.r* (long-range). In addition, due to dense
deployment of nodes for fine-resolution monitoring, it i®ded to reuse the frequency spatially
avoiding the excessive packet collisions. Therefore, trarnunication range of each node is
typically short. The communication strategy of WSNs shdugdcarefully designed with these

constraints in mind.

Hostile environment: Many applications of WSN involve monitoring various enviments
that tend to be highly dynamic, dangerous, or unfriendlyumhn intervention. In these envi-
ronments, it is not uncommon that nodes fail due to energletiep, overheat, HW/SW crashes,
or natural loss. In addition to large number of sensor nodesh hostile environments make
it almost impossible to give close attention to individuabes, making unattended autonomous

operation a prime design goal of WSN.

Storage constraints: Each node has its own storage for program memory and data memo
Although it is not as critical as other constraints thankshi advances in the semiconductor
technologies, the size and speed of memory are relativelieldl. More critical problem than in-
dividual storage constraints is about the data loss indlryenode failure. Proper data replication

strategies have to be employed to prevent the complete lakgta



1.2 Storage Models and Query Types in WSNs

In operating a wireless sensor networks, there are sevatahwes to answer users requests for
sensed information. One popular way is that every node im#ieork sends its sensed data
to one or a few sink nodes which are connected, potentiatlyutih another network such as
Internet, to more powerful machines with enough storageuregs. With this scheme, every
users’ queries can be resolved in these nodes locally, &gutbries take no energy in any node
in the WSN while processed. This scheme is called a Extetoah@e scheme [42, 107]. Because
each of the sensed data has to be delivered to the exterral enaly message incurs the cost of
O(y/n) whenn number of sensor nodes are deployed uniformly in a 2D arehoidgh external
gueries cause no cost, the queries generated by interrsirsardes experience the same cost of

O(4/n) to reach the external storage.

Another way is to use what is called a Local Storage scheméiisrscheme, each node keeps
its sensed data, or what we call event information, in itgll@torage and the query should be
propagated through the network to the desired node of it8enss Although this scheme does not
incur any energy consumption for transferring its sensea tdesome remote machine, the search
communication cost of queries can be substantial, espegibén the network has no information
on which node having which data. Each of the external quedases the communication cost of
O(y/n) when the location of the target local node is estimated wigh hccuracy. In the case of
no information on the location, it may cause the cosD¢f) if it resorts to flooding for search.
Another problem is associated with node failures. When a@enode stops working due to

6



either failure or battery outage, the data stored in the fackethe danger of their unrecoverable

lost.

Data-Centric Storage [42, 107] is the scheme where the dafaa is stored either locally or at
one or more remote locations within the network. Event imfation is obtained through queries
that are issued on an on-demand basis. With this schemerab&em of unrecoverable data
lost in the local storage scheme can be greatly enhancedideethe data no longer depends
on a single node’s reliability. The communication cost toresta copy of an event depends on
the path length from the detector to the chosen carrier ®rcthipy. The cost of query depends
on many factors such as querying schemes, the number ofscopibe interested events, the
spatial distribution of the event copies, etc. And the qingryost is one of the subjects of this

dissertation and investigated in Chapter 3.

We focus ondata-centric wireless sensor netwottket employ the data-centric storage scheme
because it is inherently more scalable that others espeeiben the network is large-scaled. It
is more scalable also when most of the sensed informatioatisssential, or there are multiple
sinks that may need different subsets of the sensed infmmat different times. Moreover,
the External Storage scheme has the hot-spot problem ndatdie sink node, and the Local
Storage scheme has the same problem near and at the souecefrezth event. However, the
data-centric network can avoid these problems in some casdsven can be operated success-

fully with an arbitrary number of nhodes under some condgion

In data-centric wireless sensor networks, queries candssified in many ways, as follows:



Continuous queries vs. one-shot queries: Continuous queries request a long duration flow
of packets for their responses while one-shot queries stquéew number of packets for the
response. The flow of response for continuous queries carbbekato-back stream of packets

(e.g. multimedia data) or a series of periodic reports fragivan sensor to the querier.

Directed Diffusion proposed in [60, 61] is particularly @iewith continuous queries because
gueries can be used to create the gradient which a long sesjudrresponding packets can
efficiently follow to reach the querier. In order to save tinergy expenditure, in-network com-

pression or muti-node fusion can be adopted for the systéemntinuous queries.

Random walk [9, 79, 114] mechanisms can be used to resol@esome-shot queries with negli-
gible overhead and minimal system complexity. Sadagepah[102] have proposed ACQUIRE
mechanism to efficiently deal with the one-shot queries. QQAJIRE, an active query is resolved
piece-by-piece from cached local information of each fodea as it goes through the network.
Once the query has been fully resolved, the complete onersbponse is sent back directly to

the querier.

Queries vs. complex queries: While a simple query requests a response of a single a#tribut
type (e.g. temperature) from a single sensor node, a complery is associated with a combina-
tion of multiple simple sub-queries, or calls for aggregafermation (e.g. average temperature)

across multiple nodes.

Historical queries vs. real-time queries: Historical queries are the queries for historical data
from the network, for example, “What was the maximum temjugeaover region A yesterday?”

8



The corresponding data can be stored in the nodes in thestéer region, or even other nodes
when the sensed data in the network is replicated over thveonetypically for the higher ro-
bustness and easier accessibility. Real-time queriegségata from the current moment, which

usually makes it harder for the network to post-process tfuernetter functionality.

Because one of our goals in this dissertation is to derivdihdamental scaling laws of data-
centric WSNs, we focus on rather less overhead-incurripg of queries that is of the simple
historical one-shot queries. We investigate their comigation costs in terms of energy expen-
diture, and the interaction between the communication aodtthe storage requirement in the
optimum regime of operation. Note that the energy and s&aag among the precious resources

in WSNSs, as we discussed in Section 1.1.

1.3 Vehicular Networks

In Chapter 6, we consider the problem of efficient disseronaif some delay-tolerant content to
a group of vehicles that share an interest in this conterg.dBtay-tolerant contents can support a
variety of services, ranging from traditional traffic infioation and weather forecast to futuristic
mobile advertisement and music sharing. Such applicdensgces have been envisioned by

industry as a key driving force for future vehicular netwefk2].

One straightforward way to build a network for vehicles isefquip them with cellular radio
transceivers to use the cellular data networks. The proieatthough they are widely deployed

9



and becoming more spectrum-efficient with the ongoing ttamsto 4G systems, cellular in-
frastructure networks are feeling the strain of rapidlyréasing data traffic due to new mobile
platforms and applications. It is widely predicted that tfedume of mobile data consumed by
users will grow exponentially in the next decade. For exaniphas been estimated in [32] that
the global mobile data traffic will increase from 90,000 Tsttes per month in 2009 to 3,600,000
Terabytes per month in 2015, resulting in a dramatic ineeds39 times in 6 years; similarly,
AT&T reported that its wireless data usage jumped almoA®® from 2006 to 2009 [90]. At
the same time, it is also estimated that the growth of celimrastructures might fail to keep
up with the pace of mobile data growth [26]. The outcome ofomegntially growing mobile data
significantly surpassing the limited supply of cellularalptpe is being vividly termed adobile
Data Tsunami As an early sign of mobile data tsunami, the recent eventridaly introduced

smart phones overloaded cellular systems in major citieswed documented [90].

The practical bandwidth constraints in cellular systenesrat only due to limited wireless spec-
trum but also because of limited capacity of backhaul; whilereasing the cellular capacity
through additional spectrum or backhaul infrastructurpdssible, it will incur significant cap-
ital and operational expenditure, further increasing thst of cellular access charged to cus-

tomers [97, 115].

One way to mitigate the dependence on the ever-crowded gehsixe cellular bandwidth is

to employ peer-to-peer communication network among vehielind use the two networks ju-
diciously. Due to recent development of the semicondu@ohrologies we can imagine near-
future vehicles that are equipped with two different typesiiveless radios — a high-usage-cost

10



low-bandwidth, long-range cellular radio, and a free higimdwidth, short-range WiFi-like ra-
dio. Recent trends in the automotive industry point to anrgmg age of hybrid communication
networks of vehicles consisting of cars equipped with betlutar radio devices as well as short
range inter-vehicular radios such as those based on IEEELBYRVAVE (wireless access for

vehicular environments).

Therefore, we contend that, as the cellular bandwidth besamcreasingly crowded and more
expensive, hybrid protocols that synergistically comtiirect cellular access along with store-
carry-and-forward routing through peer-to-peer commation will be proved as a bandwidth-

efficient and cost-effective way for offloading the often gested cellular infrastructure.

1.3.1 Delay-Tolerant Networks for Sparse Vehicular Netwoks

The architecture and protocols of today’s Internet have liwéghly successful in broad classes of
networks. Those classes of networks share often implisitragtions that are important to their
overall performance. Some of these key assumptions aramhend-to-end path exists between
a data source and its peers, that the maximum round-trip bete@een any node pairs in the
network is not excessive, and that the end-to-end packet ghabability is small. The existing
TCP/IP-based schemes may operate poorly in the networkeevgloene of the assumptions are
violated, particularly, for very long delay paths and frequnetwork partitions. As pointed out
by [37], challenged networkare under such conditions, and becoming important, and rogay n
be well served by the current end-to-end TCP/IP models. $helenged networks include

11



terrestrial mobile networks (e.g. vehicular networksptexmedia networks (e.g. interplanetary

Internet), military ad hoc networks, and vehicular netvgoak described in more detail below.

Terrestrial Mobile Networks: These networks have as important components mobile nodes
whose mobility can be closely controlled in some networksregarded as an uncontrollable
(unknown) parameter in other cases. While the former nétsvoray be partitioned in a periodic
and predictable manner, the latter networks may becomepestedly partitioned due to the node

mobility or change in signal strength (e.g. RF interferénce

Exotic Media Networks: Interplanetary networks and near-earth satellite comaoatioin net-
works are good examples for this kind of networks. The nétwercharacterized by high la-
tencies with predictable interruption or environmenttioed outage, for example, from weather

changes.

Military Ad Hoc Networks:  Hostile environments are among key features of these nk$wor
The networks can experience frequent disconnections beadumobility, environmental factors,

intentional jamming, or higher priority data traffic.

Vehicular Networks: Most nodes are moving with high speed in these networks. rElsiglts

in a very short-lived communication link between a pair ofles, which makes conventional
routings perform poorly whether they are proactive or tigactSparse vehicular networks [11]
are in an even worse situation. Due to low market penetraifoparticipating vehicles, each

12



node (vehicle) in the communication graph will have very kmamber of neighboring nodes
(even less than one) most of time. This low density causegalgartition in the communication

network besides the issue of the short-lived communicadiidn

These challenged wireless networks are characterizedrbiioation of fragile network connec-
tivity, link error probability, unreliable node longevjthandwidth limitation, or communication
path stability that are significantly worse than converdgiametworks common in the domain of
Internet. The fragile network connectivity incurs endetod disconnection that is often more
common than connection. This is due to high mobility, lowydegcle system operations, or

sparseness of network.

In the challenged networks, the aforementioned issuesftam manifested in the resulting effect
of very large and unpredictable delays for end-to-end comaation. Among such networks,
we call the networks where messages can traverse from a oedether nodever time Delay-
Tolerant NetworkgDTNS) in this dissertation. They are also known as disauptblerant net-
works, or intermittently connected networks particulddy the networks with mobile nodes, in
some literature. Particularly, we focus on wireless détdgrant networks with mobile nodes

because they correspond to vehicular networks that arerohain subjects.

Although full connectivity may not be obtained in the snagisbf DTN at any time, messages
can be delivered to the destination through a sequence gbardient, local forwarding decisions
over time because it is assumed that the sequence of corntyegtaphs over a time interval are
overlapped. This can be easily understood by a simpleriditish. Suppose there are three nodes
A, B,C in anetwork. LinkAB is up at every = 3i,7 € T and down at other times. Likewise,
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link BC'is up at every = 3i+2. In this network, it is obvious that cannot send any message to
C'in a single time slot. However, it is possible to deliver a sagge fromA to C'in 3 time slots:A
sends the message Batt = 3i, thenB waits a time slot and send it t6 att = 3i + 2. Hence,
the message is sent to a (relay) node, gets buffered foivedlatong time, then sent to another

node when the link become up. This forwarding scheme is afddiedstore-carry-and-forward

Authors of [37] have presented one of the pioneering workstthve identified characteristics and
challenges of DTN. They have also proposed a network antbigeand application interface that
structured around optionally-reliable asynchronous agsgorwarding, explicitly considering

limited expectations of end-to-end connectivity and nagurces.

In order to understand the hybrid networks of vehicles werlieed to understand individual com-
munication networks separately. Although the cellulandatworks have sophisticated internals
for radio signal handling, power management, etc., thegtaakmmunication in the MAC layer

and above can be abstracted and modeled relatively simpuke it is nevertheless a point-to-

point communication between a mobile node and its assaciztee station.

Sparse vehicular networks, which are the one of main tafetorks in the dissertation, are one
of delay-tolerant networks when they are deployed at theféivg years. It is because the den-
sity of inter-vehicular network-enabled vehicles will bery low in the early years of adoption.
From [11] the rate of populating vehicular network-enableticles in US transportation system
is at most around 7% per year in the ideal case that all the ebigles are network-enabled. This
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implies that at least 15 years are needed to reach close % hifyket penetration of network-
enabled vehicles. At this point, vehicular networks becomeee like ad hoc networks rather than

delay-tolerant networks.

1.4 Contributions

1.4.1 Optimizing Querying in Data-Centric WSNs

In this study, we first derive closed-form expressions fer épected minimum search energy
cost and replication cost considering data-centric waelsensor networks deployed inda
dimensional area. We use these cost expressions as bdsiotmn we investigate the optimum
data replication strategy, which again is employed to reélelscaling laws. We focus on analyz-
ing the energy costs with respect to two key parameters —izba$the network and the number

of copies of the event information.

We then formulate an optimization problem whose aim is tectgéhe optimal number of replicas
that minimizes the total communication cost of querying atatage in terms of energy. We
focus on the case in which replicated event informationasest at multiple storage points in the
network in a randomized manner. Multiple replicas of an éwam be either placed carefully
at predetermined locations or randomly. The former apgramexemplified by hash-based data
centric storage techniques introduced in Section 2.1.1candbe efficient since queries can be
sent directly to the storage location. However, randomitedage of replicated information is
justified in some scenarios when there is a high overhead &mtaining shared predetermined
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location information across the entire network (due to dyica such as changes, movements and
failures of nodes in the network). Randomized storage camlbvide for a more load-balanced
storage over time, and, in some cases, provide greaterityeloymaking it difficult to identify

and target nodes containing critical information.

With unstructured, randomized storage, however, the dgugnyodes must resort to some form
of blind search. We focus on expanding ring queries; theifop@mance depends on the amount
of replicas (see Section 2.1.2 for more details). We alsorasshere can be limited storage at
each sensor node in some networks. In such scenarios, th@zation must explicitly consider

storage constraints. We therefore consider both constiaamd unconstrained versions of this

optimization problem.

We use this optimization problem as a tool to identify theditons, in terms of the numbers of

events and queries, under which query resolution can berpeefl in a scalable manner despite
constraints on energy and storage. It turns out, though thleastorage constraints are less re-
strictive than the energy constraints. We therefore firgivdehe scalable operating conditions
using an storage-unconstrained version of the optimizadgioblem, and then use the constrained

version to investigate in more detail the behaviors of thevaek as its size grows.

We find that operating a network in a scalable fashion esabntiequires that the traffic load

due to additional events and queries be outweighed by theorement in energy and storage
resources obtained as the network size increases. Notéhthataling of event and query ac-
tivity with network size is application specific — e.g., in nyaapplications there may be only
a constant number of queriers regardless of the network Isigghe number of events detected
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grows linearly with the covered area; in other applicatiaghe number of querying nodes may
increase in some fashion with the network size, while thetsveéetected remain constant. Thus,
our results suggest that only certain types of applicatiamesnherently scalable, while others are

not.

Another interesting finding is that networks deployed inhlgigdimensions are inherently more
scalable. Thus, 3D uniform deployments are inherently nsoegable than 2D uniform deploy-
ments, which in turn are more scalable than 1D uniform depkts. Intuitively, this happens
because in higher dimensions the same number of nodes cackedpwithin a smaller diameter,

resulting in a lower average energy consumption per stoegyooperation.

1.4.2 Optimizing Information Dissemination in Vehicular Networks

In this study, as a first step towards understanding the patdrenefits of using delay-tolerant
networks to offload the cellular networks, we scope our meseimterest only to highly mobile
vehicular networks. Particularly, we consider the problehefficient dissemination of some

delay-tolerant content to a group of vehicles that share@nést in this content.

We assume that vehicles in the future could be equipped withdifferent types of wireless
radios — a high-usage-cost low-bandwidth, long-rangauleelradio, and a free high-bandwidth,
short-range WiFi-like radio. In light of the fact that cdflu radios in cars would allow only
for unicast communication, and therefore incur a signifiearit per-vehicle charge for content
download, the use of the free short-range radio to assigaidh a broad dissemination process
becomes economically compelling. We formulate in this wamkoptimization problem with the
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goal of maximizing the number of vehicles that obtain thetentwithin a given deadline while

minimizing the expense of using the cellular infrastruetur

We analyze mathematically the content dissemination goosing differential equations, and
derive the optimum solution for the problem in closed-forgndolving a convex optimization
problem. We then investigate the behaviors of the systemrind under various optimal param-
eter settings to understand the key trade-offs. We alsol@@eepolynomial-time algorithm to
obtain the practical optimum solution to overcome the naegrality limitations of our closed-
form solution. Finally, in order to validate our analysisaimore credible setting, we have used a
real large-scale vehicular mobility trace from a large mdtitan area (Beijing) in our study, one
of the first studies to do so (a methodology adopted in anaotwmt study [25]). We conclude
that content can be spread effectively to most vehiclessa@aeity in a reasonably timely manner

with very low-cost use of the cellular infrastructure.

1.5 Organization

We present background of relevant studies in the literdatuthapter 2. In Chapter 3, we derive
the expected communication costs of search and replicatiavireless sensor networks. We
use the developed cost models to optimize the number otesptdo minimize the expected cost
for the expanding ring search and validate our results vatiistic simulations in Chapter 4.
Then, we investigate the scaling laws of data-centric wglsensor networks with respect to
the bounded energy in Chapter 5. In Chapter 6, we turn to thblgm of efficient content

dissemination in vehicular networks. Finally, we conclid€hapter 7.
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Chapter 2

Background

We present as background the studies in the literature teatetevant to this dissertation. We
introduce querying schemes in the data-centric WSN in 8e&il. The analysis studies for the
qguerying schemes are introduced in Section 2.2. Scalingtages for wireless sensor networks
are introduced in Section 2.3. While the aforementionedistuare related to our WSN study
presented from Chapter 3 to 5, the following sections areveglt to our vehicular networks
study in Chapter 6. Section 2.4 introduces routing prowéml delay tolerant networks (DTNS)
that include the sparse vehicular networks. Section 2rrbduces several mobility models in
the literature that are relevant to our study. In Section g discuss related techniques on the
content dissemination in vehicular networks. Relatedaneseon hybrid communication network
is discussed in Section 2.7. Finally, we discuss about te#ipoing of our studies in Section 2.8.
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2.1 Querying Schemes in Data-Centric WSNs

The querying strategies in wireless sensor networks camdaally classified based on whether
the network maintains specific structure for efficient searmot. In structured querying schemes
for which specific structures are maintained in the netwarkash or index is used so that the
guerying node knows exactly where the nearest copy of theestgd event information can be
found. On the other hand, in unstructured querying schethesjode issuing a query does not
know in advance where any copy of the requested event intmmaan be found. We refer to
the network with the unstructured querying scheme asratructured networkthe other one
as astructured network In this section, we present several prominent queryingsas in the

literature for both structured and unstructured networks.

