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Abstract

We consider the problem of energy-efficient transmission in cooperative multihop wire-

less networks. Although the performance gains of cooperative approaches are well

known, because of the combinatorial nature of these schemes, designing efficient polynomial-

time algorithms to decide which nodes should take part in cooperation, and when and

with what power they should transmit, has remained a challenge. We propose to tackle

this problem in this dissertation.

We provide a generalized algorithmic formulation of the problem that encompasses

the two main cooperative approaches, namely: energy accumulation and mutual Infor-

mation accumulation. We investigate the similarities and differences of these two ap-

proaches under our generalized formulation, focusing in particular on the scenario where

a delay constraint is present. We prove that the broadcast and multicast problems are,

in general, o(log(n)) inapproximable. We break this NP hard problem into three parts:

ordering, scheduling and power control and propose a generalized novel algorithm that,

given an ordering, can optimally solve the joint power allocation and scheduling prob-

lems simultaneously in polynomial time. We further show empirically that this algorithm

used in conjunction with an ordering derived heuristically using the Dijkstra’s shortest
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path algorithm yields near-optimal performance in typical settings. In the unicast case,

we prove that although the problem remains hard with mutual information accumulation,

it can be solved optimally and in polynomial time when energy accumulation is used. We

use our algorithm to study, numerically, the trade-off between delay and power-efficiency

in cooperative broadcast and compare the performance of energy accumulation vs mutual

information accumulation as well as the performance of our cooperative algorithm with a

smart non-cooperative algorithm in a broadcast setting. We also provide an O(T log2(n))

approximation algorithm for the broadcast case where energy accumulation is used.

We further formulate the problem of minimum energy cooperative transmission in

a delay constrained multiflow multihop wireless network, as a combinatorial optimiza-

tion problem, for a general setting of k-flows and formally prove that the problem is not

only NP-hard but it is o(n1/7−ε) inapproxmiable. To our knowledge, the results in this

dissertation provides the first such inapproxmiablity proof in the context of multiflow

cooperative wireless networks. We show that for a special case of k = 1, the solution

is a simple path and develop an optimal polynomial time algorithm for joint routing,

scheduling and power control. We then use this algorithm to establish analytical upper

and lower bounds for the optimal performance for the general case of k flows. Further-

more, we propose a polynomial time heuristic for calculating the solution for the general

case and evaluate the performance of this heuristic under different channel conditions

and against the analytical upper and lower bounds.
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Chapter 1

Introduction

In a wireless network, a transmit signal intended for one node is received not only by that

node but also by other nodes. In a traditional point-to-point system, where there is only

one intended recipient, this innate property of the wireless propagation channel can be a

drawback, as the signal constitutes undesired interference in all nodes but the intended

recipient. However, this effect also implies that a packet can be transmitted to multiple

nodes simultaneously without additional energy expenditure. Exploiting this “broadcast

advantage”, broadcast, multicast and multihop unicast systems can be designed to work

cooperatively and thereby achieve potential performance gains. As such, cooperative

transmission in wireless networks has attracted a lot of interest not only from the re-

search community in recent years [36, 37, 39, 41–44] but also from industry in the form

of practical cooperative mobile ad-hoc network systems [49].
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1.1 Thesis Focus

We focus on the problem of cooperative transmission in this work, starting with a case

where a single node is sending a packet to either the entire network (broadcast), a single

destination node (unicast) or more than one destination node (multicast), in a multihop

wireless network. Other nodes in the network, that are neither the source nor the des-

tination, may act as relays to help pass on the message through multiple hops. The

transmission is completed when all the destination nodes have successfully received the

message. We particularly focus on the case where there is a delay constraint, whereby

the destination node(s) should receive the message within the delay constraint, however,

we also discuss how our results apply to the unconstrained case. We also look at the

case where there are more than one sources, each trying to send their message (possibly

through relays) to their corresponding destinations.

A key problem in such cooperative networks is routing and resource allocation, i.e.,

the question which nodes should participate in the transmission of data, and when, and

with how much power, they should be transmitting. The situation is further complicated

by the fact that the routing and resource allocation depends on the type of cooperation and

other details of the transmission/reception strategies of the nodes. We consider a time-

slotted system in which the nodes that have received and decoded the packet are allowed

to re-transmit it in future slots. During reception, nodes perceive added up signal power

(energy accumulation, EA), or the added up mutual information (mutual information

accumulation, MIA) received from multiple sources. EA, which has been discussed in
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prior work [37,39,41,42], can be implemented by using maximal ratio combining (MRC)

of orthogonal signals from source nodes that use orthogonal time/frequency channels, or

spreading codes, or distributed space-time codes. MIA can be achieved using rateless

codes [44,45]. Although these techniques are often treated separately in the literature, we

shall see how our formulation of the problem encompasses both approaches and allows

many of the results to be extended to both.

We furthermore assume that the nodes are memoryless, i.e., accumulation at the re-

ceiver is restricted to transmissions from multiple nodes in the present time slot, while

signals from previous timeslots are discarded. This assumption is justified by the lim-

ited storage capability of nodes in ad-hoc networks, as well as the additional energy

consumption nodes have to expand in order to stay in an active reception mode when

they overhear weak signals in preceding timeslots. Note that much of the literature cited

above has used the assumption of nodes with memory, so that their results are not directly

comparable to ours.

A key tradeoff is between the total energy consumption1 and the total delay measured

in terms of the number of slots needed for all destination nodes in the network to receive

the message. At one extreme, if we wish to minimize delay, each transmitting node

should transmit at the highest power possible so that the maximum number of receivers

can decode the message at each step (indeed, if there is no power constraint, then the

source node could transmit at a sufficiently high power to reach all destination nodes in

1As we consider fixed time slot durations, we use the words energy and power interchangeably through-
out.
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the first slot itself). On the other hand, reducing transmit power levels to save energy,

may result in fewer nodes decoding the signal at each step, and therefore in a longer time

to complete the transmission. We therefore formulate the problem of performing this

transmission in such a way that the total transmission energy over all transmitting nodes

is minimized, while meeting a desired delay constraint on the maximum number of slots

that may be used to complete the transmission. The design variable in this problem is to

decide which nodes should transmit, when, and with what power.

1.2 Main Contributions

The key contributions of this dissertation are as follows:

• We formulate the problem of minimum energy transmission in cooperative net-

works. Although the prior literature have focused on either EA ( [37, 42]) or MIA

( [44, 45]) and have treated them separately, our generalized formulation can treat

both methods as variations of the same problem.