2.1.1 Structured Querying

There have been many interesting querying schemes thiaeditile hash function or index to

decide the location of generated data.

Li et al.[78] have proposed a structured querying mechanism callbtidbdata-centric storage
scheme that is based on hash techniques, especially fordmknsional range queries. The
mechanism uses distributed indexes for multi-dimensidag derived from the geographic em-
bedding of a classical index data structure, then use theRGfe8graphic routing algorithm to
direct the queries. They have shown that DIMs scal®agn), for insertion and query costs,
with the network size: under several query distributions.
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Ratnasamyet al. [98] have proposed Data-Centric Storage (DCS) mechanisinstiores data

within the sensor network in a structured manner in the sémseit requires some common

knowledge for every node. In their mechanism sensed datatared at nodes determined by
the name associated with the data, using Geographic Hasé (GHT) system that they have

developed for DCS. GHT system hashes keys (e.g., eveni)tyggeggeographic coordinates and
store the key-value pair at the sensor node near the gedeayatgraphic coordinate. Hence, it
is required that every node knows the predetermined hashidms and the geographic location
of each and every node in the network. When these requirenaeatsatisfied, this method can
eliminate the flooding phase in certain data-centric rgugirotocols. Particularly, DCS is shown
by the first-order analysis to be preferable for historicrgpeewhen WSN is large and there are

many detected events among which many would not be quened fo

DIFS [43] is the spatially distributed index system, buiittop of GHT, to provide efficient index

construction and range searches. In order to support ramgeeg, its hash system takes into
consideration the location of detecting node in additionthi® event value and name in deter-
mining the storage node for the event occurrence. One okiigd goals is to provide the load
balancing on communications over index nodes so that theonletifetime may be extended. In

order to achieve this, DIFS decreases the value range ebbgran index node when the index
node covers wider spatial area. In DIFS, a multiply rooteztdrichical index is constructed to
balance the amount of information that each node in the isttexture is responsible for queries.
Each node stores event information for a particular rangdetécted values within a particular
geographic region. And, higher-level nodes cover smadlege of values from larger geographic
regions while lower-level nodes cover a wider range of valfuem a smaller geographic region.
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2.1.2 Unstructured Querying

For one-shot queries in unstructured networks there aee tinportant querying mechanisms:
flooding, controlled-flooding (using expanding rings), aaddom walks. These querying mech-
anisms have been extensively studied in the context of @ggesensor networks [2, 28, 30, 61,

83, 84, 102, 105].

Flooding is a simple unstructured querying scheme thatseedinformation at all about the
existence and location (if it exists) of the target inforimat In this scheme query packets are
flooded to be delivered to every node in the network. Uponiviage the query packet, each
node retransmit the packet to its neighboring nodes thrdmgadcast, if the node does not have

information that the query desires. If it does, the node s¢ie query answer to the querier.

Flooding is a basic operation and has many applicationssiouree discovery in wireless net-
works. Examples include route discovery in several rougirmfocols of wireless networks [62,

95], sensor discovery in WSNs [61], and service discovenyiieless ad hoc networks [126].

With flooding it is guaranteed to find the target informatidrnit(exists) and the shortest path to
it, if there is no loss of packets. It can also support veryaigit networks such as networks with
high nodal mobility. On the other hand, it can waste a great deresources such as bandwidth
and energy. When the network is dense, it can cause highrtmrteind interference that, in turn,
may cause excessive retransmission eating up the bandu#deh if the target node is nearby, the
query is flooded to the network because there is no easy wagpdte flood once it is initiated,
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which makes every node pay the transmission energy costefbine, the communication cost is

alwaysO(n) regardless of the target location.

Flooding may be controlled by limiting the number of hops Isat the flooding packet will not
be transmitted beyond the maximum number of hop counts,strigting the flooding distance
(when the location information is available to nodes) sa tha query is contained in a certain

geographical area.

Johnsoret al. [63] considerexpanding ringmechanism for their famous DSR protocol for the
target discovery while enhancing the resource inefficiasfdjooding. Expanding Ring Search
(ERS) mechanism issues a sequence of controlled floodimg &rguerier. The radius of flood
(usually expressed as the maximum hop count from the issue3tricted to cover only a part of
network in the controlled flooding. In ERS, the radius is @aging after each round of flooding

if the previous round fails to resolve the query.

Any expanding ring search can be characterized as a vecto{u, us, ... u,, } that describes
the sequence of successive TTL values for controlled flapdineach step. For example, let
u = {1,5,10} for a network where the maximum hop count is 10. Then the eXpgnring
search would proceed as follows: first the nodes within 1dmepsearched for the event through
a controlled flood with TTL value of 1. If no copies of the eveme located in this first step,
then all nodes within 5 hops are searched for the event thradgrger controlled flood. If still
no copies of the event are located in the second step, theadls in the network (within 10
hops) are searched. If at any step at least one copy of thé¢ isMenated, the search terminates
successfully at that step.
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Because ERS can stop at a certain round without coveringrttie enetwork, it can save the
network resources especially the target is close to thaequétowever, it may cause more waste
if the sequence vector is poorly configured and the targeidatéd far from the querier. It is

because the nodes near the querier have to be covered mtitigls as ERS progresses.

Chenget al. [30] have shown that two-ring and three-ring schemes canceethe search cost
compared to a single attempt of pure flooding, and have peovédgeneral formula to determine
good parameters for the two-ring and three-ring hop-bade8 §chemes. They also have con-
ducted a simulation study of ERS and claimed that it can phtpito 10% energy saving without
data caching/replication, compared to the pure floodinglevthe delay increases significantly.
However, the optimum sequence vector is not identified ailidad in their study. Chang and
Liu [28] have developed a dynamic programming solution ttaipbthe optimal TTL sequence
vector that minimizes the expected search cost in termsaosinission number when the event

spatial distribution is known a priori.

Intuitively, the performance of a TTL-based expanding segrch improves with additional repli-
cas. When there are more randomly placed replicas in a netiro likelihood that the event
being searched for is located within a smaller number ofsstelpse to the sink, becomes higher.
However, this reduction in the expected search energy coses at the expense of an increased

energy cost for replication.

Random walk-based schemes have been considered in tlauliteas an alternative way to the
flooding-based schemes. In simple random walk schemesmiatéate nodes retransmit the
guery packet to a random neighboring node instead of bre#idgat. This makes it possible for

24



the network to use less amount of energy than flooding, andahdwidth consumption is very
small. On the other hand, sometime it may use more energybecsdes can retransmit more
than once in random walk schemes. The delay until the timentbtfie target is also generally
very large because the query packet moves like BrownianomotiAnother weakness of the
simple random walk is its tendency to revisit recently eidinodes. It can spend a significant
amount of time in the vicinity of the starting node before lexing the rest of the network -

causing significant delays and increased energy cost.

Shakkottai [105] have suggested three types of random hadled search strategies: (a) a querier-
only search, where the querier tries to locate the targenibwting random walk query; (b) a
guerier and target driven “sticky” search, where both therign and the target node send a query
and an advertisement both of which move as random walks; @repétially-periodic caching,
where the target information is spatially cached and theiguties to locate any one of these

caches.

An enhanced random walk scheme, called self avoiding randalk with k-memory, has been
proposed in [2]. The scheme avoids the most recently vigiteddes that were part of its trajec-
tory. The identity of the last k nodes is stored within thed@am walk query packet itself. If the
random walk finds itself trapped at a node such that all itghi®irs have been visited in the last
k steps, only then does it violate this avoidance rule to esdayp picking one of the neighbors

uniformly at random.

The authors of [84] have considered about launching k-nandlalks simultaneously to discover
desired data in the peer-to-peer (P2P) overlay networkhofitjh their scheme can be used in
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the wireless sensor network setting, their performanagltsesannot be directly applied to WSN
because the locations of nodes in WSNSs are spatially ctecelavhich is not true in P2P overlay

networks.

Sadagoparet al. [102] have proposed ACQUIRE search scheme that combine®manvalks
with controlled flooding attempting to achieve best of botbrids. The scheme is designed for
one-shot complex queries for historic data, supportingjaaied data. In ACQUIRE, each query
that consists of several sub-queries is processed at eecméadiate node by a sequence of local
updates (via local floods) witthhops, then is forwarded to the next node following randonkwal
The look-ahead parametdrenables ACQUIRE to span from a random walk-based querying
(with d = 0) to flooding-based querying (witth = oc). The optimumd depends mainly on the
guery rate and data dynamics. Given the query rate, shislbetter for low data dynamics while

larged is better for high data dynamics.

The Comb-Needle technique proposed in [83] is similar tostieky search [105] and the rumor
routing scheme [19]. Here, queries build a horizontal cdikdorouting structure while events

follow a vertical needle-like trajectory to meet the “tet the comb. Key tunable parameters
are spacing between branches of the comb, and the lengtk o&#dle. It turns out that they are
dependent on the query rate and event rate.
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2.2 Performance Analysis for Querying in WSNs

As for the analytical modeling of query strategies which waldvith to deduce our scaling laws,

there have been several interesting prior studies [83, 1WA,

Shenkeret al. [107] have suggested intuitive bounds for the communioatiosts of query and
storage:O(y/n) for both storing data to external storage and retrievinghftbe internal sensor
nodes,O(n) for flooding-based search in the local storage schentg/n) for both structured
guerying and storing under the data-centric storage scheimeren is the number of nodes in

the network.

In the previous section, we saw Shakkottai [105] have sugdehree random walk-based search
strategies. They have also presented a comparison of senotic performance. They have
shown that the rendezvous-based sticky search has theugesiss probability over time using
Brownian motion assumption in the regular grid network. &fpeally, the probability that a
query is unsuccessful is shown to decay(lag t)~! for the querier-only search; °/8 for the
sticky search; and no faster than' for the spatial caching scheme, wheris the average of

random query time-out value.

Liu et al.[83] have analyzed the optimal parameter setting for theteogedle search approach.
For better performance in terms of average total cost perygtilee comb inter-spacing and the
length of needle should be smaller if the event to query tatlarger. In the opposite case, the
spacing and the length should be larger. If the query ratarget than the event rate, or there
are multiple queriers, a reverse-comb structure can hattergerformance. The reverse-comb
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structure consists of the vertical comb for queries andzboial needles for events. In the comb-
needle scheme, the query costi§,/n) and, due to the inherent feature of the scheme, it is hard

to improve the query cost by replicating the events.

An analytical comparison of the comb-needles approach ata centric storage is provided
in [66]. Through the analysis based on a single-sink sqgecedeployment, they have found
that the structured hash-based data-centric storage ajlgnperforms better than both of the
unstructured comb-needle mechanism when the query radsgir and event rates are low. In
the case of high event rates, it is found that the comb-ndeaiiebetter performance. They have
also identified magic number threshold3 & 39.78) for event rates, for the aggregate queries
that requires information from all relevant nodes. Theghodd is independent of network size

or query probability.

For the expanding-ring search, Chang and Liu [28] have fabedvay how to construct the series
of controlled floods in order to minimize the expected seaws$t given the distribution of the
event's location. They have found that the optimum sequeactor can be determined through

the following dynamic programming that can be solved reeahgfor 0 < k < L — 1:

V(L) = 0 (2.1a)

V(k) =, min {C+FURVD) (2.1b)

wherelL is the radius (in terms of hop counts) of the netwarkjs the cost of controlled flooding
up to ! hops, andF'(l|k) is the conditional tail distribution of the target given ttthe most
recently used TTL valué has failed to locate the target. However, from their sohtibis not
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straightforward to obtain closed-form expressions forapgmum cost that may give intuition

on the relationship between system parameters.

In [2], the performances of flooding, ERS, and random walke l@en compared in real envi-
ronments attempting to account for the non-idealitiesddmethe networks in real deployments.
Considered metrics are delay, reliability, and transraissbsts. Their simulation and experiment
results suggest that flooding scheme is better suited foirtevference environments, while ran-

dom walks might be a better option in networks with high ifgeznce.

2.3 Throughput-Wise Scaling Laws

There have been many interesting studies on the scalabflitge wireless networks from the
information-theoretic point of view [50, 51, 76, 77, 128]hd information-theoretic approaches
make no particular assumption on the way that communicatiake place, focusing on the upper

bounds on the throughput using order notation.

Gupta and Kumar [51] studied on the throughput capacity dfirhop wireless networks where
nodes are not mobile. They considered two types of commtimicenodels, namely, the protocol
model and the physical model, for arbitrary networks andloam networks. In arbitrary net-
works, they focused on optimum arrangement so that aides are optimally placed in a disk of
unit area, traffic patterns are optimally assigned, and gaclsmission’s range is optimally cho-
sen. In random networks, all nodes are randomly located independently and uniformilgeei
on the surface of a three-dimensional sphere of are’ lor in a disk of area 12 in the plane.
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Each node has a randomly chosen destination for transmjssial the radio range or power is

same for all nodes.

The protocol model can be said an abstracted link layer msidglar to what many network
studies have been using due to its relative simplicity. 1a thodel, a transmission is considered
successful its transmitter and receiver are in the radigeaand there is no other active trans-
mitter in the radio range (plus some guard zone) of the receiPresenting it more formally,
suppose nod&; transmits to a nod«;, whereX; denote both a node and its location. Then, for

the arbitrary networks, this transmission is successfalteived by nodeX; if

| X — X5 > 1+ 4)|X; — X (2.2)

for every other nodeX;, simultaneously transmitting over the same channel.

For the random networks, the transmission is successful if

|XZ‘—XJ'| <r and |Xk—XJ| > (1—|—A)r (2.3)

for every other node;, simultaneously transmitting over the same channekn be considered

as the common radio range.

A radio range does not need to be assumed for the arbitraworiet because optimum radio
power for each transmission is used. The quantity> 0 models the situations where the inter-
ference range is larger than the transmission radio range.
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The physical model for successful communications is egglgnthe signal-to-interference ratio
model that represents more accurately the real world phenamin this model, a transmission
is successfully received at the receiver if its power at dweiver side is larger than the ambient
noise plus the sum of powers of irrelevant transmissionaté¢geiver side after proper scaling.
Presenting it more formally, I16tX; & € T} be the subset of nodes simultaneously transmitting
at some time instant over the same channel.R.,gbe the power level chosen by nodg. Then,

the the transmission from a nod€;,i < 7T is successfully received by a nodg;, for both

arbitrary and random networks, if

P;
| Xi— X[

>0 (2.4)
P iy
N+ et hti X=X

whereN is the ambient noise power level ands the path loss exponent so that the signal power

decays with distanceas ..

Gupta and Kumar found that the transport capacity of anrarinetwork under both protocol
and physical models ® (W +/An) bit-meter per second under the optimum arrangement, where
W is the transmission bandwidth in bets per second, And the area of network domain in

square meters. Equivalently, the throughput is dBly’>) bits per second for each node for a

B

destination nonvanishingly far away.

They also found that the throughput capacity in a random otws more pessimistic. The

w
vnlogn

throughput obtainable by each node for a randomly chosetind#éen is ©( ) bits per

second under the protocol model. Under the physical modgheh throughput can be obtained
but no better than the throughput capacity of arbitrary neks i.e.O(%).
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Their results suggest that wireless multi-hop network$ witmobile stations should suffer from
unacceptably high decrease in throughput as the numberrtaipant stations increases. Some
solutions for the poor scalability may be to explicitly mésttthe network size, or clustering the

network and using wired transmissions for inter-clustengwnications.

In the sequel [50] they extended the results for three-dgioeal deployment of nodes. They
found that the entire network can carry OIG)/(W(VnQ)%) bit-meters per second at its best
for an arbitrary network under the Protocol Model, and tihat per-node throughput capacity
is © (%) bits/sec for a random network. Similar results are repoftedhe physical

nlog®n)3

model.

In [128] Xie and Kumar have tried to tackle the capacity peoblof wireless networks that is of
great interest in the information theory. Instead of stngythe exact capacity region, they have
studied the scaling law of transport capacity that is theesupl distance-weighted sum of rates

for all source-destination pairs.

Consider a network in which nodes are located on a plane, with minimum separation distan
Pmin > 0. Signals attenuates éép}—” over a distance, wherey > 0 is the absorption constant
ando > 0 is the path loss exponent. And all receptions are assumed sulject to additive

Gaussian noise of varianee.

In such network they found that the transport capacity griwesO (n) when~ > 0 or§ > 3.
Note that the absorption constanis generally positive unless the medium is a vacuum. This
scaling law becomes sharp meaning that the transport ¢gpeder isO (n) if traffic can be load
balanced across the network by multipath routing with bedndistance traversed at each hop.
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Therefore, the multihop routing strategy is shown to be eaggimal for information transport

under this high attenuation case.

2.4 Routing Protocols for DTNs

The initial effort for tackling delay-tolerant networks svplaced on designing reliable and effi-
cient routing protocols under a variety of assumptions omitity [110, 134]. Because of the
challenging characteristics of DTNs introduced in the fmes chapter, conventional Internet
routing protocols such as RIP and OSPF as well as popular @tblating protocols like AODV
and DSR have severe performance degradation, or simplyofaibrk in DTN. The reason for
failure is the fact that the protocols try to establish castgend-to-end paths before sending data
to the destination. In DTN, end-to-end paths are intermiittd best. But, many times, there is
not a complete end-to-end path at all at any given point oétifdote that neither proactive nor
reactive ad hoc routing protocols work successfully in DTti@ugh the reactive protocols are
designed patrticularly for dynamic networks. This is beeail difference between the proac-
tive and reactive is the timing at which the routes are figused in proactive schemes, it is
figured out before the destination is identified while rescichemes search out the routes after

the destination is identified.

A great deal of research efforts have been devoted in ergleiable solutions for routing in this
challenging DTNs. They can be classified into the followihgee categories.
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2.4.1 Mobile Resource-Based Schemes

In this class of schemes systems employ mobile resourcesssutata mules or mobile agents as
message ferries for more effective data exchanges. Injitjdoats and pleasure cruisers are used
to carry and relay the monitored water quality data from theyls deployed on a lake. Authors
of [104] have presented an architecture that uses data mautesry and relay the collected data
in sparse sensor networks to wired access points. Such gesfesees in these schemes are often
added into the system mainly, if not solely, to “motion-géléthe data that would be otherwise
stuck in the part of the network. Therefore, they can be demsd as overhead of the system

with extra cost, resulting in restriction on wide applicatiof the system.

2.4.2 Prediction-Based Schemes

In these schemes inter-node contacts and nodal mobilityedieved to be effectively predictable
through the history of nodes’ behaviors such as currentipasi trajectories [73], contact history
to other nodes [21, 22, 137], or landmarks [134]. The nextthapmay not be currently available
is decided using the predictions so as to maximize the chasality of service (QoS) metric (e.g.

delay, delivery success ratio).

Authors of [81] and [137] have proposed utility routing setes, in which each node maintains
a utility value for every other node. The utility value is siatered as the predictor of the fu-
ture likelihood of two nodes’ contact, and updated usingititer-contact times, that is the time
between the consecutive contacts of the pair of nodes. \Withet schemes, a node forwards a
copy of the message to encountered nodes only when théy utilues are higher enough for the
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message destination. The routing protocol proposed ingd8®|uses the past frequencies of con-
tacts as well as past inter-contact times. For vehicular TRB] uses the current positions and
trajectories of nodes to predict their future distancesefstidations, which plays key role in their
routing decision. Authors in [21] have proposed MaxProgirguprotocol that also utilizes the
historical contact data to predict the path likelihoodswdwer, they have gone beyond the sim-
ulation studies with artificial mobility models for the perfnance evaluations of their protocol,
using 60 days’ trace data from a real DTN network deployed @hi&ses. MobySpace routing
algorithm proposed in [75] uses a high-dimensional Euelidgpace constructed on nodes’ mo-
bility patterns to find better forwarders for the destinati® he frequency of nodes’ visits to each
possible location is recorded as the basis of the futurantist calculation in the constructed Eu-
clidean space. While the above routing protocols focus erptiediction of whether or not two
nodes would encounter, the authors in [134] have propossdigtrand-relay algorithm that also
considers what time the nodes would meet each other. In dfhgrithm a time-homogeneous
semi-Markov process model is employed to determine thegfitty distribution of future con-

tact times.