• Our formulation of delay-constrained minimum energy broadcast in cooperative

networks, goes beyond the prior work in the literature on cooperative broadcast

which has focused either on minimizing energy without delay constraints [37,42],

or on delay analysis without energy minimization [67]. Our extended problem

formulation allows us to expose and investigate the energy-delay tradeoffs inherent

in cooperative networking.
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• We not only prove that the delay constrained minimum energy cooperative broad-

cast (DMECB) and multicast (DMECM) problems are NP-complete2, but also that

they are o(log(n))-inapproximable (i.e., unless P = NP , it is not possible to de-

velop a polynomial time algorithm for this problem that can obtain a solution that

is strictly better than a logarithmic-factor of the optimum in all cases). We are not

aware of prior work on cooperative broadcast or multicast that shows such inap-

proximability results.

• We show that the delay constrained minimum energy cooperative unicast (DMECU)

problem is solvable in polynomial time using EA but is NP-complete using MIA.

We are unaware of any hardness results on unicast approaches using mutual infor-

mation accumulation.

• For the cases where we prove the transmission problem to be hard, we are able to

show that for any given ordering of the transmissions (which dictates that a node

later in the ordering may not transmit before the nodes earlier in the ordering have

decoded successfully), then the problem of joint scheduling and power allocation

can in fact be solved optimally in polynomial time using a combination of dynamic

programming for the scheduling and convex optimization or linear programming

for the power allocation.

2Throughout the thesis, the terms NP-complete and NP-hard might be used interchangably when re-
ferring to the hardness of the same problem. The reader should note that the former is referring to the
decision version of the problem and the latter to the optimization version of the same problem. Chapter 2
provides a background on these concepts.

5



• For small network instances, we compute the optimal solution through exhaustive

search, and show empirically through simulations that our proposed joint schedul-

ing and power control method works near-optimally in typical cases when used in

conjunction with an ordering provided by the Dijkstra tree construction.

• We also show through simulations the delay-energy tradeoffs and minimum energy

performance for larger networks and demonstrate the significant improvements

that can be achieved by our solution compared to non-cooperative broadcast. We

further compare the performance of our proposed broadcast algorithm under MIA

and EA approaches.

• For DMECB where EA is used, we present a reduction that would allow for a

polynomial time algorithm for the joint ordering-scheduling-power control prob-

lem that is provably guaranteed to offer a O(nε) approximation, for any ε > 0.

This algorithm is based on the current best-known algorithm for the bounded di-

ameter directed Steiner tree problem [54]. Using the same reduction, we can also

get an approximation factor of O(T log2(n)) for a fixed delay constraint T . Given

that DMECB is o(log(n)) inapproximable for any T > 2, this provides a fairly

tight approximation, especially for small T .

• We further formulate the problem of minimum energy cooperative transmission

in a delay constrained multiflow multihop wireless network, as a combinatorial

optimization problem, for a general setting of k-flows and formally prove that the

problem not only NP-hard but it is o(n1/7−ε) inapproxmiable. To our knowledge,

6



the results in this dissertation provide the first such inapproxmiablity proof in the

context of multiflow cooperative wireless networks.

• We observe that for a special case of k = 1, the solution is a simple path and

offered an optimal polynomial time algorithm for joint routing, scheduling and

power control. We then use this algorithm to establish analytical upper and lower

bounds for the optimal performance for the general case of k flows.

• Furthermore, we propose a polynomial time heuristic scheme to address the prob-

lem of minimum energy cooperative transmission in a delay constrained multiflow

multihop wireless network for the general case and evaluate the performance of

this heuristic under different channel conditions and against the analytical upper

and lower bounds.

1.3 Thesis Statement

The thesis statement can be summarized as follows:

Energy efficient transmission in delay constrained cooperative wireless net-

works is computationally hard in general, however, careful consideration of

the combinatorial structure of the problem can yield (near-)optimal algo-

rithms in typical settings.
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This dissertation makes several contributions that significantly enhance our understand-

ing of complexity and algorithm design for cooperative transmission in wireless net-

works. The summary of the algorithmic results developed in this thesis for the single-

flow problem are presented in Tables 3.1 and 4.1 and the results for the multiflow problem

are highlighted in chapter 5. It is worth noticing that although we maintained a memory-

less assumption throughout, all the negative results presented in Table 3.1 extend to the

case where there is no memory.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 provides a brief history of coop-

erative communication and places this dissertation in the context of prior related work.

It also highlights some of the key concepts in computational complexity theory that are

later used throughout the thesis. References are provided for the interested reader to

sources with comprehensive discussions of each topic. Chapter 3 provides a generalized

formulation of energy-efficient transmission problem in cooperative multihop wireless

networks, encompassing both EA and MIA. We further establish hardness results for a

variety of settings in that chapter. In chapter 4, we propose approximation algorithms

and positive results for the hard problems described in chapter 3, and evaluate the per-

formance of these algorithms using simulations. The multiflow problem is discussed

in chapter 5, where we investigate the delay constrained minimum energy problem in

presence of interfering flows. Concluding comments and directions for future work are

discussed in chapter 6.
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Chapter 2

Background and Related Work

In this chapter we provide a brief tutorial on key concepts in computational complexity

theory that will be used later on in this thesis. We also provide a background on the

concept of cooperation and briefly discuss the history of cooperation in wireless commu-

nication and highlight the current state of art as it relate to the topic of this dissertation.

2.1 Computational Complexity

In this section we briefly review some of the most basic concepts of computational com-

plexity, including NP-hardness and NP-completeness that will be used later on in the

thesis. The discussions in this chapter are largely from [3,4], and the interested reader is

referred to these sources and the references therein for a more thorough discussion.

Computational complexity theory1 is a branch of the theory of computation in the-

oretical computer science and mathematics that focuses on classifying computational

1Definition adopted from Wikipedia, the free encyclopedia.
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problems according to their inherent difficulty [3, 74]. In this context, a computational

problem is understood to be a task that is in principle amenable to being solved by a

computer (which basically means that the problem can be stated by a set of mathemat-

ical instructions). Informally, a computational problem can be viewed as an infinite

collection of instances together with a solution for every instance. The input string for

a computational problem is referred to as a problem instance, and should not be con-

fused with the problem itself. In computational complexity theory, a problem refers to

the abstract question to be solved. In contrast, an instance of this problem is a rather

concrete utterance, which can serve as the input for a decision problem2. For example,

primality testing is the problem of determining whether a given number is prime or not.

The instances of this problem are natural numbers, and the solution to an instance is yes

or no based on whether the number is prime or not.

The running time of many of the algorithms we encounter are bounded by some

polynomial in the size of the input. These algorithms are efficient algorithms, and the

corresponding problems are traceable. In other words, we say an algorithm is efficient

if its running time is O(P (n)), where P (n) is a polynomial in the size of the input n.

The class of all problems that can be solved by efficient algorithms is denoted by P (for

polynomial time).

2A decision problem is a question in some formal system with only a yes-or-no answer, depending on
the values of some input parameters.
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There are also many problems for which no polynomial time algorithm is known.

Some of these problems may be solved by efficient algorithms that are yet to be discov-

ered. For many such problems however, there is a strong belief that they cannot be solved

efficiently. It is desirable to be able to identify such problems, so one does not have to

spend time search for non-exissenet algorithms. One special class of such problems that

we are interested in is a class of decision problems called NP-complete problems [13].

We can group these problems in one class because they are all equivalent in a strong

sense, there exists an efficient algorithm for any on NP-complete problem if and only

if there exist efficient algorithms for all NP-complete problems. NP-complete is a sub-

set of NP, the set of all decision problems whose solutions can be verified in polynomial

time. In computational complexity theory, NP is one of the most fundamental complexity

classes. The abbreviation NP refers to “nondeterministic polynomial time”. The com-

plexity class P is also contained in NP, but NP contains many important problems, the

hardest of which are called NP-complete problems, for which no polynomial-time algo-

rithms are known. The most important open question in complexity theory, the P = NP

problem, asks whether such algorithms actually exist for NP-complete, and by corollary,

all NP problems. It is widely believed that this is not the case [29].

NP-hard, non-deterministic polynomial-time hard, is a class of problems [3, 4] that

are, informally, at least as hard as the hardest problems in NP. NP-hard problems may

be of any type: decision problems, search problems, or optimization problems.
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The above mentioned notions are the basis for an elegant theory that allows us to

identify the problems for which no polynomial algorithm is likely to exist. But proving

that a given problem is hard does not make it go away, we still need to solve the prob-

lem! However, given that a polynomial algorithm is unlikely to exist, we need to make

compromises. The most common compromises concern the optimality, robustness, guar-

anteed efficiency or the completeness of the solution. An algorithm that may not lead to

the optimal (precises) result is called an approximation algorithm. Of particular interest

are approximation algorithms that can guarantee a bound on the degree of imprecision.

We will see an example of such algorithms in chapter 4.

2.2 Cooperative Communication

In this section we provide a brief background on cooperation concept and a brief history

of cooperative communication, based largely on the materials in [1, 2, 9, 10] and the

references therein. The interested reader is referred to these sources for a more thorough

background. We also highlight the state of the art related to the the premiss of this thesis,

in particular cross-layer techniques for cooperative transmission in multihop networks.

The word cooperate derives from the Latin words co- and operate (to work), con-

noting the idea of working together. Cooperation is the strategy of a group of entities

working together to achieve a common or individual goal [1]. Cooperation has been the

subject of intensive study in mathematics, artificial intelligence, social and biological

sciences. Examples of cooperation can be found in different areas ranging from animal
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behavior in nature, including population of ants, termites, bees, hunting lions, vampire

bats to human interactions, to information systems and success of open source [5–8].

Wireless networks provide yet another realm in which cooperation among groups of

entities can be attained, provided that the right framework can be designed and imple-

mented. Cooperative communication has become one of the fastest growing areas of

research in wireless communication in recent years. The key idea in user-cooperation is

the resource-sharing among multiple nodes in the network., which would often lead to

savings of overall network resources. An enormous application space for user coopera-

tion strategies is Mesh networks [1, 2] .

Cooperation is possible whenever there are more than two communicating terminals.

As such, a three-terminal network, introduced by [11, 12], can be thought of as a sim-

plest form and a fundamental unit of user cooperation and as such has been the subject

of intense studies [2] . Indeed, a vast portion of the literature, especially in the realm of

information theory, has been devoted to a special three-terminal channel, labeled the re-

lay channel. In his original work, van der Meulen discovered upper and lower bounds on

the capacity of the relay channel, and made several observations that led to improvement

of his results in later years. The capacity of the general relay channel is still unknown,

but the most prominent work on relaying to date is [14], in which the authors developed

lower and upper bounds on the channel capacity for specific non-faded relay channel

models. Most of the results in this work have still not been superseded [1], however

there has been a lot of work in the area which has improved our understanding of the
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problem [15–20]. In particular, several works have studied the capacity of relay chan-

nels and developed coding strategies to achieve the ergodic capacity of the channel under

certain scenarios (see [20] and the references therein).

The terms decode-and-forward and amplify-and-forward are introduced in [21, 22],

where the authors propose different cooperative diversity protocols and analyze the per-

formance in terms of outage behavior. In the former protocol, relays receive and de-

code the signal transmitted by the source, before forwarding the decoded message to

the destination. The destination combines the copies in a proper way. The latter proto-

col works by the relay amplifying the received signal and forwarding it to the destina-

tion. This protocol is clearly simpler, and although it amplifies noise, it can be shown

to achieve spatial diversity gain if the message is transmitted over spatially independent

channels. Compress-and-forward is discussed in [14, 20]. More information on related

distributed source coding techniques and on alternative cooperative diversity techniques

can be found in [23] and [24, 25] respectively. In this work, we focus on decode-and-

forward protocol.

The majority of the work discussed so far considers cooperation with very few nodes

and in a two-hop setting. In a different direction, the author in [26] have proposed a

new approach towards finding network information carrying capacity, which has led to

research on finding scaling laws for wireless networks in a variety of settings. This

work shows that an aggregate throughput scaling of Θ(
√
n) is an upper bound for what

is achievable by multihop transmission. Their results however are limited, in that in
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heir model they assume no cooperation is allowed between networks. As such, a signal

not intended to be transmitted to a node is treated as interference. However, cooperation

benefits from the broadcast nature of the wireless channel and utilizes this innate property

of the channel instead of treating the overhead signal as interference.

In [27], the authors improve the throughput compared to traditional schemes by

proposing distributed collaborative schemes over multihop networks, achieving an ag-

gregate throughput of Θ(n2/3). The authors in [28] propose a hierarchical cooperation

scheme, achieving linear scaling in ad hoc networks. This means that as the number of

nodes per unit area increases the throughput per node does not drop. This is an inter-

esting result which shows that cooperation can overcome the interference limitation in

wireless networks. A more comprehensive discussion of this topic can be found in [1].

Although the topic of cooperation has been discussed extensively in physical layer

and information theory, the majority of the work has been focused on single or two-hop

settings [1, 2]. Recently there has been an increase interest in a cross-layer design for

cooperative networks. In [30–32], the authors propose a cooperative MAC protocol to

introduce cooperation in 802.11 networks. The proposed protocol is shown to achieve

substantial throughput and delay performance improvements by integrating cooperation

at the physical layer with the MAC sublayer. The protocol recruits a single relay on

the fly to support the communication of a particular source-destination pair. This work

is extended in [35], where the authors propose utilizing multiple cooperative nodes by
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developing a randomized cooperative framework [33, 34]. However, the focus is still on

physical and MAC layer only with a single-source single-destination setup.