2.4.3 Opportunity-Based Schemes

In this class of schemes nodes forward messages during'nmafgacts that are unscheduled
or regarded as random. These schemes either assumes thetsonay not be effectively pre-
dicted, or the sophistication in prediction methods dodsdeserve their overheads. In order to
fully exploit the given opportunity, most approaches irstbategory disseminates in the network
multiple copies of each original message to encounterirggsiowhich generally gives higher
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delivery reliability and low latency. However, this bengfttome at the cost of higher buffer oc-
cupancy and bandwidth consumption, which can be justifiedr@asonable when the network is

sparse enough.

Direct transmission is one of the most simple strategy witlowerhead considered in [46, 104].
The source of the message does not use any relay nodes, duttydifeliver the message to the
destination when they meet together. There is only one copgdch messages and no overhead
whatsoever in the network. But, without surprise, it hasnbgleown that direct transmission is

extremely slow [46].

Epidemic routing is a fundamental strategy and serves ds lmasany schemes in this cate-
gory [53, 64, 108, 118, 119, 137] In the epidemic routing datfooded in the network and
eventually reaches the destination. This strategy is gieed to find the the shortest paths when
there is no contention for shared resources such as wiretsbwvidth and buffer space in the
nodes. Because it can be excessively wasteful of such @muihe performance of pure epi-
demic routing has been shown to degrade significantly esibeeihen the network components
have tight resource constraints [81, 109, 118]. Howevateuthe assumption of sufficient buffer

space and bandwidth, epidemic routing achieves the minienurto-end delay.

Many approaches have been devised to reduce the overhedthprove the performance of
pure epidemic routing. Approaches in [108] focus on sumingsredundant transmissions and
cleaning up valuable buffer space after a message has bkegrett to its destination. In [118]
and [137] the “gossiping” strategy is explored where a mgssa forwarded to encountering
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nodes with probability smaller than one. Haredsal. [53] have devised heuristics on hop lim-
its and timeouts to improve the controlled message floodBmyay-and-wait protocol proposed
in [110] attempts to control the flooding overhead by linttithe number of message copies dis-
tributed in its first phase calle8praying phase Then, it relies on the direct delivery waiting
until any one of message-carriers meets the destinatiothofsiin [125] have investigated Net-
work Coding ideas and found it could be useful to reduce theuarnof transmitted bytes in the

network.

Because node mobility is an essential factor of these oppitytbased schemes, they are also
referred to as mobility-assisted routing, encountertbdsevarding, or store-carry-and-forward

in the literature.

2.5 Mobility Models

In vehicular delay-tolerant networks, mobile node encetsmare utilized for opportunistic data
transfer, and thus the underlying mobility model has a grapact on their performance. In this

section, we review the mobility models that have been ektelysadopted in the literature.

2.5.1 Random Walk Model

In the random walk mobility model, each node moves as a ransalker on a two-dimensional
lattice, in the similar way that particles move as a Browniaotion. The time is discrete in
this model and nodes transition at each time step. At each sit@p, each node hops to the
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neighboring points (up, down, left, right) or optionallyags in the same position with the same
probabilities (1/4 without staying, 1/5 with staying). Ttransition is jointly independent of all

previous transitions. When the node is on a boundary poimay hop back to the same position
instead of hopping out of the lattice, or hop to the point andther side (as in two-dimensional
torus topology). This model represents well the movememtamhattan network where nodes
moves from intersection to intersection with constant dpée a city where all intersections are

perpendicular and equally spaced.

The stationary distribution of node location is uniform retrandom walk model. This can be
easily seen from the fact that the 2D random walk can be degsatbinto two independent 1D
random walks that have same probability of hopping to theosjpe directions, each of which
results in the uniform stationary distribution of locati@]. In this model the diffusion speed is

relatively slow.

2.5.2 Random Waypoint Model

The random waypoint mobility model [20] has been employednany simulation studies in

mobile ad hoc networks. In this model each node is assighedj@esce of waypoints to visit

in the given area. For an arbitrary node, its first waypoirthissen uniform at random over the
given area, then the node travels to the waypoint at a canspeed which is chosen uniform
at random within the given range of spe@gi,, vma.). The waypoint and the speed is jointly
independent of each other and the start point. Upon armvéid waypoint, the next waypoint
of the node is chosen again uniform at random in the area,targpéed for this travel is also
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chosen uniformly at random in the speed range. Before rsattie travel to the next waypoint,
the node may pause optionally for a random amount of time.s&mandom values (waypoint,

speed, pause time) are jointly independent of each othealatite previous random values.

The stationary distribution of node location and speed @r#mdom waypoint model are signifi-
cantly different from the uniform distribution. Specifigalthe location distribution is more and
more concentrated toward the center of the region [16].dftthvel speed happens to be chosen
to zero at some point of time, the node will become stuck indirgent location and never be
able to move again because it will never reach the next waypoid get a new speed. Hence, the
minimum speed of the speed range has to be strictly positigeder to prevent the average speed
of nodes over time from falling to zero [131]. This does notaméhat the nodes keep moving in

this mobility model; nodes’ idling can be represented wiith dptional pause time.

2.5.3 Random Direction Model

In the random direction model [15, 48], each node is assignedquence of random triple of
direction, speed, and travel time. In the beginning eaclensdssigned a first travel direction
uniformly at random, first constant speed uniformly at randmm the given rang€v,,in ., Umaz ),
and the random finite travel time for this round. These thaselom values are jointly indepen-
dent of one another and the start location of the node. If tlilemeaches a boundary of the given
region, it may be reflected or appear on the other side tgpttimarea wrapping around (like the
2D torus topology). When the travel time is expired, the nepldt of random values is chosen
randomly which is jointly independent of each other andradl previous random values.
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The station distribution of node location and directionéné&een proven to be uniform [88] for
arbitrary distributions of direction, speed, and traveldi This result does not depend on the
boundary actions — whether nodes are reflected or appeaearttthr side. Different from the
random waypoint model, the minimum spegg;,, has no problem being set to zero because the

travel times are finite so that the node may be mobilized.later

2.6 Content Dissemination

In our study, we use differential equations to model conteptication and dissemination. This
is similar to [25], where differential equations are usednidel the age of content updates and
are found to be a good approximation for large networks. &lewve been several other prior

studies on content dissemination and replication in véhiaquetworks.

In [41], the authors explore the latency performance okdéht frequency-based replication poli-
cies for sharing media files, in the context of vehicular roeks with limited storage. They found
that a random replication technique is sufficient when teittadage capacity of the network is sig-
nificantly larger than the required repository size frormadidia files. Otherwise, they found that
there is a large parameter space where the frequency-belézhtion schemes provide superior
performance. Unlike our study, they assume the network eadiided into cells, in each of
which vehicles form a connected ad hoc network. Howeves, dissumed that traffic cannot get
across the cell boundaries through multi-hop communinatioThe only way to transfer files
across the cell boundaries is the mobility of vehicles tlaatycthe files.
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CarTorrent [74] and AdTorrent [89], present content dissetion mechanisms to distribute files
and advertisements, respectively, in vehicular networks[99], the authors study how user

impatience affects content dissemination.

2.6.1 Analysis of Epidemic Routing

Mobility-assisted epidemic routing in Delay Tolerant Netw can be modeled as an infectious
disease spread [10]. Many epidemiological modeling tepies used in medical research [35]
has been borrowed by computer scientists to model the patipagof computer virus, such as
eigenvalue analysis [121] or random graph analysis [39fuinstudy, we find that ordinary dif-
ferential equations (ODE) can be effectively used to modetent replication and dissemination.
This finding is in line with other recent study [24], which giegted a partial differential equation
can be used to model the probability distribution for the @igatest content update. Note that the
focus of [24] is on the distribution afgeof the latest content update in mobility-assisted content
dissemination, while ours is interested in state of content update (i.e., whether the node is
infected).
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2.7 Hybrid Networks

In the past decade, extensive research has been done totlséuthchnical feasibility of het-
erogeneous intergrated wireless networks. This reseastdtused largely on using limited-
capability, limited-coverage wireless access technelgp supplement ubiquitous wireless tele-

phony systems such as Universal Mobile Telecommunicatimteths (UMTS, a.k.a, 3G).

Within their limited coverage area, wireless local areavoeks (WLANS) can provide a high
throughput data service in comparison to cellular systed@% [The integration of cellular sys-
tem and WLAN system as a coherent heterogeneous networkesnalbetter data service to
customers by allowing handover between different wiretax®ss technologies [103, 130]. The
standardization effort has been undertaken by the IEEE2&80&andard working group, which
supports seamless handover between networks of the saeg.g/phorizontal handover) as well

as handover between different network types (i.e., vértiandover) [47].

A hybrid wireless network architecture integrating bothutar systems and Mobile Ad hoc Net-
works (MANET) is also barely a new concept. One approach igsse®w MANETS to enhance
the service provided by existing cellular infrastructukar instance, the iCar network architec-
ture [127] was proposed to place a number of Ad hoc Relayd@®&(ARS) in a cellular network
in attempt to address network congestion problem. Latarétieal analysis has shown that the
iCar system not only increases the capacity of cellular agtvby offloading the data traffic to
ad hoc networks [80, 127], but also increase the coveragellilar system. Another approach
is to occasionally use expensive cellular systems to ghid@perations of MANETS. In CAMA
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network architecture [18], the important control inforimat such as routing, security and lo-
calization is exchanged in cellular networks while the lyeaeighted data flow is delivered
by MANET systems. This concept has been verified and evaluaseng an empirical imple-

mentation in a WLAN testbed network [71]. Similar to thesee&ch works, we also follow

the design philosophy of using resource-abundant dis&iboetworks to offload the data traffic
from costly cellular networks where some cells could be hgaongested; however, to our best
knowledge, our study is the first to propose the idea of imttyy delay-tolerant networks and
cellular systems. In contrast to prior works which utilizennected multi-hop routes for real-time
data service, our work focuses on using “store-carry-fodtvapproach for delay-insensitive ser-
vice. Considering slow technology adoption process ofargdair communication devices [11],
we believe that VANETS at early stage are likely to be detdgrant networks (rather than well-

connected ad hoc networks).

There has been a growing interest in understanding the itgppabeterogeneous networks com-
posed of cellular networks and ad hoc Networks. A number ebrtgtical studies have been
dedicated to modeling the network capacity of such hetereges networks [31, 72, 82] and
identifying the conditions under which the capacity gaimedaugmenting with ad hoc networks
outweigh the penalty introduced by multi-hop relaying [[L17
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2.8 Positioning of Contributions

2.8.1 Wireless Sensor Networks Study

As discussed in Section 2.3, there have been many intggestiiies on the scalability of the
wireless networks in terms of throughput. However, our gtindlestigates the scalability in an-
other domain, namely, energy consumption, because erseagyang the most precious resources

in wireless sensor networks.

Some prior studies have looked at maximizing the energyiefidy in order to increase the
lifetime of wireless sensor networks [56, 70, 129, 132].,Buty have focused on controlling the
network topology given parameters such as network size.eSuhrer studies have looked at the
asymptotic energy-constrained network lifetime [58] oximna@zing the network lifetime [17, 27,

65]. However, these studies pertain to continuous dataegag applications.

As discussed in Section 2.2, there have been several ititgygsior studies that have explored
the analytical modeling of query strategies which we deé#had deduce our scaling laws. How-

ever, these studies have not developed scaling laws forcgataic storage and querying.

Further, all these prior studies do not address the questiapplication-specific conditions that
determine fundamental limits on scalability of sensor roeks.
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2.8.2 Vehicular Networks Study

Unlike these pioneering works concentrating on networlaciyp analysis, our study formulates
an optimization problem to maximize the contents dissetitinaupon the predetermined delay
deadline while minimizing the cost associated with theutail network. We find that, if some
delay is allowed, contents can be spread to a large numbehafles even with a very small num-
ber of accesses of the infrastructure, thus greatly redubia usage of scarce cellular bandwidth

and lowering the cost that content providers and end used toebear.

Our work on vehicular heterogeneous networks is compliargrb the above studies on “pure”
DTNs: (1) the network architecture in our study consistsardy DTN system but also cellular
system, though the usage of latter one is minimized; (2) wadmn the optimization of content
replication and dissemination in VANETS to reduce the usafyscarce, costly cellular links
while satisfying the customers’ need using DTN as a cheag pakline, which is validated
using real-world vehicular mobility traces; (3) our mainjattiive is to establish an analytical
framework to understand the fundamental tradeoff betwherncost and delay requirement of

content dissemination in the context of vehicular heteneges networks.

To evaluate the DTN protocols many previous studies havdamg random mobility models,
as discussed in Section 2.5.1. While the random models afaldsr analytic analysis on the
performance of the DTN protocols, they do not have to be agleto the realistic situations. There
have been some studies analyzing human mobility traceseirefflort to derive more realistic
mobility models. In [23], empirical studies have been candd with human-carried wireless
devices to derive statistical distributions of inter-amittime of encounters of nodes. Rhate
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al. [100] have analyzed real human mobility traces and sugdeissg human walk patters follow
Levy Walk model, which is more diffusive than Brownian matibut less diffusive than the
random waypoint model. These studies analyzing human iob#ces are complimentary to

our study, which is one of the first to use a real large-scalécuéar mobility trace in a major

metropolitan area.

As discussed in Section 2.6, there have been several stiod@glore or analyze the content
dissemination process. Different from these studies, acud in this work is on a novel cost op-
timization problem for disseminating content to the maximuumber of vehicles within a given

deadline, that leverages both the cellular infrastrucamé peer-to-peer vehicular communica-

tion.

As discussed in Section 2.7, extensive research has beertastudy the technical feasibility of
hybrid integrated wireless networks. In common with theseks, we too propose the integration
of the cellular network with another mobile network, howeweour context the other mobile net-
work is a delay-tolerant network (DTN) that uses “storergand-forward” approach for content
dissemination. Also, unlike much of the prior focus on céyamprovements, our focus is pri-
marily on maximizing content dissemination within a delaadline while minimizing the cost

of cellular access, though certainly our approach will ilse up scarce cellular bandwidth.
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Chapter 3

Modeling Search and Replication Costs in Wireless Sensor

Networks?!

In this chapter, we derive the expected communication aufssgarch and replication of event
information in terms of the energy expenditure. In additiothe fixed transmission power (FTP)
assumption, we also consider the random geometric graplGjR@®del where the nodes are
deployed uniformly and independently at random. In thiscansuring connectivity with high
probability requires that the radio range be scaled withmistgvork size so that each node has a

logarithmic number of neighbors on average [49, 93, 94].

3.1 Assumptions

In this section, we introduce the common key assumptiond@mg for Chapters 3, 4, and 5,

unless stated otherwise.

1This work was done jointly with Prof. Bhaskar Krishnamadhand was first published as [5].
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e N nodes are deployed with a constant density id-@dmensional ballB¢ space. The
constant density implies that if the network size is inceglaghe deployment area grows
proportionally. We consider mainly the fixed transmissiowpr (FTP) model in which the

radio rangeR is kept fixed, but the deployment is such that the network nesnaonnected.

e The distribution of events is assumed to be uniform in théaepent area.

e A total of r copies of an event are maintained with the uniform distidouin the network

by creatingr — 1 additional replicas when the event is first sensed.

e Each query is a one-shot query (i.e. requires a single regpaot a continuous stream),

and is satisfied by locating a single copy of the correspandirent.

e We assume that the links over which transmissions take pladessless (e.g., using black-
listing) and present no interference due to concurrenstrassions (e.g., due to low traffic
conditions or due to the use of a scheduled MAC protocol). &lms we relax this as-

sumption for verification of our results in our simulationdy (Section 4.4).

e For the FTP deployment model, the total energy cost for s@#agds assumed to be pro-

portional to the total number of transmissions.

e We assume that the boundary effect is negligible. Howeverrelax this assumption in

our simulation study (Section 4.4).
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Figure 3.1: Structured average search cost

3.2 Search Cost in Structured Networks under the FTP Model

We first consider structured networks where nodes are deglayith constant node densigy

in the d-dimensional ball. We further assume that the network ificeitly dense so that all
nodes within a distanckR of the sink can be reached inhops. The nodes in the network are
all located withinZ hops of the sink. When modeling the search cost we assumé¢hthatink

is located in the center of the region. In Section 4.4, we shgwimulations that relaxing this
assumption does not provide big differences. I gt:) denote the volume of @&ball of radiusz,
Ng4(h) the number of nodes at masthop away from the sink. The volume of the ball is known

to be expressed as follows:

Va(x) = f(d) - (3.1)

/2
wheref(d) = 73y
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In this dissertation]'(-) is the Gamma function. Then, the number of nodes at bstp away

from the sink is given by,
Na(h) = p £(d) - (hR)? = 7(d) - b (3.2)

where

7(d) = p f(d) R* (3.3)

which is the average number of neighbors of a node. Henceothlenumber of node®’ can be
expressed as follows:

N = Ny(L) = 7(d) - L? (3.4)

Now we recall that there are number of copies of an event distributed uniformly randoimly
the network. Let the random variahlé,,;,, denote the hop distance to the nearest copy of them

from the querier. Its tail distribution is as follows:

P{Xpin >z} = HP{z‘—th copy is not i hop neighbory
i=1

_ (1 B N?éx)y _ (1 i i_i) (3.5)

Figure 3.2 illustrates how this distribution varies witle thumber of replicas in a typical network.
As may be intuitively expected, this distribution shiftsthe left (i.e. the nearest copy is located
closer to the sink) as the number of replicas increases. shiuisld result in a lower search cost
with increasing replication size.
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Figure 3.2: lllustration of the probability mass functiasr the nearest replica in a 2D network
(L=100)

In the structured network, the search cost is related to la giathe lowest cost from a querier
to the nearest node which has one of the copies. We assumledittess path routing scheme so
that the path would be their shortest path. Hence, the seasths equal to the hop count from
the querier to the nearest copy through the shortest paibhwhdenoted byX,,.;.., plus the cost
back to the querier. Hence, the expected search cost of thenkedeployed ind dimension is
as follow:

C\Y) =2 E[Xoin) (3.6)

s,st

Using the tail distribution given in Equation (3.5) and appmating summation to integration,

we have

L L 24 r
E[Xpmin] = ZP{Xmm>x}:a/O <1—ﬁ> da
=0

_ LT T+
- d L(r+3+1) S
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| d=1 d=2 d=3

[ (d) 0.0961058  0.410714  0.68273
u (d) 0.208858 0.577974  0.849538

Table 3.1: The coefficients of lower and upper bounds of tlaecbecost for the structured net-
work. The number of neighborgd) of a node is set to 10.

The last equality of Equation (3.7) can be achieved throbghnultiple application of Integration

by Parts and the property of Gamma functidfiz) = (z — 1)I'(z — 1).

Using Lemma A.1 stated in the appendix and the equafior: w - /N (from Equa-

tion (3.4)), we can calculate the lower and upper boundseogéarch cost:

CO(N,r) > l(d)~\z/§ (3.8)
CYON,T) < u(d)- Z}:f (3.9)

where

3d+2

1 124d
(a + 12(12+13d))

Table 3.1 shows the numerically calculated value§ @f andu(d) when the average number of
one-hop neighbor(d) is 10 for 1, 2, and 3 dimensional deployments. As the tahistilates, the
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lower and upper bound are close and proportiond!1é,/ ¢/ from the above double inequalities.

Hence, we can approximate with good accuracy the searclasdstiows:

(3.10)

wherel(d) < a; < u(d) (we can obtain the more accurate valuexafsing the curve fitting.)