In order to harvest the cooperative gains predicted by analytical models in multihop

settings, one needs to take routing, scheduling and resource allocation into account as

well. While the optimum networking performance strongly depends on the physical-

layer technique used, often routing, scheduling and power allocation and physical layer

design are treated separately. In this thesis, we focus on cooperative communication in a

multihop setting and investigate the complexity of the problem from an algorithmic point

of view and the algorithmic aspects of address the problem of designing energy efficient

cross-layer cooperative algorithms.

In this thesis, we focus on two of the main physical layer techniques used in the

literature concerning cooperative communication in multihop networks, namely: Energy

accumulation (EA) [37, 39, 41, 42] and mutual information accumulation (MIA) [44, 45,

80, 82]. Another technique is maximum-ratio transmission (virtual beamforming) [86–

89], not considered in this thesis. For cooperation in a non-multihop context see [1, 21,

24, 93, 94].

Figure 2.1 information shows arriving at the receiving node r from a set of senders

S. Let ps denote the power used by sender s ∈ S to transmit the message and let hsr

denote the mean channel gain between nodes s and r.
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Figure 2.1: A node receiving information from multiple sources.

An ideal EA receiver can reliably decode the message so long as the accumulated

energy can exceed some threshold τ . This can be shown as:

∑

s∈S

hsrps
N

> τ (2.1)

where N represents the noise. Notice that τ can be re-adjusted to absorb noise in this

formulation. A Rake receiver, in CDMA, is a good approximation for such an EA re-

ceiver the information from the different source nodes arrives with relative delays that

are larger than the chip duration [60]. Alternatively, space-time codes [57] could be used

for transmission. EA can also be achieved by providing orthogonal resources for each

channel [67]. Recently a commercially developed cooperative mobile ad hoc network

system has been developed which utilizes a pragmatic cooperation method requiring

minimal information exchange, based on a combination of phase dithering and turbo
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codes [48, 49, 83]. It is shown in [48] that the performance of this pragmatic scheme is

close to that of an ideal EA approach based on space-time coding.

In MIA [44, 45], the receiving node accumulates mutual information for a packet

from multiple transmissions until it can be decoded successfully. The decoding criterion

in this case can be expressed as:

∑

s∈S

log

(

1 +
hsrps
N

)

> θ (2.2)

where θ is the decoding threshold.

This can be achieved using fountain codes and decoders [44,45,47], so that informa-

tion streams from different relay nodes can be distinguished, and the mutual information

of signals transmitted by relay nodes can be accumulated. Note that in this case the

CDMA system needs to used different spreading codes for different nodes in order for

the destination to be able to resolve the different streams. Notice that although this tech-

nique is similar to that of coded cooperation (where different codes are transmitted from

different nodes and the nodes can help each other, see e.g. [93]), it is different most no-

tably in that the underlying source information in MIA is the same for all nodes, and

the nodes can start transmission at different times, making it particularly appealing in a

multihop setting. Notice also that in MIA, nodes are designed to use independently gen-

erated codes for relaying. If the same code were used by each transmitter, the receiver

would get multiple looks at each codeword symbol. This would be EA; however by
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getting looks at different codes (generated from the same information bits) the receiver

accumulates mutual information rather than energy [80].

It has been shown that one can achieve significant saving in energy and/or transmis-

sion time when using an EA, compared to traditional protocols [37, 42, 67]. If energy

accumulation is achieved by transmitting the exact same packet either from different re-

lays or through successive re-transmissions, the scheme is shown to achieve capacity in

an asymptotically wideband regime [37].

As previously mentioned, in this dissertation, we are interested in energy-efficiency3

in multihop settings (broadcast, multicast and unicast), in particular as it relates to delay

constraint. We now briefly review the state of the art in the scope of this thesis.

Many network protocols in mobile ad hoc and sensor networks need to operate in

broadcast mode to disseminate certain control messages to the entire network (for in-

stance, to initiate route requests, or to propagate a query). The subject of broadcast

transmission in multi-hop wireless networks has attracted a lot of attention from the re-

search community in both non-cooperative [50, 51, 53] and cooperative settings [37, 39,

42, 43, 67]. For traditional non-cooperative wireless networks, Cagalj et al. [53] showed

that the problem of minimum energy broadcast is NP-hard. In [39], Mergen et al. show

through a continuum analysis the existence of a phase transition in the behavior of coop-

erative broadcast: if the decoding threshold is below a critical value then the broadcast is

successful, else only a fraction of the network is reached. In [42], Mergen and Scaglione,

show that the problem of scheduling and power control for minimum energy broadcast

3For a discussion of multihop throughput optimality, see [84, 90–92].
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is tractably solvable for highly dense (continuum) networks and show the gains obtained

with respect to noncooperative broadcast. In [67], we examined the delay performance

of cooperative broadcast and show that cooperation can result in extremely fast message

propagation, scaling logarithmically with respect to the network diameter, unlike the

linear scaling for non-cooperative broadcast. We discuss the hardness of the broadcast

problem with both MIA and EA in chapter 3 and provide a polynomial-time algorithm

(given ordering) in chapter 4, as well as an O(T log2(n)) approximation algorithm for

the case when EA is used.

Algorithmic aspects of cooperative communication and computational complexity

are topics that have remained largely unaddressed in the literature. In [37], Maric and

Yates address the computation in the context of cooperative broadcast with EA. Their

work is similar to ours in that they also consider a minimum energy cooperative solution,

however delay constraint is not addressed in their work. Furthermore, they consider a

model with memory, where the nodes can save soft information from all previous trans-

missions throughout time and use it to decode data later on. They prove that the prob-

lem is NP-complete in this case. In their setting, because of the memory, it suffices to

have each transmitter transmit only once; therefore there is no distinction between order-

ing and scheduling. This is no longer true in our memoryless setting where the energy

from past transmissions cannot be accumulated. Moreover, unicast and multicast settings

(which are discussed in this thesis) are not considered in [37]. We further consider MIA,

which is not considered in [37].
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MIA is most notably discussed in [44, 45, 82]. However, the discussions are focused

on unicast routing. The algorithms presented are heuristics, the performance of which

are verified via simulations. We are not aware of any hardness results on cooperative

MIA or any discussions on the use of MIA in a general cooperative broadcast setting.

There is very limited work addressing the power-delay tradeoff in a cooperative set-

ting which is a focus of this dissertation. One prior work addressing this issue is [60];

however, the focus of that work is on space-time codes used for unicast, and does not dis-

cuss broadcast or multicast. The authors in [82] also address the problem power-delay

tradeoff in the context of unicast with MIA, by proposing a heuristic that runs a sequence

of LP-based route optimizations under increasingly tight energy constraints, revealing a

trade-off between energy consumption and delay. These work however do not address

the problem of hardness in a delay constrained setting and do not consider the broadcast

or multicast problem. In earlier work [68], we had considered this tradeoff in a broadcast

cooperative setting using EA and conjectured that many of the results would extend to

MIA but the investigation of that conjecture had remained an open problem. This open

problem was addressed in [64]. The results of these works are discussed in chapter 3,

and chapter 4.