Figure 3.1 verifies the accuracy of our model in various ¢gsg¢snd (b) illustrate how the search
cost varies as the number of nodes increases in 1D and 3Dydegi, respectively. The number
of copies of the event is 1 and 100 for (a) and (b), respegtie) and (d) show the search cost
vs. the number of copies in 1D and 3D deployment, respeytivithe number of nodes i)?
and 108 x 103 for (c) and (d), respectively. The bounds of the search cesewaluated using
Equation (3.8) and (3.9), and the search cost is evaluateemncally using Equation (3.6) with
(3.7). All the four plots agrees that the search cost is ampasportional to the bounds in both
relatively large and small networks, both 1D and 3D netwoaksl whenr is small or large. As
for 2D deployment, we have investigated extensively in @Gdra and [3], which also agree with

the above.

3.3 Search Cost in Unstructured Networks under the FTP Model

We now consider unstructured networks. The search cosisteind the cost to locate the nearest
copy and the cost to bring the data back to the querier usimgliortest path. Since the latter
cost is much smaller than the former, we here ignore therlattst, which is equal td&[ X, ]
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given in (3.7). Hence, we derive the search cost expressomg ihe optimal expanding ring-
based flooding query [28, 68]. We consider the sanBall as a network deployment space as in

Section 3.2.

3.3.1 Cost Modeling of Expanding Ring Searches

Any expanding ring search can be characterized as a vecto{uy, us, ... u,, } that describes
the sequence of successive TTL values for controlled flapdireach step. The vector is also
referred to as the TTL sequence vector. To ensure that tire eanta is covered in the worst case,
u, iS set toL. For example, let, = {1,5,10} for a network where the maximum hop count is
L = 10. Then the expanding ring search would proceed as followat tfie nodes within 1-hop
are searched for the event through a controlled flood with Vdlue of 1. If no copies of the
event are located in this first step, then all nodes withinfistere searched for the event through
a larger controlled flood. If still no copies of the event asedted in the second step, then all
nodes in the network (within 10 hops) are searched. If at &y at least one copy of the event

is located, the search terminates successfully at that step

Because we assume that each transmission (and the com@xpoeceptions) incurs a unit cost,

the cost of the controlled flooding incurred in tH& search step is given as:
C}d) (ui) =1+ Ng(u; — 1) (3.11)

whereNy(h) is the number of nodes up tohops away given in Section 3.2.
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For a given search sequence veeatpassuming there aretotal copies of the event in the network,

the expected search cost is then

m

o — Cj(fd) (u;) - Pr{Xmin > ui—1} (3.12)

s,un
i=1

where Pr{X,,;, > uo} is defined to be 1 (since the search sequence startsuyitand it is

guaranteed that there is at least one copy of the event bagrnied somewhere in the network).

3.3.2 Optimal Costs of Expanding Ring Searches

The cost evaluation of the optimal expanding ring-basedIffmpquery requires the optimal TTL
sequence. Chang and Liu [28] have developed a dynamic pnogirsg solution to solve this

problem. This dynamic program uses the following recurpraperty.

Let the value functiorv (n) be the minimum expected cost-to-go (over all choices of Talues),

given that the most recently used TTL valkielid not locate the object. Then

V(L) = 0 (3.13)

Vie) = c+7ingi]?§L {Cf(k)+ F(k|c) - V(k)} (3.14)
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In the case of multiple replicas, we use the tail distributid(k|c) given as follows:

F(k|c) Pr{Xmin >k | Xpin > ¢}

L4 — g\’

The optimal search sequengé is obtained by recursively calculating the value functiand
then tracking back through the choices made at each stepeiomiee the optimal TTL value for
each stage. This search sequence can then be used in EqBati®nto determine the expected
cost of the optimal strategy. However, this algorithmicraggh does not yield a tractable closed
form expression for this cost as a function of the number plicas. We therefore derive lower
and upper bounds on the cost, before developing an apprtecexaression for the optimal cost

based on the bounds.

3.3.2.1 Lower Bounds

We first consider the lower bound of the optimal expectedcbeapst. Suppose a querying
node happens to know the hop distan€g;, to the nearest copy of the desired event before
disseminating queries. Then, the flooding cost upXig;, hops away is certainly the lower
bound. The distribution oX,,,;, is given in Section 3.2. Under our assumption the flooding cos
up toh hops away isﬁ'}d)(h). Hence, the lower bound of the expected search cost is giyen b

C(d) = E[C(d) (Xmin)]

s,lower

2
=)
N
1S
>
IS8
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In order to obtain the-th moment ofX,,,;,,, we make an approximation that,,;,, is continuous.

The probability density function oX,,,;,, is given by,

rd AN
SX i (F) = ﬁkd ! (1 - ﬁ) (3.17)
Then, thed-th moment is given by,
d rd [* 2d—1 ke !
Ld
- r+1
1 N
= 7(d) 1 (- (3.4) (3.18)

Substituting Equation (3.18) into Equation (3.16) we hadafbllowing expression:

@ _ N

s,lower r

(3.19)

+
—_

3.3.2.2 Upper Bounds

Now, let us consider the upper bound of the optimal expeaadch cost. We note that any ex-
pected search cost with a specific search sequence vectdy iESte upper bound. We consider

two search sequence strategies to obtain two upper boundswhich we obtain a tighter upper
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bound in terms of order notation. Let us first consider the-biestep expanding ring search

(ERS) strategy where the SSV{i$, 2,3, ..., L}. The expected cost of this strategy is given by,

L I o
= S OPERP{Xpin >k -1} = > (1 +7(d) - (k— 1)d) (1 (K Ld1) )

k=1 k=1

. AN B LI T(DD(r +1)

Q

7(d) -T(3) LA . D(r 4 1)
d? L(r+2)
r(y) Nt

a2 {r(d) r+1

(T(r+2)<T(r+ 2 +2))

(- (3.4) (3.20)

As a next step, let us consider the flooding strategy whichbeaconsidered as the one step ERS

with SSV{L}. The expected cost of this strategy is given by,

O = W) =14 )L 1)

IA
=
=
h
U

I
=

(3.21)

If we apply Lemma A.2 in the appendix using Equation (3.2@) €h21) we can conclude that the
optimal expected search ccﬁffgn is O(N/r). With the result of the lower bound of the optimal
cost in Equation (3.19) we reasonably approximate that pienal search cost is proportional to

its corresponding lower bound. Hence, we have

Cl9, =ay —— (3.22)

whereas is constant w.r.t andV, but a function ofd.
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Figure 3.3: Unstructured average search cost

Figure 3.3 has similar plots as in Figure 3.1. The lower bdemntingCSz)weT in Equation (3.19),
the upper bound is usir@éﬁwer, and the search coély,namic iS evaluated numerically using
the dynamic programming algorithm proposed by Chang and[28]. We can see that our

approximation of the proportionality is quite close as foe structured search cost.

3.4 Replication Cost under the FTP Model

We now consider the expected replication cost. Since odicegjpn strategy is to pick a desti-
nation uniformly at random, for each copy of the event, it hating to do with the querying

structure, and so the replication cost is same for bothtstreid and unstructured networks. Fur-
thermore, under our assumptions, the number of transmissixquired to move data between
any pair of locations a distanceapart along the shortest path between them is approximately
x/R. Thus, the expected cost of creating any replica is giverhbyratio of expected distance
between any pair of points in the area and the radio raRgd.et U (z) denote the average
length of line picked inB?(z) with radiusz, ¢5(x) the integral of all possible lines in the

59



sameB<, andV;(z) the volume of the ball which is dealt with in Section 3.2. Afet, ()
denote the corresponding integral of lines in theube C¢(x) with the width ofz. Because

C4v2LR) c BYLR) c C42LR), ¥5(LR) has the following bounds:

Yo (V2LR) _ ¥B(LR) _ ¢Yc(2LR)
Ver? <P = VLR < VaLRp ©29
Lettingz = (z1,...,zq) @andy = (y1,...,yq), Yo(z) is given by,
2d
=
wc(x) = /0 ‘/O |x—y|d:v1---d:vddy1---dyd
= A(d) - z?H! (3.24)

where
2d

1 1
0 0

Let Uz(LR) and ¥ 5(LR) denote the upper and lower bound of Inequality (3.23), retsyy.

From Equation (3.1), (3.4), and (3.24),

Up(LR) = 2V2-Ad) VN (3.25)

— Y- fldpra

22d+1 X A(d)

YN (3.26)
Yo fd)*Ta

Wp(LR) =

Therefore, we can approximate the replication cost asvislio

c@D = (r-1).

— g UN-(r—1) (3.27)
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where
244/2 - A(d) 22d+1 . A\(d)

F@2 @ T ey

3.5 Costs under Uniform Random Deployment (RGG Model)

We now consider the uniform random deployment for both stinecl and unstructured networks,
i.e. the RGG model. The RGG model has different assumptiegerding the radio radius and the
unit transmission cost. The radio ran§eis assumed to be scaled proportionally wifiog N

to ensure connectivity of the network with high probabilitiVe also assume that the energy

expenditure per transmission scalegidswheren is the path-loss exponent.

Therefore, the neighbor densityis logarithmically increasing witiV. Letting~ = pf(d)R? =

#, log N with some constart;, the radio range can be expressed as,

R— O {/log N (3.28)

p f(d)

Note that our analysis in the previous sections (Sect. 332.33) is still valid except that the costs
derived therein are in terms of number of transmissions hadétwork radiud. is now also a
function of V. It should be noted that the number of transmissions is ngeloproportional to the
energy cost in the uniform random deployment becakise no longer constant with respect to
N. Hence, we shall refer the derived search costs in the pregections a#l; ;; and H ,,, for
structured and unstructured networks, respectively, laaddplication cost afl,. in this section.
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For structured networks, by substituting Equation (3.28) (3.8) and (3.9), the bounds &f; ;

can be expressed as,

(3.29)

where

3d+2
2d

/ o F(l)ewp(l) d
o) = 2 dd\d/md <d+1>

1 1 124-d
) I'(g) exp (E"’Wili&d))

d \d/e 91

Now we introduce the transmission energy cost over a linkisitdceR given by,

E(R) = BR" (3.30)

wheref is the transmit amplifier constant ands the path-loss exponent. Generally, there should
be a term for the distance-independent energy cost of tigées@and receiver electronics, but we

assume it is negligible because we focus more on the seastheloavior of large networks

Because the search cost is given by multiplyfig,: and E;(R), we can approximate it using its

double inequalities as follows:

d -1
@ N(log N )"
Cogt =0a- I (3.31)

2For more accurate result for small size networks, we can acthatant for the electronics energy cost to the
transmission energy cost model, which would lead to therél@siesult without difficulty.
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n

n n
whereg <pf6(1d)) ) <ay< B (p]?(ld)) ol (d).

With the analogous reasoning, we can obtain the search tosistructured networks and the

replication cost under the RGG deployment as follows:

n n
0 i N(log N)d
C(d:.<1>. 3.32
san = 0273 pf(d) r+1 ( )
CWD =5 (r—1) &/N(log N)1—1 (3.33)
whereas is as same as in Section 3.3, and
d (n—1)/d 2d+1 g pn—1)/d
242 36, A(d) < as < 2 B6; A(d)
Pl f(d)> i Pl f(d)>Hnld

We note that the costs of unstructured networks under the B&®yment turns out to be de-

pendent oni, while that of the FTP deployment is independent of
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Chapter 4

Optimizing Data Replication for Energy-Efficiency Expanding

Ring-Based Querie$

The data-centric network considered in this dissertatasttvo inevitable sources of energy con-
sumption — searching and replication. In this chapter, wenaore interested in the total energy
cost consisting of the search and replication costs ratiagrindividual costs. We investigate how
to minimize the total cost through the number of replicasl @erive the data replication scheme
for the optimized total cost. We consider the unstructumaork with the expanding-ring search
(ERS) scheme and assume that the node deployment spacdlisitamsional. Although omitted,

the analysis for the structured network of general dimensan be done in a similar manner.

As for the node deployment, we consider only the fixed-radamstant-density node deployment
in this chapter and the scaling law study in the next chafiterbecause the random deployment
requires logarithmically increasing neighbor density nswre connectivity with high probabil-

ity [49, 93, 94]. Grid-like and other regularized random ldgments ensuring a bounded distance

1This work was done jointly with Prof. Bhaskar Krishnamadhand was first published as [68].
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between nodes would satisfy the second model, though. @tiggation for not considering the
random deployments in our scalability analysis is thatkinig of deployment explicitly rules out
the kind of scalability we are interested in exploring. le tmiform random deployment case,
with a fixed spatial density of nodes, the radio range needetimcreasing as/log N as the
network sizelV increases in order to maintain connectivity. Thus, a finkleqode energy budget
can never sustain an arbitrarily large deployment of thislkin the case of constant radio range
that we examine, however, we show that there are conditindsruvhich such scalability is still

possible.

We validate our analysis through a set of simulations iniSecet.4. These simulations are per-
formed using a realistic wireless network topology germrfit38]. Although we find that the

node placement distributions and optimal search sequeacese significantly different between
simulations and analysis, we find that the correspondingergd search and replication costs
are quite similar and that the optimal replication numbeaied through analysis matches the

simulation results quite closely.

4.1 Search Cost

We use the search cost model developed in Section 3.3 givieti@ss:

N al?
= 052 .

4.1
r+1 r+1 (4.1)

Cs,un =g
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L (max TTL) ¢ (Curve-fit constant)

10 1.47845
50 1.99568
100 2.07722
500 2.14608
1000 2.15476

Table 4.1: Best-fit constant for search cost approximation

The optimum search cost

model L=1000

cost

real L=500

10 model L=100 3
«—model =
10° real L=100
«—model L=10 ~—real L=50
«<—real L=10
101 1 1 1 1
0 200 400 600 800 1000

# of replicates

Figure 4.1: Approximation for optimal search cost

Note thatL is the maximum hopcount defined in Section 3.2 ard 7(2), which is the average

number of neighbors in a 2D network.

The constanty, can be obtained using curve-fitting. As shown in Table 4.4 ciinstant is seen
to converge to a value close2al5 as the size of the deployment area increases (i.e. for Iaxge
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Figure 4.1 compares the search cost model with the numigricptimal search strategy (ob-
tained using the dynamic programming method of Chang and2dj). We see a close match,

particularly when the network is large and the number oficaglis relatively small.

4.2 Replication Cost

Although we can use the approximate expression for the gedanension developed in Sec-
tion 3.4, more direct method can be possible to obtain antetased-form expression for 2D

networks.

Let # be the number of replicas of the original event, and they aseraed to be placed indi-
vidually at each location through unicast routing on thertdsd path between the random source
and storage point. The expected distance between the twomapoints are presented in the

subsequent subsections for circular and square regions.

4.2.1 Circular Area

For a circular region, there is a known geometric resultrreteto as disk line picking [123],

which gives the expected distance between any two pointsimtaircle to be:

1 1 1 T
E [deirete] = - /0 /0 /0 \/7“1 + 19 — 2/T113 cos OdOdrdry

128
451
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Using this result, we get the following expression for theented cost of creating replicas of

the event information in a circular region of radili& to be:

128LR7  128L7

Cr,circle(r) = iR 45 4.2)
4.2.2 Square Area
Similarly, for a square, the expected distance in the sqofanedth wR is
1 5 5
Elduard = R [ [ flar =)+ (22 =) dar-- -y
"4 4
2 2+51In (1 2
_LREE2E 15n( V) | 05214050R
From this, we get that
Cr,square(f) ~ 0.52wr (4.3)

4.3 Optimum Number of Replicas

We can formulate the problem of optimizing the number ofiogd for each event as follows:

Minimize Cio(7) = >0, ¢iCs(ri) + Yoy Cp(r; — 1)
st g(F) =S <S (4.4)
i=1

ISTZ‘SN, V’L
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Hereg; is the query rate for thé” of m events;; is the number of copies of even(note that
r; — 1 is the number of its replicas), arfflis the total network storage capacity. For a circular
region, the expressions for the search €sgt-;) and the replication cost, (r; — 1) are as given
in Equations (4.1) and (4.2), respectively. We solve thabfam using the method of Lagrange
multipliers. The Lagrangian function for this inequalitgnstrained optimization problem can be

expressed using a slack variabklas follows:

L(7,\) = Ciot (F) + A (9 (F) — S + 5?) (4.5)

It can be shown that the objective function is convex; hettefollowing first-order conditions

are sufficient for global minimization:

OL gal’c  128L
ar; (r; + 1)2 + 457 + (4.6)

m

OL
= ri—S+5 =0 (4.7)
o
9L _ors—0 (4.8)
0s

i) When the constraint is inactive we can solve directly freguation (4.6), setting = 0:

«  [4bmaLc

- G — 1 4.9
TZ 128 \/q— ( )
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i) When the constraint is active, (i.e. ss0> 0), we get from Equation (4.6):

acL

= e V@i — 1 (4.10)
e T 1T

A is a constant that can be solved by substituting the abovatieguinto Equation (4.7), setting
s=0:

| acl? (S, V@i)!  128L (4.11)
B (S +m)? 457 '

Substituting this back into (4.10), we get the following plified expression:

P Vi _
= g (S m) - (4.12)

To determine whether the constraint is inactive or activis,sufficient to verify whether the sum
of 7 obtained from Equation (4.9) is less than If not, then Equation (4.12) should be used
to compute the optimal constrainegl. A striking observation is that in both cases the optimal
strategy is to have the replication number of each event fordyeortional to the square root of
the query. We note that this outcome is very similar to a tesulnstructured peer-to-peer wired
networks [33], which also argues for replicating contenthvd rate proportional to the square
root corresponding frequency of access. However, ther&eyralifferences between that work
and ours, including the type of search analyzed (expandings fin a wireless network with a
geometrically defined 2-D structure versus random walk oaraitrary wired network graph),

and the absence of replication cost.
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The Total Cost of One Event
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Figure 4.2: (a) Total expected cost for a single event shgwiat the optimal replication number
varies as a function of query rates (b) a surface plot shovated expected cost for two events,
and (c) a contour plot of the total cost for two events showstarage constraints (1, 2) and
corresponding optimal solution points (A, B)
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Figure 4.2(a) shows the total cost of querying and repbceti;,; as a function of the number
of replicas for different query rates for a single event. urgy4.2(b) illustrates how the total
cost may vary for the case of two events, as a function of tmebau of replicas for each event.
Figure 4.2(c) shows the contours of this function, alondhwito sets of lines that represent dif-
ferent storage constraints. With the first storage comgt(ailarge value of), there is sufficient
storage available that the unconstrained optimal point Mkm selected as the operating point,
by allocating the corresponding optimal number of replicasoth events. However, under the
tighter storage constraint 2 (small§), the original unconstrained optimal solution lies ougsid
the feasible operation region. Hence, point B, which mimisithe function while maintaining

storage feasibility, provides the optimal constrainedisoh in this case.

4.4 Realistic Simulations

4.4.1 Methodology

We use a realistic link layer model generator for wirelegssse networks [138], which deter-
mines the location of each node and the packet receptiofP&R) of each pair of nodes. Ta-
ble 4.2 shows parameters for our wireless sensor netwodtagy to simulate on (corresponding
to a dense deployment of Mica 2 motes). Given the realisgoltayy, our simulator performs the

following procedures at each round:

1. Randomly choosing a source node which is considered @ thavoriginal event informa-
tion
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Parameter Value

path loss exponent 3.0
Channel shadowing std. deviation 3.8
PL(dp) 55.0
do 1
Modulation 3 (NCFSK)
Encoding Option 3 (Manchester)
Radio  Radio Output Power -21.0
Noise Floor -105.0
Preamble Length 2 bytes
Frame Length 50 bytes
Number of nodes 1010
Topology Physical Terrain (80, 80)
Option Uniform Deployment

Table 4.2: Radio parameters for simulation

2. Counting the actual replication cost for- 1 replicas chosen randomly

3. Randomly choosing a querier node in the given node pool.

4. Counting the actual search cost using the optimal se&ziegy.

Our numerical results are computed based on 10000 rounésétw value.

4.4.2 Counting the Actual Replication Cost

The replication is done not by flooding, but rather througtivildual unicast transmissions from
the source to the requisite number of random replicatioations. We use the ETX (expected
number of transmissions with retransmissions) metric {84jefine the routing strategy for the
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unicast transmissions. Specifically, the transmissiorheretige froni to j costs%Rm, where

B is the cost of a single transmission, aR@&R; ; is the packet reception rate froirto j, and

a message between any pair of nodes in the network is routed #he shortest cost path be-
tween them. Here, we have assumed that acknowledgemergtpdaihich are likely to be much
shorter) are always received reliably. In the simulatisulis we count the actual replication cost

by counting the actual total number of transmissions on liloetest unicast path and multiplying

it by 5.

4.4.3 Counting the Actual Search Cost

In order to find out the search cost, we need to find out the gptgmarch strategy. In order
to use the optimal search strategy from the dynamic progiammethodology [28], we need
to know the distribution of number of nodes with respect ® tlop distance from the querying
node. However, it is not easy to determine the hop-disiobuin the realistic wireless topol-
ogy considered in the simulations, where the links are lasgyasymmetric. Even for a given
topology, the number of nodes #f hop (for a single query event) is a random variable whose
expectation is not easily obtained. Since we need to conthetéistribution for any querying
node in the network, it is particularly important to obtamapproximation that can be calculated
simply. The approach we have taken is to look at the hopHoligion of the subgraph formed
when all links with packet reception rates below 0.5 areldisied from the network. As a sanity
check, we have compared the results obtained from this gsagith the average of the number of
nodes at each hop from 100 simulation experiments where tiresdetermined probabilistically
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Figure 4.3: Experiment for the node number nodes as a function of distance from querier
distribution in a uniform square area deployment

in each run according to the PRR values at each edge. The twoaghes show remarkably

similar results (see Figure 4.3).

Let H[:] denote the set of nodes that are reachable from the quergtfat a distance afhops.

We use the following conditional tail distribution for thgrtamic programming,(fok > c):

> HLE]N T
P{Xomin >k | Xppin > ¢} = %

i>c

Following the resulting optimal search strategy, the satarl floods a series of queries until it
finds one of the copies of the event. Note that in our simutati@although two queries have the
same TTL value, one query might find the event but the othehtmigt, in the same network. It
is because the coverage of first query is not necessarily aarttet of the second one (because

of the lossy wireless links).
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Figure 4.5: Comparisons of analytical and simulated castsfanction of replication size

444 Results

In our simulations, we relax several assumptions from ththemaatical analysis, so that (1) the
guerier can be any node in the network, (2) the network tapois not necessarily circular (it is
the square area for our simulation), and (3) there might edtundary effect. With these relax-
ations, the actual optimal search sequence of a node mighiffeeent from that of another node
when they are considered as a querier at each time. For esathploptimal search sequence
of a corner node i$2, 8,12, 15,17, 19, 20}, while that of a center node {2,4,6,7,8,9,10,11}

when there are two replicas of the queried event.

First of all, the theoretical values of our model are as folip

~¢N 148 x1010
I |

Csearch (T)

B 128L(r — 1) 128 x 10
- 457 457

(r—1)

Creplication(r - 1)
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where the node density variable~ 10 is obtained from the simulation (since this depends on
radio and deployment settings), the valuelofs 10 is obtained fromuL? = N = 1010, and
c is obtained accordingly from Table 4.1. Therefore, assgntie query rate ig, the optimal

number of replicag* is as follows by Equation (4.9);

s N 451 457
P=ry -1 = \/1—28qaLc—2: 1—28><10><10><1.48—2

= 10.7852 ~ 11

The optimal number of replicas from the simulation is fouader?; = 12 (see Figure 4.5c).
Figure 4.5a shows the optimal search cost of the simulatr@h aur model, and Figure 4.5b
shows the replication cost. As we can see from these figutesnodel meets the simulation
results very well even with relaxed assumptions. The shitylaf the results despite seeing very
different hop distance distributions in the simulationggests that the cost of the optimal search

is quite robust to this distribution, particularly in theepence of replicas.
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Chapter 5

Scaling Laws in Terms of Bounded Energy

In this chapter, we drive the scaling laws for the data-éentireless sensor networks based
on the cost models and optimization method discussed inridndqus chapters. We consider
both unstructured and structured networks with boundeghpéde storage budget. Although this
bounded size of storage resource plays as a constraintimioioig the total cost, it turns out that

the storage constraints are less restrictive than the ymergstraints. We therefore first derive
the scalable operating conditions using an unconstraieesion of the optimization problem,

and then use the constrained version to investigate in naiedl the behaviors of the network as

its size grows.

This work was done jointly with Prof. Bhaskar Krishnamadhand was published as [4, 6].
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5.1 Basic Optimization

We use mathematical models developed in Chapter 3 to quaéimifcost of replication and search
under structured and unstructured networks. From the ,casthave the common form of the

total cost as follows:

Cr=>_ qiCs(ri) + Y Crlry) (5.1)
1=1 ]

whereC,(r;) is the expected search costitf event and”,(r;) is its expected replication cost.

From the above, we get the following expressions for the egoktotal energy cost for all events

which consists of search costs weighed by the number ofegiarid the replication costs:

1. Under the unstructured replication scheme, the totabgreost is

m m

Ng; d

Ct7u:ZCQTZ_+1—|—ch\/N(T’Z‘—1) (52)
i=1 1=1

2. Under the structured replication scheme

d

Cra=> c3 7 +Y a¥/N(r;—1) (5.3)
=1 =1

To simplify our expressions, with a slight abuse of notatiee shall make the following substi-
tutions: in Equation (5.2), after dividing both sides &y we letC, ,,/c; — C;,, and E—jqi = ¢
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in Equation (5.3), after dividing both sides by, we letC; ;/¢; — C; , and g—fqi — ¢;. And the

following expressions are the simplified versions;

v Na - o
Cru = ;”+1+;\/ﬁ(n 1) (5.4)
Cis = > i +Y VN —1) (5.5)
i=1 i=1

Now we can formulate the problem of optimizing the total csfollows;

Minimize Cy =Y, ¢;iCs(r;) + > i, Cr(ri) (5.6)

We use the total energy cost in the network as the objectibimat stead of per-node energy
for the optimization. Although naive replication-queryhemes might make the system behave
differently depending on which point of view is taken (to&lergy or per-node energy), the
system behaviors for both point of views could be esseptsme (in terms of O-notation) with
a smarter replication-query scheme as discussed in Séc@oioreover, the use of total energy
gives at least the upper bound for the network scalabilityd@@mon for any replication-query

scheme.

We also ignore the storage constraints for now becausen tut that the constraints must not
be active in order to ensure the scalability of the netwonk.Section 5.5 we incorporate the
constraints to investigate more detailed behavior of theord as it grows.
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The optimization formulation does require global knowledy query rates for each event and
hence the optimum may not be necessarily achieved by digtdbheuristics in practice, but
this is still a useful tool for our investigation on the perfance of scalability as it provides the
best-case scenario. For global optimization first-orded@mns are sufficient because it can be
shown that the objective functions for both the unstructuaad structured scheme are convex.

Solving the problem as in Section 4.3, we find that

qg/zN% — 1, (unstructured)
rt = ) (5.7)
Beq T, (structured)
where
Bs = 4T (5.8)

Now we can derive the optimal expected total energy coststisuting Equation (5.7) into Equa-

tion (5.4) and (5.5) respectively as follows;

Gt = 23 (N5 v - VW) 59)
i=1
moo 1 4 d_

Cia = o8RG VN (50 1) (5.10)
i=1 i=1
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5.2 Conditions for Scalability

In order to obtain useful insights regarding scalabilitg simplify our expressions from this point
on by assuming that the query rates for all events are unjfoeng; = ¢, Vi. We now examine
the scaling behavior of the total energy costs for both uctired and structured networks.
Theorem 5.2.1. Total Cost of Unstructured NetworksThe total energy cost for unstructured

networks grows with network si2é as follows:

d+1

Cr, =6 (m Vi NW) (5.11)
Proof. The total energy cost is given from Equation (5.9) by,

m
2> (N5 G- YN) = 2myaNst —2m VN
i=1

d+1

= 0 (m\/aNW>

The last equality holds sincg! > L forall d > 1. ]

Theorem 5.2.2. Total Cost of Structured NetworksThe total energy cost for structured net-

works grows with network siz& as follows:
d 1
C;, =0 <m g NE> (5.12)

Proof. It can be proven in the same way as the proof of Theorem 5.1 tise Equation (5.10)
O
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To understand the implications of these theorems, it isflketp consider some extreme cases
of the scaling behavior of the number of eventsand the query ratge. We consider allowing
each of these parameters to scaledd$) or ©(NV), giving us four possible combinations. In
practice the scaling behavior of the events and queries ndttvork size is determined by the
application scenario. For instance, an application whatfuires the network (regardless of its
size) to have only a single sink injecting queries for evemtsild have thay is ©(1), while a
richer application involving increasing numbers of useithwhe network size could have that
©(N). For many event monitoring applications, it is likely to lEasonable to assume that the
number of observed events scales proportionally with thpbogenent area which for a constant
density deployment would mean thatis © (/N ); however in other applications the scalingrof
may be weaker, all the way down to the extremedi) (which would imply that there only a
finite number of events that can be detected regardless oietneork size). The following table

exhibits the scaling of total energy costs for the four caseter the unstructured networks.

m = O(1) m = O(N)
¢=0(1) | ON%) O(N %)
g=O(N) | (N O(N51")

Table 5.0: lllustration of the scaling of total energy costdor unstructured networks.

We generate a similar table below using Theorem 5.2.2 tetilite the scenarios for structured

networks.
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¢=0(1) O(N7) O(N“T)
A% 4 d+1 2d242d+1

¢=O(N) | O(N @)  O(N @i )

Table 5.1: Illustration of the scaling of total energy costdor structured networks.

We observe something striking about Tables | and II. In babies, among the four cases, only
when bothg andm are©(1) do we observe that the total costs for the whole network sasile
O(N) for all dimension. In other words, only in this example casewe haveO (1) scaling of the
per-node cost, i.e. bounded energy consumption per node nidtivates us to inquire about the
general conditions under which a network can scale whilerang that the energy requirement
per node is kept bounded — a very important requirement frgmaetical perspective.

Theorem 5.2.3. Conditions for Scalability of Unstructured NetworksFor unstructured net-

works, the energy requirement per node is bounded if andibnly
m-ql/2 is O (N%>

Proof. The total optimal energy cost per node is the total cost dividy the number of nodes.
If the energy requirement per node is bounded, there &Xjsts 0 such that, from the per-node

total cost given from Equation (5.9) divided BY (assumingy; = ¢, Vi),

1—d

Ciu/N = 2mq1/2N12;dd —2mN ¢« < (Cy

= m- (¢ - N < %N‘é—d (5.13)
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Sincel+ < 0so thatN ‘2¢ < 1, forg > 4,2

¢/? - N5 > 1 (5.14)
Hence,
1/2 -
n% < m(g"/? — N'=) (5.15)
:TWWZO(M%) (5.16)

Conversely, ifimg!/2 is O (N%)

mql/2 < CON%
= m-(ql/z—N%dd) < CON%

= 2mg2N'F —2mNT" < 2C, (5.17)

Note that the left side of inequality (5.17) is equal to théirafzed per-node total energy cost.

Therefore, the per-node total energy cost is bounded. O

Theorem 5.2.4. Conditions for Scalability of Structured NetworksFor structured networks,

the energy requirement per node is bounded if and only if

1

m'qd%l isO(Nd%>

%It can be proven for alj > 0, but the proof would be unnecessarily long and clumsy becgum Equation (5.7)
becomes less than 1 which means we need to carfeaotbe one becauseg is at least one and the total cost is convex;
therefrom, we need to make several trivial changes. We draitbrresponding proof due to the limited space and
assume thaj > 4 is reasonable enough.
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Proof. It can be proven in the same way as the proof of Theorem 5.8 tlse Equation (5.10).

O

We note that bothV 5 and N7 from the above scalability conditions are increasing func-
tions with respect to the dimensieh Therefore, we can see that networks deployed in higher

dimensions are inherently more scalable.

5.3 Network Scaling on Fixed Energy Budget

We now consider having a fixed energy budget, and look inta whaditions the network size
must satisfy to ensure that events and queries within the fildployment time duration can be
resolved before energy depletion. Specifically, we willuass that there is an average energy

budgete for each node, so that the total energyis=e¢ - N.

Definition 5.3.1. We say a networkperates successfulifit can satisfy all queries for all events

in a given deployment period before energy depletion. Tégsires thatC; < e- N.

The last case of each of the following two theorems has safosdes the proofs of which need
to borrow knowledge in Section 5.5. We provide the subcatzgtion here for the sake of self-
completeness of the theorems.
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Theorem 5.3.2. Network Scaling on Fixed Energy BudgetGiven fixed average per-node en-
ergye (i.e., the total energy allocated optimally among the nodethe network grows linearly
with the network size a8 = e - N), the following statements describe the conditions on the
network sizeN, network dimensior, the number of events and the number of queries per

eventy that ensure that the network can be operated successfully.

, - _d_ =
1. If mqg'/? is o(N%) for unstructured networksnfga1 = o(NdTl) for structured net-
works), then there exists a minimum network $¥zg,, (¢) beyond which it can always be

operated successfully.

. - _d_ -
2. 1f mg"/2 is ©(N 52 ) for unstructured networksi(g71 = O(N “a") for the structured),
then there exists an average per-node enefgguch that for alle < ¢*, it is not possible
to operate a network of any size successfully, while foe all ¢* it is possible to operate

a network of any size successfully.

— d —
3. If mg/? is w(N 2 ) for unstructured networksn(g@™ = w(N“T ) for the structured),
then there exists a maximum network si¥g,.(e) beyond which the network cannot be

operated successfully. Further,

(@) If mq'/? is o(IN) for unstructured networksn(qﬁdl = o(N%) for the structured),

thenN,,.. is a convex function af

(b) 1f mq'/? is ©(N) for unstructured networksn(qﬁ = @(Nf*fl) for the structured),
thenN,,.. increases linearly witle.
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(¢) If mq'/?isw(N) for unstructured networkm(q% = w(Nd2_f1) for the structured),

thenN,,.. increases as a concave functioneof

Proof. Because proofs for both structured and unstructured nksaxaoe similar, we provide here

the proof for unstructured networks only.

1.m-¢"? = @(N%‘e) wheree > 0. Then, the optimal total cost is given from Theo-
rem 5.2.1 by,

Cif, = ©(m-¢/?N37)=0(N'~)

O[Nl_e + O(Nl—e)

Since the total cost expenditure should be less than the gergye - N,

aN'=¢ +o(N'™¢) <eN

o(N1=¢)

= N2 -+ —

«
-+
e

Sincee > 0 and the last term of RHS goes to zero, there exigts> 0 such thatV > Ny

implies this inequality holds, wher#&; is a fixed constant and can be considered as the

minimum network size to make the network operate succégsful

2. It m - ¢'/2 = ©(N 57 ), then the total cost is given by,

Ciy = O(m-q">N5) = O(N)
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Hence, there exists > 0 andS > « such that

alN < Czu < BN, forall N (5.18)

Lete* be the infimum of sucly so thate* = inf{3} > a > 0. Suche* always exists since

the real number has the least-upper-bound property. Thewef> e*,

E=e-N>Cy,, foralN (5.19)
And for Ve < e*, sincee* is the infimum,
E=e-N<Cf,, forsomeN (5.20)

3. Similarly,m - ¢!/ = ©(N 57 <) wheree > 0. Then, the optimal total cost is given by,

C* G(m . ql/QN%) _ @(NH_E)

t,u

= aN'te4 0(N1+€)

From the total cost expenditure constraints,

aN'T¢ £ o(N*€) < eN

For the sufficiently large initial per-node energy>> «, 3N,,., > 0 such that the last
inequality above achieves the equality since the order ®fLtiS is bigger than that of
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RHS. HenceN > N,,.. implies the negation of the above inequality so that the agkw

cannot operate successfully.

As for the subcase a), We have another two subcases heney'1f = O(N%), then

we can use the inactive optimal total energy cost given byofidra 5.2.1. Ifmg'/? =
Q(N%), we should use the active cost given by Equation (5.26). Matevhenng!/? =
@(N%), the storage constraints might be either active or inadegending on the per-
node storage by Theorem 5.5.2. That is the reason why we investigate bcitheaand

inactive optimal total costs for the boundary situation.

First of all, let us consider the first casey'/? = @(N%JFE), where0 < e < ZEL. When

0 < e < 1/d, the optimal total cost is given by,

C:-,u,mact = O (mql/QN%) =0 (N1+€)

_ aNl+€ +o (N1+6)

wherea > 0 is constant with respect .

From the total cost expenditure constraints,

aN'te + o (NHe) <eN
= N°< S 4N (5.21)
(6]
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For the sufficiently large initial per-node energy>> «, IN,.:(e) > 0 such that it
achieves the equality of Equation (5.21) since the ordehefltHS of the equation is

bigger than that of RHS. For larg€,,,.. (¢), Nq. can be approximated as follows:

Nmaa: _ (1/0[)1/6 . el/e

Sincel/e > d > 1, this N,,,. is a convex function oé.

Whenl/d < e < %, we can use the active optimal total cost. Through the simila

reasoning, we can easily achieve the following equalithwjpproximation foe >> «.

d d
Nz = (1/a)m . e2de—1

Sincey;2— > 1, this N, is a convex function of.

As for the other two subcases, we can prove them in the samesimy the active optimal

total cost equation. -

Figure 5.1 illustrates the network size versus energy buclgees for the 2-dimensional deploy-
ment; the five cases are for the different cases in Theorer?. 5 8e other dimensional networks,
particularly those of one and three dimension, exhibit sintiehavior. The figure is obtained nu-
merically by equating the expressions for total cost withehergy budgel = e- N, and solving
for N as a function ok, under particularn andq scaling settings that satisfy each of the corre-
sponding cases. (A very similar figure can be obtained facsired networks and is omitted due
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@) (b) (c)

(d) @)

Figure 5.1: Network size conditions for successful operatvith respect to per-node energy
budget for different event-rate and query-rate scalingasiehns, for an 2D unstructured network;

S denotes the successful region whiledenotes the unsuccessful region. (a) case 1 of Theo-
rem 5.3.2, (b) case 2, (c) case 3.a, (d) case 3.b, and (e) €ase 3

to lack of space). The regions marked S and U are where theorietperates successfully and

unsuccessfully, respectively.

We see that under case 1, there is a minimum network sizegtregeided to ensure successful
operation, and this minimum network size decreases rapidlyincreasing energy availability.

In this case, the event and query activity remains low endbghadding nodes to the network
is beneficial (as it increases the available total energy)ddd the event-query activity case 2,
there exists an per-node energy threshold such that belswhtieshold, no network can operate
successfully, but beyond this threshold, networks of amg san be operated. Under cases 3.3,
3.b, and 3.c, we see that for a given energy budget there ragisimum network sizes beyond
which successful operation is impossible. In these casengnodes to the network is harmful
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Figure 5.2: The network lifetimeT() vs. the number of nodes\) of the unstructured network
when bothm andgq are proportional t@”

as each additional node introduces more consumption tremumees. The key distinction be-
tween these cases is that under case 3.a, there is a convek ¢inat implies that adding energy
resources to each node provides a super-linear improveimém: maximum network size that
can be sustained; under case 3.b, the maximum network sizes dinearly with the per-node
energy budget; and under case 3.c, the concave growth ofitkie omplies that adding energy

resources provide diminishing returns in maximum netwak.s

5.4 Scaling Implication in Terms of Lifetime of a Network

We now consider a relaxation of one of our key assumptionsat-tkie network is being operated
for a fixed duration. This allows us to examine how the lifetiof the network (the period over
which all queries for all events can be resolved succeg3fatiales with the network size. In this
connection we will assume that the total number of eventsesnetwork initiation and the total
number of queries per eventi(t), ¢(t)) are such that they are both non-decreasing functions of

time, and at least one is a strictly increasing function rokti 93



Theorem 5.4.1. Lifetime Scaling on Fixed Energy BudgetWith a fixed average per-node en-
ergy budget o, so long as the number of events and queries scale tempsmtlyatmg'/? for
unstructured networksn(qd%1 for structured networks) is a monotonically increasingdion

of time, the lifetime of deploymeiitover which the network can operate successfully scales with

the network size as per the following conditions:

1. if mq'/? is o(N%) for unstructured networksn(qd%1 = o(N%) for the structured),

thenT increases withV.