The majority of the work in multihop cooperative communication considers a single

flow. In [40], the authors consider the problem of broadcasting independent sources in a

dense wireless network. They characterize the propagation of the source flows across the

network and show that in the limit of an infinitely dense network, the relaying proceeds
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in levels. The problem of jointly computing schedules, routing, and power allocation for

multiple flows in cooperative networks has recently been discussed in [61–63]. These

papers propose heuristics and conjecture that the problem is in general NP-hard. We

are not aware of any work considering energy-delay tradeoff in multiflow cooperative

networks, or any proof of hardness for such problems in the literature. We will address

this problem in chapter 5. Part of that chapter has previously appeared in [71].

2.3 Summary

In this chapter, we briefly discussed the history of cooperation in wireless communica-

tion. Mentioning in particular that the historically, the majority of the literature in this

area has been on information theoretic and coding aspects of cooperation in small net-

works. We then highlighted the current state of art as it relates to the premiss of this the-

sis, in particular on cross-layer algorithms for energy-efficient cooperative transmission

in multihop networks. We also provided a brief tutorial on key concepts in computational

complexity that will be used later on in this thesis.
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Chapter 3

Generalized Algorithmic Formulation & Computational

Complexity

This chapter considers the problem of energy-efficient transmission in cooperative mul-

tihop wireless networks 1. Although the performance gains of cooperative approaches

are well known, the combinatorial nature of these schemes makes it difficult to design

efficient polynomial-time algorithms for deciding which nodes should take part in coop-

eration, and when and with what power they should transmit. In this chapter, we tackle

this problem in memoryless networks with or without delay constraints, i.e., quality of

service guarantee. We analyze a wide class of setups, including unicast, multi-cast, and

broadcast, and two main cooperative approaches, namely: energy accumulation (EA) and

mutual information accumulation (MIA). We provide a generalized algorithmic formula-

tion of the problem that encompasses all those cases. We investigate the similarities and

differences of EA and MIA in our generalized formulation. We prove that the broadcast

1The work described in this chapter and the following chapter, was done in collaboration with B.
Krishnamachari and A. F. Molisch and, has appeared part in [64, 68].
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and multicast problems are, in general, not only NP hard but also o(log(n)) inapprox-

imable. We further prove that the problem is NP-hard for the unicast case with MIA.

3.1 Introduction

In this chapter we focus on formulating the problem of cooperative transmission in wire-

less networks, where a single node is sending a packet to either the entire network (broad-

cast), a single destination node (unicast) or more than one destination node (multicast),

in a multihop wireless network. Other nodes in the network, that are neither the source

nor the destination, may act as relays to help pass on the message through multiple hops.

The transmission is completed when all the destination nodes have successfully received

the message. We particularly focus on the case where there is a delay constraint, whereby

the destination node(s) should receive the message within the delay constraint, however,

we also discuss how our results apply to the unconstrained case.

As previously mentioned a key problem in such cooperative networks is routing and

resource allocation, i.e., the question which nodes should participate in the transmission

of data, and when, and with how much power, they should be transmitting. The situation

is further complicated by the fact that the routing and resource allocation depends on the

type of cooperation and other details of the transmission/reception strategies of the nodes.

We consider in this work a time-slotted system in which the nodes that have received

and decoded the packet are allowed to re-transmit it in future slots. During reception,

nodes add up the signal power (energy accumulation, EA) or the mutual information
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(mutual information accumulation, MIA) received from multiple sources. EA, which

has been discussed in prior work [37, 39, 41, 42], can be implemented by using maximal

ratio combining (MRC) of orthogonal signals from source nodes that use orthogonal

time/frequency channels, or spreading codes, or distributed space-time codes. MIA can

be achieved using rateless codes [44, 45]. A brief background on these techniques is

highlighted in Chapter 2. Although these techniques are often treated separately in the

literature, we shall see how our formulation of the problem encompasses both approaches

and allows many of the results to be extended to both.

We furthermore assume that the nodes are memoryless, i.e., accumulation at the re-

ceiver is restricted to transmissions from multiple nodes in the present time slot, while

signals from previous time slots are discarded. This assumption is justified by the lim-

ited storage capability of nodes in ad-hoc networks, as well as the additional energy

consumption nodes have to expand in order to stay in an active reception mode when

they overhear weak signals in preceding timeslots. Note that much of the literature cited

above has used the assumption of nodes with memory, so that their results are not directly

comparable to ours.

A key tradeoff is between the total energy consumption2 and the total delay measured

in terms of the number of slots needed for all destination nodes in the network to receive

the message. At one extreme, if we wish to minimize delay, each transmitting node

should transmit at the highest power possible so that the maximum number of receivers

2As we consider fixed time slot durations, we use the words energy and power interchangeably through-
out this thesis
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can decode the message at each step (indeed, if there is no power constraint, then the

source node could transmit at a sufficiently high power to reach all destination nodes in

the first slot itself). On the other hand, reducing transmit power levels to save energy,

may result in fewer nodes decoding the signal at each step, and therefore in a longer time

to complete the transmission. We therefore formulate the problem of performing this

transmission in such a way that the total transmission energy over all transmitting nodes

is minimized, while meeting a desired delay constraint on the maximum number of slots

that may be used to complete the transmission. The design variable in this problem is to

decide which nodes should transmit, when, and with what power.

The rest of this chapter is organized as follows: The assumptions made on the system

model is described in section 3.2. The generalized problem formulation is presented

in section 3.3, encompassing both EA and MIA for unicast, multicast and broadcast

scenarios. We discuss the computation complexity of different variations of the problem

in section 3.4. The chapter is summarized in section 4.6.

3.2 System Model

We consider a wireless network with n nodes. Radio propagation is modeled by a given

symmetric n by n static channel matrix, H = {hij}, representing the (power) gain on

the channel between each pair of nodes i and j. Time is assumed to be discretized into

fixed-duration slots; without loss of generality we assume unit slot durations. We assume
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cooperative communication in the receivers, encompassing two scenarios: EA and MIA.

Only a single message is transmitted through the network.