2. if mq'/? is ©(N =) for unstructured networksifg 71 = O(N“T) for the structured),

thenT is constant with respect ty.

— d —
3. if mq!/? is w(N 3 ) for unstructured networks(g7 = w(N“a) for the structured),

thenT decreases withv.

Proof. Because proofs for both structured and unstructured nksnase similar, we provide here

the proof for unstructured networks only.

1. Supposen - ¢*/% = @(N%‘6 - f(T)), wheree > 0, f(T') is a monotonically increasing

function. Then, the optimal total cost is given from Theorgi2.1 by,

cr O(m-q"/?- N5T) = O(N'~*- /(T))

t,u

= aN'™ . f(T) +o(N'~¢. f(T))
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From the total cost expenditure constraints,

aN'=¢f(T) 4+ o(N'=¢f(T)) < eN

L e, O (T))

- = (5.22)

For large enoughV, the second term of RHS of Equation (5.22) is negligible. M he
since f(T") is monotonically increasing with respect to T, there exiBts, such that it
satisfies the above equality; < 7)., satisfies the inequality. Hencé(T,,,.) can be

approximated as follows:

gy

f(Tma:v):a'Ne

Since f(T') is monotonically increasing,),,. increases withV.

The proofs for case 2) and 3) are analogous to the above case. O

These theorems are illustrated in Figure 5.2 through a noaigriot based on exact expressions.
We can see that event-query scaling conditions determireth&h the lifetime of the deployed
network increases, decreases, or remains constant wjitbatet® network size.
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5.5 Storage Constraints

We now consider more practical situation adopting limitemtage in each node in the network.
We assume the total storage size of the networkis s - N, wheres is the average storage size
of a node. The optimization formulation is switched as fobo

Minimize Cy =" ¢iCs(r;) + > ity Cr(r3)
(5.23)

s.t Z:il r, < S
We solve this problem using the method of Lagrange multiplid he Lagrangian function for
this inequality-constrained optimization problem can kgressed using a Lagrange multiplier

and a slack variable as follows;

L(F, M x) =Cp+ A (i ri— S+ x2> (5.24)

i=1

The solution when the constraint is inactive (ixe= 0) is as same as that of unconstraint version.

When the constraint is active (i.e.= 0, A > 0), we get

S+m
=2 /q; — 1, (Unstructured)
N v Al
Tiact = _d_ (525)
—5 ¢, (Structured)
Z;’nzl q]?Hl
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Now we can derive the optimal expected total energy costs thé active constraint substituting

Equation (5.25) into Equation (5.4) and (5.5) as follows;

i I (v —2)
+ 3 Z] LV

=g Vai N, (Unst.)
Cz(act m S #{1 (526)
Zz—l N m d_il 4; —1
Zj:l 4

T g
+ gz ¢/ VN, (Structured)

When the available storage in the network exceeds the suhe africonstrained optimal number
of copies for all events, we have an efficient region wherendtevork can achieve the smallest
total energy cost of querying (and replication). Otherwean the optimal energy cost shoots up
resulting in quite an inefficient performance of queryingenide, from a scalability perspective,
it is desirable to ensure that the per-node storage reqaitenremain bounded irrespective of
the network size. This is equivalent to requiring that therage storage sizebe constant with
respect to the network sizg.

Definition 5.5.1. We say that a networkcales efficiently with bounded storagie

m
ANG €N 5.t Y rijpae < S=s-N, for YN > Ny (5.27)
i=1

With the same reason in Section 5.2, we assyme: ¢, Vi. The following theorems ar@the

scaling results that quantify the above condition for ungtired and structured networks.



Theorem 5.5.2. Conditions for Efficient Operation of Unstructured Netwosgkwith Bounded
Storage: For unstructured networks, if condition (5.27) holds, then ¢!/ must beO (N%)

Further, if m - ¢'/2iso (N%> then condition (5.27) holds.

Proof. If condition (5.27) holds, then the following holds for @&l > Ny using Equation (5.7):

m
> g = ma AN —m < 5N
1=1
= m(¢?-N) < sN (5.28)

As in the proof of Theorem 5.2.31/2 — N > 1. Hence, Equation (5.28) implies

N

2d d

< 5 < sNe (5.29)
qt/? — N72a

Equation (5.28) can be expressed as followsyftyr > Ny,
mgt/? < sNGT + mN'% < sN57 +sNY4 (- (5.29)
Sinced > 1= 4 > 1 mgt/2 =0 (N%>

On the other hand, if2 ¢*/2 is o (N%) thendN, € N s.t N > N, implies
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d+1
mq1/2 < sN2d

1—d d+1
= mql/z—mNW §mq1/2 < sN2d

m
d—1
= er’mad = mql/zNW —m<sN=5
i=1

Theorem 5.5.3.Conditions for Efficient Operation of Structured Networksithh Bounded Stor-
age: For structured networks, if condition (5.27) holds, then qd—il must beO(N). Further, if

m- qd—il is o(N), then condition (5.27) holds.

Proof. It can be proven in the same way as proof of Theorem 5.5.2 ub&gtructured case of

Equation (5.7). O

We note that the bounded-energy conditions of Theorem &aril%.2.4 are stricter than the above
bounded-storage conditions, respectively. Even if thended-storage condition is satisfied, the
per-node energy might not be bounded so that the scalabilitgtwork cannot be guaranteed. If
the bounded-energy condition is satisfied, however, thetedrstorage condition will be auto-
matically satisfied resulting in the scalable network imteiof the querying energy expenditure.
In other words, introducing the limited storage does nodpoe any impact on the previous
scalability conditions (Theorem 5.2.3, 5.2.4). Howevearwee mentioned earlier, it provides an
effect on the case 3 of Theorem 5.3.2 making it possible toubeategorized into three more
cases as the theorem already claims. It is because the optipected total energy cost for each
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of the unstructured and structured network now has one mussilulity — the active storage

constraints.

Let us first consider unstructured networks. In the activestraint region, the optimal total

energy cost is given from Equation (5.26) substitutthg sV andg; = ¢, Vi by,

2
Cz(uact = SN%_le/d—i_M
1% m+ S
- @(N‘%1 —|—m2q) (5.30)

Since it is reasonable to consider that the number of eventssmaller than the total network

storageS, S = sN is dominant compared t@. Thus,ﬁ’fﬁjg = O (m?q), and so Equation (5.30)

holds.

For structured networks, we can also conclude that the aptotal energy cost is as the following
using the same reasoning.

Cruaet =© (N T tmd - q) (5.31)

These new optimal total costs lead to the following statemenTheorem 5.3.2.

1. Ifmg"/2isw(N 57 ) ando(NN) for unstructured networksi{g @ — w(NT) ando(N%)

for structured networks), then the maximum network $izg,.. is a convex function o

2. If mq!'/? is ©(N) for unstructured networksi{gar1 = @(Nf*fl) for the structured), then
Nynae increases linearly with.
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€ Unstructured Networks e Structured Networks
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Figure 5.3: Average energy consumption vs. normalized hsgamte from the center of the
square grid network: each line corresponds to a differentlar of nodes
3. If mq'/? isw(IN) for unstructured networksn(qﬁ = w(NdQT(»il) for the structured), then

Noaz INCreases as a concave functioreof

5.6 The Hot-Spot Problem

In the previous sections we have considered the total efretgg network for the analysis instead
of the per-node energy. Certainly, it might be true for sormes that the network scales in a very
different way in terms of the per-node energy. For exampbesitler a naive replication-query
scheme where, at the moment a node senses anigveamode creates and sendgeplicas in
the network, and the nodes which have the replicas servaiasesnodes forever. It is easy to see
that each source node serves the unbounded number of g(ferissuctured networks), or the
sensing node sends the unbounded number of replicas (fsucnsed networks) as the number
of nodes in the network increases if the number of queriethioevent is unboundedly increases
with the increasing number of nodes. In this situation, aéferred to as théot-spot problem
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the network is not scalable because some individual nodesurgbounded energy requirements

although the total energy requirement across the netwonkires constant.

However, there is a smarter yet simple replication-queheste to avoid the hot-spot problem.
For example, consider the following scheme: if a node seasexyent, it creates a replica and
sends it to a random node in the network with the informatleat additionalr? — 1 replicas
should be disseminated. The receiving node creates ameflara and sends it to a random node
with the information ofr — 2 replicas, and so forth until all’ replicas disseminated. When a
source node, that has one of the replicas receives a query for the evelttesn't only send back
the event information to the queriey, but also transfer the ownership of the replica to the querie
so thatn, is no longer the source of the event, bytis now. Note that this ownership transferring
process does not incur any additional energy cost. Wittstttieme there is no special node in the
network so that the expected energy consumption for each isoseme ignoring the boundary
effect. It does not even need the ownership transfer to aaewery query; it would be sufficient
to transfer the ownership only when the remaining energpines less than a certain percentage

of the amount when it has received the ownership. Likewisagynalternatives can be envisioned.

In order to examine the boundary effect, we also have coadwsimulations on 2D square grids
for both structured and unstructured networks with the alyeplication-query scheme in which

the ownership of replica is transferred at every query.

In the simulations, the number of events is 30 and the numbgueries for each event /N
(where N is the number of nodes) for unstructured networks so thas¢haéability condition of
Theorem 5.5.2 is satisfied. For structured networks, thebeunrmf events are 60 and the number
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Figure 5.4: Average energy consumption vs. the number asiotthe network: the red line with
cross marks is for the average consumption over the higlést@les in energy consumption,
and the blue line with x marks for average over all nodes

of queries isV3/* satisfying the condition of Theorem 5.5.3. The storage ohe®de is assumed
to be large enough to accommodate all the given replicaser@s$sumptions are as same as for
the analysis. Figure 5.3 shows the average energy consamapti terms of the normalized hop
distance from the center of square grid networks. The kegrohtion is that although energy
consumption patterns are not uniform everywhere in the ot\({peaking close to the center), the
ratio of the peak energy consumption to the average enenggins bounded (almost a constant)
as the size of the network is increased. This is because #rgyenonsumption as a function
of the relative location remains essentially the same tbgss of network size. Figure 5.4 also
shows this - the ratio between the average requirement dbfn@% most-energy-consuming
nodes and the average energy consumption in the whole deteimrains nearly constant. This
shows that boundary effects are not dominant, and validaiesrgument that the asymptotic
scalability results based on total energy consumptiontadsbwhen considering per-node energy
constraints, so long as such a load-balanced replicatienycscheme is used.
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5.7 Discussion

Thus far we have studied the scaling laws for data-centridN®AB8here replicas are placed indi-
vidually before queries are issued, and no additional copie made within the network while
event information is being forwarded. It is an interestimgo question to find out their effects
on the scaling laws when copies of events are allowed to be mttie intermediate nodes as the

event is forwarded. We call this process on-demand refditat

The details of storage and querying with on-demand rejiicas as follows: at first, a number of
initial replicas are placed within the network before angiyus generated as before. Meanwhile,
additional copies of events are made in an on-demand faghiotermediate nodes whenever the
event information is forwarded either during the initigblieation, or during the reply to a query.
The replicas generated at the intermediate nodes can serseueces of the event for future
gueries. Note that there is effectively no separate coghferon-demand replication. The initial
replication forr; target nodes, in fact, produces a Steiner tree whose lea@dbatarget nodes
and its internal nodes have the on-demand replicas if eadl imthe tree has enough storage
to store the replica. When the number of nodes in the treeeélsctine fair share of the event in
the network, only the fair share amount of nodes in the treesalected to have replicas for the
internal nodes in the tree. The fair share for evéstassumed to be proportionaldo/ ", gx on
average. This occurs because some of the nodes in the tr@e&leexhaust their storage, being
filled up with other events’ replicas. After the first phasddigional replicas are to be produced in
the nodes of the path that a reply follows whenever a querthfoevent is issued. It can be shown
that the structure of replicas grows as the dynamic Steieer({59]) in this phase. Further, the
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number of total replicas of a certain event also does notezktiee fair share on average because

of the bounded per-node storage.

The analysis we have given in the previous sections doesavet this scheme because (1) on-
demand replicas do not incur energy cost for replicatiort, Halp the search cost decreased,;
and (2) the replicas are not necessarily deployed uniforidlgwever, we provide the problem

formulation for optimizing the communication energy coktie system as follows:

m g ‘ )
Minimize g g Ci(rs,j — 1, ai sN) + Cr({r;|1 <i<m})
r=(r1,...,T'm) =1 =1 Zk qi

m
s.t Zri <sN
i=1

(5.32)

wherer; is the number of target nodes for the initial replication éventi, C?(z,y, 2) is the
expected search cost for evénvhen the replicas of evertis in the subset of nodes of the tree
structure, which starts as a Steiner treedfaandomly chosen leaves. Then, the tree grows as a
dynamic Steiner tree fay additional leaves keeping the fair shareumber of replicasﬁr(-)

is the expected joint cost for initial replication for allauws. Note that multicast can be used for

this initial replication to further decrease the cost.

While the exact analysis for the above optimization is hagdabnse of the complex dynamics
and non-uniformity of the on-demand replication, we cafi giovide a bound on the energy
cost which gives a necessary condition for scalability @ggplies to any replication scheme.
The bound can be derived by assuming the best possibleatplicscheme which produce the
maximum number of replicas being disseminated uniformigrdkie network without incurring

any replication energy cost. We assume that the storagebfeale is bounded as in the practical
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system, and the network has a large number of events so ¢hatithber of replicas of each event
cannot grow on average more than a number which is much lassle total number of nodes
in the network. This assumption prevents the trivial caseratevery node eventually acquire
a replica. The optimum number of replicas for each event @aolitained using the following

optimization formulation:

r=(71,....,rm)

m
s.t Zri < sN
i=1

Minimize Zqics(ﬁ‘)
i=1 (5.33)

The optimizer turns out to be exactly same as given in Equngi®5).
Theorem 5.7.1. Necessary Condition for Scalability of Unstructured Netvks: For unstruc-

tured networks, the energy requirement per node is boundiyifo
m+y/q = O(VN)

Proof. Because it is assumed thgt= ¢ Vi, the optimum number of replicas for the best possible
replication scheme isN/m. Substituting the optimum number for each event into theckea

cost expression, it can be proven in a similar way as in The&@e.3. O

Theorem 5.7.2. Necessary Condition for Scalability of Structured NetwarkFor structured

networks, the energy requirement per node is bounded only if

Proof. It can be proven in the same way as the proof of Theorem 5.7.1. O
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Based on the optimization, Theorems 5.7.1 and 5.7.2 destindgnecessaryconditions for the
scalability for unstructured and structured networkspeesively, with the assumption that the

query rate is same for each event,g;e= ¢ Vi, as in previous sections.
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Chapter 6

Content Dissemination in Heterogeneous Vehicular Netword

In this chapter, we investigate the efficient disseminatbrsome delay-tolerant content to a
group of vehicles that share an interest in this content. detay-tolerant contents can support a
variety of services, ranging from traditional traffic infoation and weather forecast to futuristic

mobile advertisement and music sharing.

We first formalize optimization problems for the efficienttent dissemination in Section 6.1.
In Section 6.2, we derive one of our key measures, the expentmber of satisfied vehicles
by the dissemination, using ordinary differential equatf@®@DE) based modeling. The core op-
timization problem and its solution is then investigatedSiection 6.3. Then, we develop an
algorithm to calculate the practical optimum solution @zening the limitation of the analytical

solution in Section 6.4. We introduce the Beijing taxi trae@d use them to verify our analysis

in Section 6.5.

1This work was done jointly with Prof. Bhaskar Krishnamadh@r. Fan Bai, and Dr. Lin Zhang, and first reported
as [7].
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6.1 Problem Formulation

We consider a heterogeneous vehicular network consisfingre with both short-range and cel-
lular radios, over whichn-types of content need to be disseminateghtgroups of vehicles. The
i-th group of vehicles are interested in thth type of content. The goal is to efficiently dissemi-
nate these contents to their corresponding groups of nodiesthe infrastructure exploiting both

long-range and short-range communication methods.

One extreme way of the dissemination is to send the contergadh one of vehicles in interest
through the long-range radio only. This method incurs $icgmt access fees proportional to the
number of the interested vehicles although the associatky dvould be small. On the other
extreme is to send the message to one vehicle only in eadlested group through the long-
range radio, and let it spread to other vehicles through wrteos via the short-range radio. In
contrast to the first approach, this incurs the minimum acéess, but the delay for reaching a
large number of nodes would be substantial. In between,dlasy dvould decrease as the number
of vehicles that obtain the messages directly through thg-tange radio (we call therseed
node$ is increased, with a corresponding increase in accessTlass the number of seed nodes

tunes a fundamental tradeoff between delay and cost.

Our goal in this problem is, then, to maximize the expecteahler of vehicles obtaining the
contents in their interest such that the access cost is aad@ussible, subject to the long-range
radio access cost constraint and tolerable delay constr&ior more specific presentation, let
us supposen types of messages to disseminate from the infrastructue¢n ldenote the total
number of nodes in the network, apgdis the proportion of the nodes that are interested in the
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i-th type of messages. We use interchangeably the terms mubeehicle, and messages and
contents, respectively, in this chapter. Each long-ramag@raccess incurs a unit cost which is
assumed one in this dissertation whilgis the number of seeds for thieh type of message.
Hence, the total cos{k) is the sum of alk;-es, wherek = (ki , ko, ..., k,,) is calledseed vector
Let s;(k;,t) denote the expected number of satisfied nodes-fortype content at time when

the number of seed nodefig. We assume that the seeds are deployed at@ime

Then the problem formulation is as follows:
PF1 : Maximize f(k) =", si(ki,d) —w - c(k)
k=(k1,....km)
st oek)=>"k<C
0<k;<n;=pn, VieM

k e N

whereM = {1,2,...,m}, the cost budget i€, the tolerable delay ig > 0 units of time, and
w > 0 is the total cost weight. The total cost weight reflects thpdrtance of the cost in the

sense that deploying one more seed should bring atdeasmber of satisfied nodes on average.

The objective functiorf (k), which is referred to asystem utilityn this dissertation, is essentially
the extra benefits induced by the short-range radio. It ig #asee that the system utility is the
expected number of satisfied vehicles through the shogeraadio alone, when the total cost
weightw = 1.
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6.2 Modeling Dissemination

In this section, we derive the expected numbgk;, t) of satisfied nodes obtainingth type of

content at time& when onlyk; seeds are initially deployed at tinde

6.2.1 Terminology and Assumption

We first define the symbols used in our analysis as well as tstatessumptions.

1. We assume that a node may encountgroportion of all nodes on average for the time

interval in interest;

2. For any pair of nodes, we assume that the inter-encouintef follows an exponential

distribution with rates;

3. We also assume that the inter-encounter times of pairsdagshare jointly independent and

identical;

The assumption (1) is self-explainable. The assumptioharfd (3) make our analysis math-
ematically tractable, and they have been found reasonahém wehicles follow conventional
mobility models such as random waypoint model ([106]). A¢ #ame time, we acknowledge
that these two assumptions might not be always realistihabwe relax both of them in our
trace-driven simulation; though neither assumption i$gutlly honored in the empirical traces of

Beijing taxis, our simulation results still reasonably egywith our theoretical results.

2Theinter-encounter timef a given pair of nodes is defined as the time duration frontithe that the given pair
of nodes encounter to the next consecutive time that theepaiunter again.
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In our study, we take aimterest-onlycaching policy: A node sends the previously obtained mes-
sages only to the nodes that are interested in the same type pfessages. In this dissertation,
we focus on this caching policy because it can avoid the goorable storage costs for keep-
ing uninterested data incurred otherwise. A different sotuis to allow vehicles carry contents
which the vehicle users might not be interested. It is olslipthe latter solution could provide
an even better performance than the interest-only solatidhe cost of extra storage space. The

analysis of the latter cache policy is out of our scope, whighits an independent study.

Note that atomic contact among vehicles is assumed, ingplhiat the message exchange be-
tween a pair of vehicles could be completed during their entar process. As shown in [36,
135], it is reported that 30-70 MB data could be transferegledmicle encounters (with normal
driving speeds). Thus, we believe that most types of lighighted contents (weather forecast,
traffic information, mobile advertisement) could be susédfy transmitted during short encoun-

ters between vehicles.

6.2.2 ODE model

We observe that the expected number of satisfied nodes lelkeehe number of infected
nodes in epidemic routing ([120]). The differences are thatinitial number of sources (i.e. the
number of seeds in this dissertation) is more than one, aidhb other nodes that a node may
ever encounter are not all nodes but a fraction of them. Téd@quis work has introduced largely
two methods to analyze the number of infected nodes; oneing tise Markov chains and the
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other is using the ordinary differential equations (ODER([52]). We use the ODE method with

some modification for our analysis.

First, consider the expected number of newly satisfied nodebetween time andt + dt, where

dt is infinitesimal. There are two groups of nodes at tirme group of satisfied nodes and a group
of unsatisfied nodes. The number of nodes in the former g®gibk;, t) as defined, and that of
the latter isn; — s;(k;, t), wheren;(= p;n) is the number of nodes that are interested in the type

i message.

Let us define thénter-encounter time between the two groagsthe time elapsed until any node
in one group meets any node in the other group after such ateroof inter-group nodes hap-
pens. Then, the inter-encounter time between the satisfiddree unsatisfied follows the Ex-
ponential distribution with rat@ x (# of pairs of ever-encounter inter-group nodesgcause the
inter-encounter time of each pair of nodes that ever megisdisExponential (Assumptions (2)

and (3)) and each node meets a fraction of other nodes (Asmm{f)).

Therefore, the expected number of newly satisfied nades,is as follows:

AS = Si(k}i,t + dt) — Si(ki,t)
= Oéﬁsi(k‘i, t) (TLZ — Si(k?i, t)) - dt (6.1)
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Note that the expected number of ever-meeting pairs of-gn@up nodes is approximatély

OéSi(ki, t) (ni — Si(ki, t))

From (6.1) and the fact that the number of seeds,isve have the following ODE system;

%k;’t) = Oéﬁsi(k‘i, t)(n — Si(k?i, t)) (62&)
Si(ki, O) = kl (62b)

It turns out that this ODE system has the closed-form saiwi® follows:

ng
L+ (ni/ki — 1) exp(—n;aft)

6.3 Optimization

In this section, we derive theoretically the solution of tdpgimization problem proposed in Sec-

tion 6.1. In order to gain better intuition about the systeshdvior, we relax the optimization

*This is because we approximate the expectation of the sgfisine number of satisfied nodes at time
t to the square of the expectation of the number of satisfieizhwik not rigorously true with the finite
number of nodes. However, it becomes more accurate andualigrexact as — oo because the variance
goes to zero. We shall also see when we validate with thenagd4, this is still a useful approximation.
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problem ignoring the integral constraint on the numberseefdsk;. Therefore, we focus on the

following optimization problemPF2 in this section:

PF2 : Maxli{mize f(k)=>""si(ki,d) —w - c(k) (6.4a)
st ok)=>"k<C (6.4b)
0<k;<ni=pn, VieM (64C)

We first show that the problem is a convex optimization prnohléhen, solve the problem using
the method of Lagrange multipliers. In the process, we &irtelax some constraints for easier
derivation, and then, provide the condition under whichgblkition derived with the relaxation

is valid for the original problenPF2.

6.3.1 Convexity of the Problem

The expected numbes; of the satisfied nodes is concave with respect to the numbssenfst;

because its first derivative is non-negative and its secendative is non-positive as follows:

Bsi(ki, d) n2zi
= L >0 Vk; € (0,n;
0?si(k;, d) 2n?2(1 — %)
Y i <0 Vk; € (0,n;
Okf k?(l + (nz-/ki — 1)21')3 - ( " ]

where we use the following for concise presentation;

z; = e~ Mol (6.5)
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Therefore, the objective functiofi(k) is a linear combination of concave functions, which im-
plies that the function itself is concave. From the congawftthe objective function and the fact

that all constraints are linear, we can see that the proldentonvex optimization problem.

6.3.2 Optimum Number of Seeds

We use the Lagrange dual of the convex optimization probfewbtain the optimum solution.
We further ignore the constraints in Equation (6.4c) for rfowthe concise presentation of the
derivation. But, we shall provide the conditions under vihite obtained solution in this section

is valid for the problemPF’2.

The Lagrangian of the problem is as follows:

Lk, \) = f(k) — A(c(k) —C) (6.6)

where is the Lagrange multiplier andl > 0.

Since the primal problem is concave, it is well-known that plarameter se{fc, X) that minimize
supy L(k, \) maximizes the primal. Because the Lagrangian is also cenadth respect td,

we have the following conditions for su¢ﬁ, X);

OL(k,\) n2z; B .

T SO NP —A—w=0 Vi (6.7a)
OL(k,\) o B
— = (;ﬂ: ki — O) =0 (6.7b)
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As can be seen from Equation (6.7b), we have two cases; one=o0 (i.e. > k; < C) and the
other ford_ k; = C. When}_ k; < C, the constraint (6.4b) is inactive meaning that the safutio
of the constrained optimization problem is indeed that ®litconstrained version. Suppd~se
is the unconstrained optimum solution, anddebe the unconstrained optimum total cost, given
by;

C =ck) = f: ki (6.8)
i=1

Then,C = ¢(k) < C, and so, the optimum solutidnautomatically satisfies the constraint (6.4b)

in this case.

On the other hand, the constraint (6.4b) is active in the edm@e) " k; = C. It means that the
unconstrained solution of the optimization problem reggiimore cost than allowed in general,
that is,C’ < C. In other words, the system does not afford the unconsttagptimum seed
vector, resulting in fewer numbers of seeds to meet the @inst Therefore, the system utility

f(k) would be smaller than its maximum possible.

Now we provide the solution of the constrained optimizatioablem as follows:

~ Ni\/ 25 1 e =
];_ kl_TzZ <ﬁ—\/zl>, if C<C (693.)
/SZ-Z"Z'—VZ’(CJFA— zi>, if C>C (6.9b)

I—Zi B
where
- n;z; ik Ni~\/ %4

A= — B = 6.10
: 1-— Zi ’ Z 1—z ( )

And, C can be obtained from Equations (6.8) and (6.9a). The dasivdor the solution is not
terribly difficult, and so, we omit it in this dissertationrfmore concise presentation. We note
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Figure 6.1: Optimum utility vs. delay budget
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Figure 6.2: Optimum utility vs. cost budgeb = 2)

that the solution in Equation (6.9) still ignores the coaistrr (6.4c). However, we show that the
solution is indeed the solution &fF2 under the conditions in Theorems 6.3.1 and 6.3.2.
Theorem 6.3.1. Supposd% and C are defined as in Equations (6.9a) and (6.8), respectively.

Also, suppose; = exp(—n;afd). Then, under any one of the following conditions,

Cq : {0<w<1,0< 2z <w}
Cy: {w=1,0<2z<1}

Cs: H{w>1,0<z <1/w}
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the optimum numbers of seed$, of the optimization problen?F2 are, ifC < C,

k= (6.11)

Proof. We note thatt; is the solution ofPF2 whenC' < C if we ignore the constraint (6.4c).
Hence, what we need to show is tli?ats in the interval0, n;] under any of the conditior8;, Co,

or C; so that the constraint is satisfied.

We can represerit; as follows:

l;i _ ?zl/i—: <% . \/Z_z> =n; - y(z) (6.12)

where

L VE/w=E (6.13)

Then, we only need to show< y(z;) < 1 under any of the three conditions.

When0 < w < 1, we can see that(z) is monotonically non-decreasing (f, 1) because its first

derivative is non-negative in that interval as follows:

dy(z 1—w — Jw)?
R 614

Hence, we can easily sée= y(0) < y(z) < y(w) = 1 under the conditiorT;.
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Under the conditiorC,, we can se@ < y(z;) < 1 from the following:

0=y(0) <y(z) < ?_)ml y(z) =1/2<1 (6.15)

Note that we cannot ugg 1) because it is not defined at= 1.

Now consider the last conditiofl;. Whenw > 1, we can easily see thgfz) < 1for0 < z < 1
from Equation (6.13). And it is not difficult to see thatz) > 0 for 0 < z < 1/w. And, these

imply that0 < k; < n; underCs. O

Theorem 6.3.2. Supposek; and C' are defined as in Equations (6.9b) and (6.8), respectively.

Also, suppose; = exp(—n;afd).

Then, if any of the condition§,, C, andC3 holds, and also if

- 1—Zj
J=1

, the optimum numbers of seed$, of the optimization problen?F2 are,
ki =k

Proof. k; is the solution ofPF2 whenC' < C if we ignore the constraint (6.4c). Hence, we only
need to show; € [0, n;] under the conditions.
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First, we will show that; < n;.

whereA and B are defined in Equation (6.10).

This implies, together with Equation (6.9) and the proof b&é®rem 6.3.1, that; < ki < ;.

Now let us show thak; > 0. SinceC' > Y, "

1—2;

ko2 RE (S 4 4) - vE] (6.16)
= IS IR (14 yvE - VE) 20
where (6.16) follows sincg/z; — \/z; > —1 for all j andi. O

6.3.3 Optimum System Utility

In this section, we investigate the system behavior whemsélee vector is optimurk*. We first
derive the optimum expected number of satisfied nodes anaptimaum system utility, and look
into how they depend on the system parameters, such as thieuclyetC', delay budgetl, etc,
through numerical evaluations.
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The optimum numbes; of satisfied nodes can be derived from Equations (6.3) ad, (@ven

by
Z - Jwz), if C <C (6.17a)
si(d.C)= ¢ "1 5
Z: 2 ( o A\/Z_i> ,  otherwise (6.17b)

wherez;, A, andB are given in Equations (6.5) and (6.10) respectively.

The optimum system utility is from Equations (6.4a), (6a8)d (6.17), as follows:

> (- vwz)si(d, C), it O <C (6.18a)
> ( + \/z_> si(d,C),  otherwise (6.18b)

=1

m

—_

Because of the complexity of the above equations, it is laadbtain a good intuition on the opti-
mum system behavior from the equations themselves. So,3ué te the numerical evaluations
of the equations for better intuition. When it comes to nuparevaluation, the equations are
very simple and easy to calculate. However, we need propaner values for evaluations in

order to have relevant results.

We use the values we obtain from the real traces of vehicl&gation 6.5; the number of nodes
n = 632, the inter-encounter raté = 3.663 x 10~5 per second, and = 0.191. And we focus
on a single type of content in this section. From the proofteddrem 6.3.1, we can see that some
system property may be different when< 1 than whemw > 1. So, we compare the system
behaviors forv = 0.5 andw = 2 when appropriate.
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Figure 6.3: Unconstrained optimum total cost vs. delay btidg

Figure 6.1 shows the optimum utility with respect to the gelavhen the allowed cost’ are
small, medium, and large. Whehis small or large, we can see that the system utility has
ignorable sensitivity on the value éf. But, whend is in between, the difference can be quite
huge. As for the influence af, the utility shows similar tendency regardlessuoflthough the

utility is more sensitive t@' whenw = 0.5.

Now we look into the optimum utility with respect to the alled costC' in more detail through
Figure 6.2. From the figure, we can see that the utility ir@esaip to some point and stays there
afterwards ag’' increases, for eacthvalues. From the analysis, we know that thevalue from
which the utility is constant is actuall@. Whend is small, the optimum utility increase for a
large range of”, but the slope is very small, which means the sensitivityhef wtility to C' is
small. Asd increases(' decreases while the sensitivity increases. However, whisnlarge
enough, only a small number of seeds is needed to satisfy ofidke nodes, and so the cost
constraint become less important. Note that we omit thesglmtw = 0.5 because they look

similar to those ofv = 2 (Figure 6.2).
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Figure 6.3 shows more directly how the unconstrained optimatal costC changes as the
allowed delayi changes. While the cost monotonically decreasedasrease when = 0.5, the
cost reaches its maximum and decreases wien 2. In fact, the optimum cost monotonically
decreases whem < 1. The system behavior changes significantlyvat 1 because one more
seed does not require more than one more satisfied nodewhken, and so the system utility
never decreases as the seed number increases. Howeveruwhber, deploying one more
seed requires more satisfied nodes besides itself, whichhmakg the utility decreases especially
when the delay budget is very small or very large. When theisogry important (higho) and
the allowed delay is very small, our model suggests it is son@s better not to disseminate the

content at all depending on other system parameters likimtddeencounter time.

We can also see that smaller portion of total nodes are ndeddxain the seeds for the optimum

performance as the number of nodes increases.

As for the influence of parameters and 3, we can see they only appear in with d from
Equation (6.18), and only appears withe and 3. Therefore, and 3 act like shrinking or

stretching the performance plot in the directioniads they increase or decrease, respectively.

6.4 Practical Solutions

In the previous section, we explored the optimum behaviahefsystem theoretically. While
the theoretical analysis brings better intuition of thetsys it is also true that the solution is
not either exact nor ready to use in practical systems bedaissa continuous solution derived
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from the relaxed version of the problem (ignoring the inéégonstraint). The practical systems
require integer values for the seed numbers. Hence, in duisos, we develop a polynomial

algorithm to obtain the exact discrete solution fair'7.

Algorithm 1 OPTIMIZER(C,m)

1. k := m-sized array initialized to be all zero.
2. for (c=0;c<Cic+=1)do

3 =0

4 dppaw = —00

5. for (i=1;i <m;++i)do
6: §:= f({k[1],... . k[i]] +1,...,k[m]}) — f(k)
7: if (0 > dnaz)then

8: =1

9: Omaz = 0

10:  if (0n4e < 0) then

11: break

12: k[i*]+=1

13: return k

Algorithm 1 gives the optimum seed vector, eddh element of which is integer-valued and in
the rang€0, n;]. In a nutshell, the algorithm starts with zero seeds foryalées, then increment
the seed number of the type that gives the maximum increabe isystem utility, as long as the
total access cost is not over budget and the increase instensyitility is positive. Its correctness
is proven in Theorem 6.4.1. The time complexity of the algoni is O(m?2C), wherem is the
number of types of content, arddis the allowed cost.

Theorem 6.4.1. Algorithm 1 returns the optimum solution 8F'1.

Proof. We first note that the system utility function can be represgbmv.r.tk as follows:

flk) = isi(ki,d)—wiki (6.19)
i=1 i=1
= > (silki,d) —wk;) = >, fi(ki) (6.20)
=fi(ki)
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From Section 6.3.1, we know thgtis concave w.r.t the number of seeds, which implies

Afik+1) < Af(k), Vk>0,keN;VjeM (6.21)

whereM = {1,2,...,m}, and

Afi(k) = fi(k) = fi(k = 1) (6.22)

Now supposé* is the outcome of Algorithm 1, arklis an arbitrary legitimate vector of number
of seeds forPF1 (i.e. C = > ki < C). Itis easy to see that Algorithm 1 ensures thét =
Y. ki <[C| <C,andsdk* is a legitimate seed vector. We shall show tkagives the system

utility at least as high as that &fso thatf (k*) > f (k).
i)If k* = k, we have nothing to prove.

ii) Whenk < k*, k; < k* forall i € M. Then,

ks —k;

)= f&) =33 Afilkj+4) =0 (6.23)

jeJ i=1

whereJ = {j € M|k; < k'}.

It is non-negative becaus&f;(k;) > 0,V; due to the line 11 of Algorithm 1, anEli +i < k¥,

which implies from Equation (6.21)

Afilks +14) = Af(k3) = 0 (6.24)
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Hence,f(k*) > f(k).

iii) Whenk = k* (i.e. k; > k*, Vi) butk # k*, it is easy to see the following:
cr<Cc<lc]<C (6.25)
This implies the algorithm has executed the line 11, whichirmgnplies with Equation (6.21),
Afy(kf +¢) <0, VieMVe>1 (6.26)

Hence, letting/ = {j € M|Ej > ki,

kj—k%
F) —f) =D Afi(k;+i) <0 (6.27)

jed i=1

iv) Consider the remaining cases. For all these cases, veedtdeast a pair ofi, j) € M? such

thatk; < k; andk? < k;.

Before proceeding, we show a couple of useful inequaliteshis proof.
Nfolks +1) < Afy(KY), Yy #a (6.28)

If this is not true, Algorithm 1 would have incrementgdto bek} + 1 instead of incrementing
ky whenk, = kj andk, = kj — 1.
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From Equations (6.21) and (6.28),

Afo(ks+1) < Afy(K), Yk <k VyeM (6.29)

Let us define) as follows:

§ = min{|k; — k7|, |k; — k|} (6.30)

And Letk® such that:") = %; + 6, k:j(.l) = J; — 6, andk™™ =&, VI # i, 4, which impliesk(!)

is also legitimate fronC'™) = 3" k:fl) = C < C. Now, consider

§ 4
FED) = fh) = S Afiki+1) =Y Afi(ky—1+1)
=1 =1
é

= Y (Afilki+ D) = Ay~ 1+ 1)) (6.31)

=1

Becausek; + [ < ki andk} < %j — 1+ 1forVi € [1, 6], we have the following inequality from
Equation (6.29):

Afiky —1+1) < Afi(ki +1) (6.32)

This implies that the RHS of Equation (6.31) is non-negativéence, f (k1)) > f(iE), and
k:gl) =k} or k](.l) = k7, which means at least one more elemeritih is same as that df* than

k, augmenting the system utility.

Now, we keep doing this augmentation process from the @suieed vector of each process
until there is no such paifi, j). We need no more tham rounds of this process to reach this
state. Then, lettind(/) denote the final resultant seed vector, we have one of thewfoi
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exhaustive cases; (&J/) = k*, (b) k) < k*, and (c)k/) = k*. In each of the cases, from i),
i) and iii),

F&*) > f(&D) > f(k) (6.33)

6.5 Simulation Based on Taxi Traces

In this section, we present how the contents disseminattiaves in the more realistic setting.
We consider a single type of content in this section becawesprbcess of the dissemination does

not depend on other contents as shown in Section 6.2.

6.5.1 Belijing Taxi Traces

We use the GPS traces of taxis in Beijing gathered from 1200@a11:59pm on Jan. 05, 2009
in the local time. The number of subject taxis is 2,927. Theber of the GPS points in the
trace is 4,227,795 typically one per minute per vehicle. GRS points span frorg2.1223° N

t0 42.7413° N in latitude, and froml 11.6586° to 126.1551° in longitude. Figure 6.4a shows the
GPS traces of randomly chosen 10 taxis as an example.

129



@

#nodes

80

Hnei

150 200 250

(b)

Prob.

0.1¢

0.01f

0.001F

Beijing Trace
— — Exponential
0.1 1 10 100 100C

(©

1074+

min

Figure 6.4: Properties of beijing taxi traces: (a) geogiegimovements of 10 sample taxis, (b)
histogram of number of neighbors of a node, (c) tail distidouof the inter-encounter times
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6.5.2 Encounter Processes

In order to perform a simulation for the contents dissenmmathrough the short-range radio,
we need traces of encounters of all pairs of nodes; that ispwhich vehicle can communicate
with which other vehicle. We can extract these traces frommGIPS traces by assuming a radio
model. In this dissertation we assume the circular radioghtmdecide if two given vehicles
encounter each other so that they can communicate direEtlg. circular radio model has the
radio range- so that any two vehicles of distance withircan directly communicate with each

other successfully. We use= 300 meters as the literature ([13]) suggests.