In EA, the received power at a given receiver in a specific timeslot is sum of the

powers received from the transmitters that are active during that slot. As described in [39,

41,42], this kind of additive received power can be achieved via maximal ratio combining

under different scenarios including transmission using TDMA, FDMA channels, as well

as with CDMA spreading codes and space-time codes. MIA can be implemented using

rateless codes and decoders at receivers, as described in [44–46]. With proper design

(e.g., different spreading codes), information streams from different relay nodes can be

distinguished, and the mutual information of signals transmitted by different nodes can

be accumulated. A brief background on this is highlighted in chapter 2. We consider a

per-node bandwidth constraint and dynamic power allocation.

We assume appropriate coding is used so that each receiving node can decode the

message so long as its accumulated received mutual information exceeds a given thresh-

old θ that represents the bandwidth-normalized entropy of the information codeword in

nats/Hz. Furthermore, all nodes are assumed to operate in half-duplex mode, i.e. they

cannot transmit and receive simultaneously. If used in transmission, the nodes operate

based on a decode and forward protocol. Therefore, they are not allowed to take part in

transmission until they have fully decoded their message.

Assuming the noise power is the same at all receivers, we can assume without loss of

generality the noise power to be normalized to unity so that the transmit power attenuated
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by the channel becomes equivalent to the signal to noise ratio (SNR). As previously

mentioned, we assume a memory-less model in which nodes do not accumulate energy

or information from transmissions occurred in previous time slots.

3.3 Generalized Formulation

In this section we provide a generalized formulation for the delay constrained minimum-

energy cooperative transmission (DMECT) problem in the setting described in section

3.2.

We assume that the transmission begins from a single source node. The aim is to

get the message to all the nodes in a destination set D, with the minimum possible total

energy, within a time T (which can take on any value from 1 to n − 1). Every node

in the network is allowed to cooperate in the transmission, so long as they have already

decoded the message. The problem now becomes: which nodes should take part in the

cooperation, when and with what power should they transmit to achieve this aim while

meeting the constraints and incurring minimum total transmission power.

Recalling the memoryless assumption, the condition for successful decoding at some

receiver node r at time t when a set of nodes S(t) is transmitting packets, with transmit

power pst, ∀s ∈ S(t) is:

yrt ≥ θ (3.1)
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with yrt being the mutual information accumulated by node r at time t. Let xit be an

indicator binary variable that indicates whether or not node i is allowed to transmit at

time t. In other words, we define xit to be 1, if node i is allowed to transmit at time t

(i.e. has decoded the message by the beginning of time slot t as per equation (3.1)), and

0 otherwise. Let pit be the transmit power for each node i at each time t. Without loss of

generality, the source node is assigned node index 1.

The DMECT problem can then be formalized as a combinatorial optimization prob-

lem:

min Ptotal =
∑T

t=1

∑n
i=1 pit (3.2)

s.t. 1. pit ≥ 0, ∀i, ∀t

2. xiT+1 ≥ 1, ∀i ∈ D

3. xit+1 ≤ 1
θyit + xit, ∀i, ∀t

4. x1t = 1, ∀t

5. xi1 = 0, ∀i '= 1

6. xit ∈ {0, 1}

where, for the energy accumulation (EA) case3:

yit = log



1 +
∑

s∈S(t)

pstxsthsi



 (3.3)

3Notice that because of the monotonicity of the log function, yit ≥ θ in this case is equivalent to
∑

s∈S(t) pstxsthsi ≥ eθ − 1
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and for mutual information accumulation (MIA) case:

yit =
∑

s∈S(t)

log (1 + pstxsthsi) (3.4)

Constraint 2 ensures that every nodes in the destination set successfully decodes the mes-

sage within the time constraint T , constraint 3 ensures that a node cannot transmit unless

it has already received the message while simultaneously making sure that a node that

has decoded the message in previous time slots will not be prevented from transmitting

in future time slots (if it wants to transmit), constraint 4 assigns the source node, and all

other constraints are self-explanatory.

In general, there are three variations of this problem, based on the size of the desti-

nation set:

• Delay constrained minimum energy cooperative unicast (DMECU): where the set

D includes a single destination node.

• Delay constrained minimum energy cooperative multicast (DMECM): where the

set D includes more than one destination node.

• Delay constrained minimum energy cooperative broadcast (DMECB): where the

set D includes all the nodes apart from the source node.

The decision version of these problem, can be defined correspondingly as follows: “Given

some power bound C, does there exist an allocation of powers, pit, satisfying the con-

straints in (3.2) such that Ptotal ≤ C?” An instance of this decision problem is defined
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by giving the symmetric n × n matrix H , with a designated source node (vertex), a

destination set D, a delay bound T , and a power bound C.

Notice that assigning T ≥ n, in the above formulation, results in the problem def-

inition in the case where there is no delay constraint. Note also that a requirement for

per-node maximum power can be trivially added to the above formulation as additional

constraint; we have left that out for simplicity. Should the maximum power be added, it

should be large enough to ensure a feasible solution exists for the given connectivity and

delay constraint.

3.4 Computational Complexity

In this section, we prove that finding an optimal solution for DMECB and DMECM prob-

lems is not only NP-hard but also o(log(n)) inapproximable i.e., finding any polynomial

time algorithm that approximates the optimal solutions within a factor of o(log(n)) is

also NP-hard. We show this by demonstrating that any instance of the set cover problem

can be reduced to an instance of DMECB (and by extension DMECM). We further prove

NP-completeness for DMECU when MIA is used; note that DMECU with EA will be

treated in section 4.2.

3.4.1 Interpreting the Set Cover Problem in Networking Context

The set cover problem is a classical problem in computer science [55]. It is stated as

follows: Given a universe U of n elements and a collection of subsets of U , S =
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S1, S2, ...Sk, find a minimum subcollection of S that covers all elements of U . This

problem is NP-complete and was shown, in [56], to be o(log(n)) inapproximable.

The set cover problem can be thought of as a bipartite graph G(V,E), with |V | =

k + n, representing the k sets and n elements and the edges are used to connect each set

to its elements. This is shown in Figure 3.1 (a), where we assign a vertex for each set in

the top part of the graph, and assign a vertex for each element in the bottom part of the

graph. We connect each set to its elements using an edge. One can think of each vertex

in this graph as a node in a network, in which edges exist between any pair of nodes

for which hij > 0, and the edges are labeled with a weight wij that corresponds to the

transmit power needed at node i to exceed a threshold of θ at the receiver j, in a single

time slot if i was the only transmitter. Given an instance, G, of the set cover problem,

the optimal solution to the set cover problem, OPTsc, would find the minimum subset of

vertices in the top part of the graph, so that their transmission of a message can broadcast

the message to all the vertices in the bottom part of the graph.

3.4.2 Inapproximablity of DMECB

Given an instance, G, of the set cover problem, with k sets and n elements, let us con-

struct a new graph G′ as follows: Assign a root node r, which is the source with the

message at the starting time, call this level 0. Include k nodes in level 1, representing the

k sets in the set cover problem, all connected to the root node, as shown in Figure 3.1

(b). This is followed by the bipartite graph of G, which makes up level 2 and 3 of G′.
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Connect each of the k nodes in level 2 to their representative in level 1 and to all the other

nodes in level 2. Notice the nodes in level 2 are also connected to their elements in level

3 of the graph, as shown in the Figure. We make all the weight on the edges arbitrarily

small (say 1), with the exception of the edges in between the nodes in level 1 and 2. We

make those edges to be sufficiently large, say M , to be specified later.

r
Level 0

Level 1

Level 2

Level 3

M M M

G′G

Figure 3.1: Construction of G′ for a given G in DMECB.

Assume the the weight on the edges represent the power needed for the message to

be transmitted across that edge. If we were to run the optimal DMECB algorithm on G′

with T = 3 the algorithm would have to act as follows, to be able to cover all the nodes

in the given time frame:

Step 1: Root transmits with power 1, turning on all its k neighbors on level 1.

Step 2: The algorithm picks a subset of the k nodes on level 1 to transmit the message.

This subset must be chosen to be as small as possible, given the large weight they have

to endure to pass on the message on to the bipartite graph, and the fact that DMECB
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is trying to minimize the total weight. Yet it has to be large enough so that when the

nodes in level 2 transmit, all the nodes in level 3 would receive the message. The optimal

algorithm must be able to find such a subset.

Step 3: The nodes that receive the message in level 2 transmit the message in this step,

turning on all the nodes in level 3 of the graph, as well as all the nodes in level 2 of the

graph that were not selected for transmission, thus covering the whole graph.

Let us call the solution4 of this optimal algorithm OPTDMECB. Then the following two

lemmas with respect to the above construction of G and G′ hold:

Lemma 1. OPTDMECB ≤ M.OPTSC + 1 +OPTSC

Proof. Consider an instance of SC (with graph G), whose optimal solution is OPTSC .

Construct a graph G′, as explained and run the DMECB algorithm to get OPTDMECB.

The above inequality holds by construction of the graph.

Lemma 2. OPTSC ≤ OPTDMECB
M

Proof. Consider an instance of DMECB on G′ and its optimal solution OPTDMECB for

delay T = 3. Notice that if T > 3, we add additional single nodes (as virtual roots) to

reduce the problem to the case where T = 3. Looking at G′, we observe that to meet the

delay constraint, by end of step i, at least one node in level i must have heard the message

- else it is impossible to get the message through to the rest of the levels in the time frame

left. Let’s say the root is on level 0. Consider the subset of level 1 that has come on at the

end of time 1, s1, and from level 2 consider the set, s2, that came on at the end of time

4Minimum energy needed for transmission.
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step 2. We now want to show that s2 is a feasible solution for set cover. To do so, we

make the following two claims: Claim 1: Nodes responsible for turning on s2 must be a

subset of s1. Claim 2: s2 is a feasible solution to set cover. Claim 1 holds because only

nodes that have received the message by the end of time 1 can transmit the message at

time 2. Not all of them might transmit though, so s2 is a subset of corresponding nodes in

s1. Claim 2 is true because if there exists an element in level 3 that is not a corresponding

node to any node in s2, it cannot decode by T = 3. Therefore, s2, is a feasible solution

to set cover. OPTDMECB must spend at least M for each element of s2 to come on, so

OPTSC ≤ OPTDMECB
M .

Theorem 1. The DMECB problem is o(log(n)) inapproximable, for T ≥ 3.

Proof. For an instance of the set cover problem, with k being the total number of sets,

lemma 1 can be re-written as OPTDMECB ≤ M.OPTSC + 1 + k. We also know by

lemma 2 that OPTSC ≤ OPTDMECB
M . Therefore, for a sufficiently large M , we can write

OPTSC = OPTDMECB
M + o(1). Therefore, the reduction used in construction of the graph

G′ preserves the approximation factor. That is, if one can find an α-approximation for

DMECB, by extension there must exist an α-approximation for set cover. We know,

by [56], that the set cover problem is o(log(n)) inapproximable, thus DMECB must be

o(log(n)) inapproximable. In other words, finding a polynomial time approximation

algorithm that approximates OPTDMECB with a factor of o(log(n)) is NP-hard.

The DMECB problem can be solved in polynomial time for cases when T < 3.

The optimal algorithm for T = 1 is trivial and an optimal polynomial algorithm for
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T = 2 is discussed in section 4.15. It is also trivial to verify the feasibility of a given

power allocation, and verify whether or not it satisfies the decision version of DMECB

given in section 3.3. Therefore, the problem belongs to the class of NP. Notice that the

inapproximability result, given by Theorem 1, is stronger than, and implies, the NP-

completeness result. It is also worth noticing that without any delay constraint (i.e. when

T ≥ n), the problem is still NP-complete and the proof can be obtained, using directed

Hamiltonean path, following the approach in [37].

3.4.3 Inapproximablity of DMECM

The proof of the following theorem, follows from Theorem 1 by noticing that broadcast

can be thought of as a special case of multicast.

Theorem 2. The DMECM problem is o(log(n)) inapproximable, for T ≥ 3.

3.4.4 Hardness Results for DMECU

In the unicast case, the hardness of the problem depends on whether we are using EA

or MIA. In the former case, DMECU can be shown to be polynomially solvable and the

algorithm for that is provided in section 4.2. In the remainder of this section, we discuss

DMECU with MIA.

Given an instance, G, of the set cover problem, with k sets and n elements, similar

to that in section 3.4.2, let us construct a new graph G′ as follows: Assign a root node

5DMECT go algorithm, discussed in section 4.1, along with an ordering based on channel gains from
the source, provides an optimal polynomial time algorithm for DMECB for the case when T = 2.
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r, which is the source with the message at the starting time, call this level 0. Include k

nodes in level 1, representing the k sets in the set cover problem, all connected to the root

node with a small weight (say weight 1), as shown in Figure 3.2. This is followed by the

bipartite graph of G, which makes up level 2 and 3 of G′. Connect each of the k nodes in

level 2 to their representative in level 1 with edge weights, of say W . Notice the nodes

in level 2 are also connected to their elements in level 3 of the graph, as shown in the

Figure, with low-weight edges. Add a single destination node d, in level 4 and connect

all the nodes in level 3 to d. Let the channel between all nodes on level 3 and destination

d be equal and of gain h. Therefore, the edge weight on the edges connecting the level 3

nodes to d, can be assigned to be M , where M is defined so that the following equality

holds: log(1 +Mh) = θ.

M
1W

1
r d

Level 0 Level 1 Level 2 Level 3 Level 4

Figure 3.2: Construction of G′ for a given G in DMECU.