Suppose a set of error-free time-ordered GPS traces of aopaihicles is given. In order

to obtain the time-ordered traces of encounters for the pairhave compared their geodesic
distances in some sequence of times. Instead of employingeasequence of identical intervals,
we have checked the distance after the minimum tigpg (Equation (6.34)) that the pair can
encounter each other next, if the current distance is langeigh, for the faster processing and
more accurate results. When the current distance is smalhave checked their new distance

after a predetermined small time step.

Since the logs of GPS locations are not synchronized, weatammply take the locations of the

pair from the logs at a given time. So, we have interpolateddbations of each vehicle assuming
that the GPS traces are dense enough so that a vehicle caprbgiagated to move in a straight

line between a consecutive pair of GPS locations in the $race
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The minimum timer,,;, for the next encounter is given by

1
Tonin = 2—(GEODIST(pos(P1,t),pos(Pg,t)) —r) (6.34)

Sm

where GEoDIST gives the geodesic distance between the given pair of GR&opsspos (P, t)
calculates the estimated position of vehickt timet from the set of its GPS trace3 by inter-

polating the positions, ang,, is the maximum speed of vehicles in the traces.

We then obtain the time-ordered set of encounters of alsdairexecuting the aforementioned

algorithm for each pair and sorting their combined result.

We note that the input sets of GPS traces to the algorithmeapgred to be error-free. However,
we have found, as expected, that some GPS units of vehiclesierced errors in some time
intervals, so either some erroneous log was reported oe thhas no data at all in the interval.
After removing those erroneous GPS points, we have chedkbisiremoval incurs some side
effects. We have found that the removal makes some vehitteagable in some non-ignorable
time intervals. In other words, some vehicles have no vaRE@oints reported for long inter-
vals. And it is difficult to approximate their positions fdret duration by interpolating the valid

positions. Hence, we resort to excluding those vehiclas fitee simulation.
After all, we have selected 632 vehicles, each of which fsasishe following criteria:

e The GPS points indicating the speed of 80 mph or more are @eresl erroneous and
removed. It is because the speed of more than 80 mph is haed¢b and rarely exercised
in the Beijing area.
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e The valid GPS points of each vehicle are logged somewhalagun time when it is
moving so that any two consecutive GPS points of the vehiclaat have distance more

than 400 meters if their time difference is more than 3 miswute

e The encounter graph of vehicles forms a well connected gsaphat the number of neigh-

bors of a node is at least 2. The encounter graph is definedfiniftan 6.5.1.

The second condition makes sure that the vehicle has notdremt&vely when it skipped two
consecutive regular GPS reports. We set the distance of 40Qimat we can have better under-
standing on the timing of encounters (with some tolerancdhé interval of the reports, when
the radio range is 300m. The last condition is to remove leedicles. We note that the loner
vehicles have almost no interaction with others at all, Whigeans they are in the very differ-
ent activity region. But, we are interested in the dissetivnaover the nodes of similar activity
region.

Definition 6.5.1 (Encounter Graph)An encounter graphG(V, E) of vehicles is a graph such
that each vehicle is represented by a nade V, and any two nodes;,v» € V has a link
e(v1,v2) € E between them if and only if they can communicate with eadr @te. encounter)

at any point in the interested time interval.

The encounter graph of the 632 nodes has 38,139 links; thinomm number of neighbors of
a node is2, the maximum i261, and the median i420. Their average number iK20.693.
This value is used in later sections for evaluating our mdéolethe number of satisfied nodes.
Figure 6.4b shows the histogram of the number of neighboesraide.
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Figure 6.5: Average number of satisfied nodes vs. toleraddkyd

6.5.3 Inter-Encounter Time

In this section, we analyze on the inter-encounter time adia @f nodes in order to verify the

Exponential assumption of the inter-encounter time andtain its rate for evaluating our model.

Although the trace data is fine-grained and covers 24 housasdafy, many pairs of nodes have
only a few encounters, which is too small to have a good fitatlaneaning if we focus on the
per-pair distribution. So, we hypothesize that the intezezinter time of every pair follows the
identical and independent distribution, particularlye #xponential distribution as we assume in

the analysis in Section 6.2.

We first examine the aggregate inter-encounter time coligthe available inter-encounter times
of every consecutive encounters of all pairs of nodes. Thebau of samples is 24,205, and
their sample mean is 150.005 minutes. Figure 6.4c showsilhdigtribution of the samples and
the Exponential distribution with mean 150.005 minutes.cAs be seen, they do not show big
disparities. Because we assume |ID Exponential distdstifor per-pair inter-encounter times,
their aggregate inter-encounter time has the identicaliligion to the per-pair ones, which can
be proved easily.
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However, the above sample mean for the inter-encounterisiraetually an underestimate of the
true mean because we ignore many incomplete samples, vehiea time from the beginning of
the trace to the first encounter and the time from the lastwerteo to the end of the trace for each
pair of nodes. For each of those samples of time duration,nee khat its associated realization
of the inter-encounter time is larger than the time duratimn we do not know the exact value.
That is why we exclude them from the above estimation. Bulj timt we have the reasond
Figure 6.4c) to believe that it is fine to assume the Expoakdistribution for the inter-encounter

time, we can use the incomplete information to obtain a mocerate estimate.

We use the fact that the number of encounters in a time iftéri@llows the Poisson distribution
with meansT', when the inter-encounter time is Exponential with rateSupposeV; andT; are
the number of encounters and the whole time duration of teetrrespectively, for-th pair of
nodes, and; the number of the pairs that have at least one encounter itrabe. Then, the

following equation gives the maximum likelihood estimgteof 3.
B* = argmaxg Pr(Ny, N, ..., Ny |8, T1, ..., Ty)) (6.35)
where

_N,L'efﬁTi
Pr(N1, Na, .o, Ny|B, T, . T) = T, Pr(N|BT) = [T, P (6.36)

_ ( ;_7:1 %N: )E_B Z?:1 T; 52?:1 Ni
Note that (6.36) holds because the inter-encounter timesearfy pair are assumed to be jointly
independent.
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After some calculations, we can obtain the maximum likaedth@stimate of the rate of the inter-

encounter time of a pair of nodes that ever encounter, asfsll|

B = ?:1Ni/2?=1Ti (6.37)

We shall use this quantity as a parameter value to evaluatenalytical model and compare with

the real-trace-based simulation results.

6.5.4 Simulation Methodology

From the time-ordered traces of the encounters of the Bglijarces, produced by the method in
Section 6.5.2, we have performed the simulations by runAilggrithm 2 multiple times until
the sample mean of the number of returned satisfied nodesshasdr no more than 5% of its
value with 97% confidence. Algorithm 2 takes several inpguarents;E is a time-ordered list
of encounters)V is the set of vehicles§ C N is the set of seed nodes,is the time whert are
deployed, and! is the delay budget. We have performed the simulations fdows choices for
the number of seedsand the tolerable delay, letting the seeds be deployed at tilge= 9AM .

For particulark andd, we have chosen the seed nodesniformly at random at each round.

Algorithm 2 SATISFIEDNODES(E, N, S, ts, d)

1: Mark everyv € S as satisfied.

2: forall e € Ein order s.tts < time(e) < ts+ ddo
3 Let v; andwv, be the pair of vehicles fat.

4. if only one ofv; andwvs is marked satisfiethen
5

6

Mark the other node as satisfied.
. return the set of all marked nodes
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Figure 6.6: Avg. number of satisfied nodes vs. number of seeds

6.5.5 Number of Satisfied Nodes

Figure 6.6 shows the average number of satisfied nodes wgjpleceto the number of seeds when
the delay constraints are 10, 30, and 60 minutes. When tlag debmall {.e. 10 minutes), the
real traces suggest more nodes are expected to be satisiethththeory predicts. When the
delay is mediumi(e. 30 minutes), the real traces and the theory suggest singlzavior of the
dissemination, while the theory overestimates the numbsatsfied nodes when the delay is 60
minutes. But, the figure shows qualitatively similar bebawf the average number of satisfied

nodes as the number of seeds increases.

Figure 6.5 shows in more detail how the gap between the themythe trace suggest changes
as the delay constraint increases. The numbers of seedel@@tsare 5, 10, and 30. And

all the cases indicate similar trends of the content dissation; the real traces suggest that the
dissemination is faster than the theory predicts in theygdrhise, but loses its momentum as more
portion of nodes are infected. This difference may be bexafithe movement dependencies
between groups of vehicles in reality. Suppose there is stgpendency among the pair-wise

encounter processes that is caused by the movement depgntiléneasy to see that the content
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spread faster to the other nodes of positive correlation the average, and slower to the nodes
of negative correlation. Hence, in the early phase of theedisnation, the content spreads fast to
positively correlated nodes, and after consuming mosterhtht spreads slowly to the nodes of
negative correlation. This can partly address the gap inrEi¢.5. But, more accurate analysis
calls for further investigation, which is out of scope ofstldiissertation and the subject of future

research.

Nevertheless, the system behavior with respect to the nuofbgeeds is more important for
our problem because it is the parameter to optimize on. Aiglré 6.6 suggests comparable

numbers of seeds for the knees of plots from the theory ancetidraces.

6.5.6 Optimal Number of Seeds

Now we look into the system utility with respect to the number of seeds. We have compared
the system utilitiesthat our model predicts and the Beifirages suggest, with various delay
constraints and cost weights. It turns out they show sintiidraviors as in Figure 6.6; the real
traces suggest larger utility values than what the theoegdipts when the delay is small. Their

138



difference decreases as the delay budget increases up eEnnt, after which the difference
increases again. In this case the real traces suggest satdifg values than that of theory. They

however share similarities in the shape and trends in thiesimanner as in Figure 6.6.

We also examine how good our analytic solution of the optimahber of seeds;;; ., would be

in the realistic setting induced from the Beijing tracesguUfe 6.7 shows the optimal number of
seeds and the corresponding empirical system utility veipect to the delay budget. Figure 6.7a
compares the empirical optimal number of sekfjs and its analytical counterpakf, . We can

see from the figure that?, andkj, . are getting closer to each other as the delay budget
increases. Althoughk?, andk;, . have big differences when the delay budget is small, we note
that the utility function has a very gentle slope near itsropm in this small delay regime (see

Figure 6.6). This is why our analytical solution providesneptimal performance even in the

small delay regime as can be seen in Figure 6.7b.

Figure 6.7b compares the best possible system utility saffje, of the trace-based simulations
and the empirical utility value§€~’sim when our solutiork}, . is used. In other words, the figure
shows how close the system ultility of the real system woultblire system’s best possible if the
system uses our analytic solution. As can be seen, the sysiiies in the real world would be

within 95% of their real maximums over the entire delay regifrour theoretical optimizers are

used. Therefore, these results support the usefulness ofadel.
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Chapter 7

Conclusions and Future Work

In this chapter, we present the conclusion of this disgertaind possible directions for future

investigations.

7.1 Communication Cost Modeling in Wireless Sensor Network

We have derived minimum expected search energy costs feradunds of data-centric wireless
sensor networks in Chapter 3. In particular, we have corsitlstructured and unstructured
networks deployed im-dimensional area with a constant node density. In stradtmetworks,

the search cost of the FTP deployment of nodes is propottiond N/ {/r, while that of the

/N (log N)n—1

T . In unstructured networks, the search cost of

RGG deployment is proportional

the FTP deployment is proportional %«% regardless of the spatial dimensidmof the network,
n

while that of the RGG deployment is proportional 822 .%.
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Although we assume constant spatial node density and hasemied two specific cases of neigh-
bor density scaling — constant and logarithmic, the apgrpaesented here can be easily extended
to consider other kinds of spatial and neighbor densityisgalFor example, if we fix the net-
work radiusZ and the radio rang& and let the node density increaseldggrows, it is easy to
obtain that the search cost of structured networks undeFiliedeployment is proportional to

L

-7 regardless ofV, while that of unstructured networks is kept proportioma .

One caveat to our models originates from the fact that we hes@rted to approximating sum-
mations in both structured and unstructured cases usiegrations since the summations fail
to produce tractable closed-from expressions. When thagad the networkL is small or the

number of copies is very large compared t&/, the approximations exhibit poor performance.

The reason for the latter case is that largenakes the curves of the integrands sharper.

We believe that the results will be useful analytical toals éxploring the general performance
of data-centric wireless sensor networks. For examplerghglts are used as building blocks to
derive optimum data replication for expanding ring seancGhapter 4 and to derive scaling laws

in data-centric wireless sensor networks in Chapter 5.
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7.2 Optimum Data Replication for Expanding Ring Search

In Chapter 4, we have shown how the number of replicas of eméarimation can be optimized
for expanding ring-based queries in wireless sensor n&svdle have found that a square-root-
proportional replication strategy provides optimal pariance both with and without storage

constraints. Detailed realistic simulations have vaédahe analysis.

There are several directions in which these results can tem@sd. The analysis could be ex-
tended to other querying mechanisms, including structstechge, since there is a similar trade-
off between search and replication costs in many othemggttiThe analysis could also be ex-

tended to consider more irregular deployment areas, imduthree-dimensional deployments.

The results have been used to investigate the scaling lmehaf\guerying in storage-constrained
sensor networks in Chapter 5. We also plan to develop dis&ibimplementations which allow
for optimal or near-optimal replication without global kmedge of the relative query rates for

all events.

7.3 Scaling Laws in Data-Centric Wireless Sensor Networks

In Chapter 5, we have investigated the scaling behavioreoditta-centric storage and querying in
wireless sensor networks. During the investigation, westdarived the communication costs of
searching and replication in terms of the energy consumptind have found out that the square-
root-proportional replication optimizes the total comrwation cost for 2D networks. The main
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take away from this scalability study is that the event andrguates must scale sufficiently

slowly with the network size if scalable performance is ohi

In particular, an important scaling condition is ensuringtt'/2-m beO(N%) for unstructured

networks, and tha@ﬁ -m be O(Nd%l) for structured networks. Satisfying this condition
ensures that adding nodes to the network is beneficial inthigaénergy and storage resources
they bring outweigh the additional event and query actithityy induce. This can be seen from
many perspectives: satisfying this condition implies tfipsensor networks require bounded
energy and storage per node, (ii) arbitrarily large netwar&n be operated successfully with a
limited energy budget, and (iii) that the network lifetimeiieases with network size for a given

energy budget.

We have also provided necessary conditions for scalakdityandle potentially more sophisti-
cated replication strategies than those considered inamic Bnalysis. Further, while our analysis
is primarily focused on the total energy consumption, weetalgo considered the hot-spot prob-
lem to handle per-node energy constraints. In this contextiave shown that with an appropriate
load-balancing scheme, the ratio of the peak energy corsumtp average energy consumption
remains bounded, implying that our results still remain niegful.
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7.4 Content Dissemination in Heterogeneous Vehicular Netwks

We have investigated the optimum content disseminatiohdrmeterogeneous vehicular network
in Chapter 6. In this network, each vehicle is equipped with tadios; one is the costly long-
range low-bandwidth radio for direct communication witte timfrastructure, and the other is
the low-cost short-range high-bandwidth radio for comroation with peer vehicles. We have
considered the problem of how to spread relevant contentaie imehicles with smaller cost.
We have developed the relevant optimization formulati@rjvéd their analytical solutions with
some relaxation, and examined the behaviors of the systataruhe optimum regime. One
interesting takeaway point is that the contents can be missged to a large number of vehicles
with a few costly access to the infrastructure, if some detaythe order of an hour, can be
tolerated. We have also developed a polynomial algorithatoulate the exact optimum seed

vector with no relaxation.

In order to verify our analysis and justify our assumptionsl approximations, we have per-
formed simulations based on the real GPS traces of 632 taxieiged in Beijing, China. We

have found that the real traces show the aggregate inteater time of vehicles is close to
the exponential distribution agreeing with our assumptéon that their performance of contents

dissemination exhibits similarities to what our model pcésd

In this work, we have assumed a low density of subject vehitdeavoid further level of com-
plexity to the problem, for example, radio interference gadket collisions. Although the low
density assumption is not so unrealistic, especially fer eéarly phase of vehicular networks,
more extensive investigation is a subject of future work. Miee also assumed i.i.d. pair-wise
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inter-encounter times, and we have pointed out in Sectidb @hat the mismatched increase rate
of the number of satisfied nodes may be attributed to thisnagon. Relaxing this assumption

is also a topic of future research.
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Appendix: Lemmas for Search Cost Modeling

LemmaA.l. Forr > 1and1 < d < 12, the following double inequality holds:

1 124d
d \ 32 eap () _ L(r+1) _ exp (E + 12(12113@) 1
d+1 r L(r+1+1) Ve Jr

Proof. From Robbins 1955 [101], Stirling’s approximation can béeexled to the following

double inequality:

Tr+1) > V2mrtie T (A.1)
'r+1) < V2rrtae T (A.2)

Using Equation (A.2),

I(r+ é +1) < V2r(r+ é)H%JF% e~ Tt T
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From the above equation and (A.1),

2rd+d+2 _
GRSV > L( rd ) 2d e(%ﬂz@%ﬁéﬁ-dﬂ))
3d+2
%<L> (et o)
- r\d+1
3d+2
1 d 2d %
T \d+1 ‘

2rd+d+2
Note that the second inequality holds sir(cﬁ%) s increasing with respect tofor » >

1 so that it has its minimum value at= 1. And the third inequality holds sin (12T1fl‘)f(lrd+1) >

0forr > 1andd < 12.

In the other hand, using the Robbins’ double inequality i dither way around produces the

following:

< — e\d T 12r(12rd+d+12) A.3
F(T‘—I—é—l—l) % rd+1 ( )

L(r+1) 1 <7"d — (1_,_ d+12 )

2rd+d+2 1 d+12
Letp(r) = (T;’j‘fl> *andg(r) = e(d+12r<12rd+d+12>>. Then, let’s calculate the supremum

of each of them.

1 rd+1 rd —
= i 1 -
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(. p (r) is increasing w.r.t: for r > 1)
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1 d+12

o (r) = e (E T r(2rdrd + 12))

r=1

(". the exponent is decreasing wirtor » > 1)

(L, d12
- OP\E T 12(13d + 12)

Hence, the RHS of inequality (A.3) can be further upper-lomehusing the above supremums

resulting in the following:

1 12+4d
T'(r+1) - exp <E + 12(12il3d)) 1
L(r+3+1) Ve I

Lemma A.2. Supposéi; (z) > 0, ha(z) > 0 for everyz > 0, g1(y) > 0, g2(y) > 0 for every

y > 0,andf(z,y) > 0 for everyz > 0, y > 0. And suppose

1. f(x,y) < Zig)) for everyz > 0,y > 0

2. f(z,y) < Zj—gym)) foreveryxz > 0,y >0

3. hi(xz) = O(z™) andhg(z) = O(2™), wheren > m > 0
4. g1(y) = Qy*) andga(y) = Q(y"), wherea > b > 0

Then,

fley) =0 (—m> (A5)
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Proof. From 3) and 4), there exis{ > 0 andc, > 0 such that

ho(x) < ¢y -2™, forVe (A.6)

g1(y) > co -y, forVy (A.7)

Supposef (z,y) = O(2™ TP - y~2T7) wherep, ¢ € R. Then, there exists > 0 such that

(@) > e a™P .y for Va, Wy (A8)

If p > 0, then for everyy > 0,

C1

P> —
cy~Tago(y)

for sufficiently larger due to the archimedean property.

>

ax™

L CORING,

= f(x,y) > ca™ Pyt >
92(v) Qz(y)

which is contradiction to 2). Hence,< 0.

If ¢ > 0, then for everyr > 0,
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which is contradiction to 1). Hence,< 0.

Fromp < 0 andq < 0, we conclude thaf (z,y) = O(z™ - y~%). O
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