Assume that the weight on the edges represent the power needed for the message to

be transmitted across that edge. If we were to run the optimal DMECU algorithm on

G′ with T = 4 the algorithm would have to act as follows, to be able to turn node d on
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within the given time frame:

Step 1: Root transmits with power 1, turning on all its k neighbors on level 1.

Step 2: The algorithm picks a subset the k nodes on level 1 to transmit the message to

the nodes in level 2.

Step 3: A subset of nodes that have received the message in level 2, transmit the message

in this step, turning on a subset of nodes in level 3 of the graph.

Step 4: A subset of nodes that have received the message in level 3, transmit the message

in this step with sufficient power to turn on d.

Let us call the solution of this optimal algorithm OPTDMECU .

Theorem 3. The DMECU problem, with MIA, is NP-complete for T ≥ 4.

Proof. Given an instance of G, we construct G′ as above. Let us run DMECU on G′ and

call the optimal solution OPTDMECU for delay T = 4. Notice that if T > 4, we add

additional single nodes (as virtual roots) to reduce the problem to the case where T = 4.

Define p to satisfy the following: n log(1 + ph) = log(1 +Mh), meaning p is the power

required for nodes on level 3 to turn on d, if all of them were transmitting at the same

time. Claim: OPTDMECU needs to use all the nodes in level 3 for transmission. This

claim holds by contradiction, as follows: If all the nodes on level 3 are used for trans-

mission, each node on that level must transmit with power p. Let’s assume one of the

nodes in that level is not used for transmission. Then the remaining nodes in level 3 need

to transmit with power p′, where n log(1 + ph) = (n− 1) log(1 + p′h) = θ. Therefore,

the ratio of the sum power needed with one fewer node transmitting to the case where
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all nodes in level 3 are transmitting can be written as (n−1)p′

np = (n−1)(eθ/n−1−1)
n(eθ/n−1)

, for suf-

ficiently large θ, this ratio can become arbitrarily large. Therefore, for sufficiently large

θ, the claim holds. Given the claim holds, we know that by definition OPTSC provides

the optimal way (minimum energy) to turn on all the nodes in level 3 within the required

time frame, therefore, for non-zero edge weights OPTDMECU needs to optimally solve

the set cover problem in step 2.

It is worth noticing that all the hardness results presented in this section extend to the

case where there is no memory.

3.5 Summary

In this chapter we formulated the novel problem of delay constrained minimum energy

cooperative transmission in memoryless wireless networks, encompassing both EA and

MIA. We analyzed a wide class of setups, including unicast, multi-cast, and broadcast,

and two main cooperative approaches, EA and MIA. We provided a generalized algo-

rithmic formulation of the problem that encompasses all those cases. We investigated the

similarities and differences of EA and MIA in our generalized formulation. We proved

that the broadcast and multicast problems are, in general, not only NP hard but also

o(log(n)) inapproximable. We further proved that the problem is NP-hard for the uni-

cast case with MIA. Table 3.1 provides a summary of the algorithmic results proved in

this chapter.
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NEGATIVE
RESULTS

Energy Accumulation

Delay Constraint (T ) Unconstrained

Broadcast o(log(n)) inapproximable for T ≥ 3 NP-complete

Multicast o(log(n)) inapproximable for T ≥ 3 NP-complete

Unicast Polynomial time Polynomial time

NEGATIVE
RESULTS

Mutual Information Accumulation

Delay Constraint (T ) Unconstrained

Broadcast o(log(n)) inapproximable for T ≥ 3 NP-complete

Multicast o(log(n)) inapproximable for T ≥ 3 NP-complete

Unicast NP-complete for T ≥ 4 —

Table 3.1: Summary of the algorithmic negative results.
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Chapter 4

Minimum Energy Delay Constrained Transmission

In chapter 3 we considered the problem of energy-efficient transmission in coopera-

tive multihop wireless networks. We proved NP-hardness for several variations of the

DMECT problem (namely, the DMECB, DMECM and DMECU (with MIA), with the

former two being o(log(n)) innaproximable). In this chapter we break these problems

into three parts: ordering, scheduling and power control, and propose a novel algorithm

that, given an ordering, can optimally solve the joint power allocation and scheduling

problems simultaneously in polynomial time. We further show empirically that this al-

gorithm used in conjunction with an ordering derived heuristically using the Dijkstra’s

shortest path algorithm yields near-optimal performance in typical settings. For the uni-

cast case, we prove that although the problem remains NP complete with MIA, it can be

solved optimally and in polynomial time when EA is used. We further use our algorithm

to study numerically the trade-off between delay and power-efficiency in cooperative

broadcast and compare the performance of EA vs MIA as well as the performance of
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our cooperative algorithm with a smart non-cooperative algorithm in a broadcast set-

ting. We also briefly discuss how the algorithms discussed could be implemented in a

decentralized fashion.

4.1 Optimal Transmission Given Ordering

In section 3.4, we proved NP-hardness for several variations of the DMECT problem. In

this section, we break this NP-hard problem into three subproblems, namely ordering,

scheduling and power allocation, and we propose an optimal polynomial time algorithm

for joint scheduling and power allocation when the ordering is given. We evaluate a

heuristic for the ordering in section 4.4.

Definition 1. An ordering, for a vector of n nodes, is an array of indices from 1 to n;

any node that has decoded the message will only be allowed to retransmit when all nodes

with smaller index have also decoded the message (and are thus allowed to take part in

transmission).

Given an ordering, what remains to be determined is which nodes should take part

in transmission, how much power they should transmit with and at what time slots, such

that minimum energy is consumed while delay constraints are satisfied.

4.1.1 Instantaneous optimal power allocation

If we know which nodes are transmitting the message and which nodes are receiving it, at

any single time-slot, we can use a convex program (CP) to determine the optimal power
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allocation for that time slot. Consider an ordered vector of n nodes (1, ..., k, ..., i, ..., n).

Let us assume that by time slot t, node 1 to i have decoded the message and nodes i+ 1

to n are to decode it during that time slot. At time instance t, the optimal instantaneous

power allocation for a set of transmitting nodes (say S(t) = (k, ..., i)) to turn on a set of

receiving nodes nodes (say R(t) = (i+ 1, ..., n)) can be calculated by the following CP:

min
∑

s∈S(t) pst (4.1)

s.t. pst ≥ 0, ∀s

yrt ≥ θ, ∀r ∈ R(t)

We use the notation CP ([{k...i}, {i + 1...n}], θ, H) to refer to solution of the above

CP. As a notation, CP ([{x...y}, {z...α}], θ, H) = 0, if z ≥ α. Notice that in the case

where EA is used, this CP simply reduces to a linear program, using the manipulation

highlighted in footnote 2 in section 3.3.

4.1.2 Joint Scheduling and power allocation

Knowing the instantaneous optimal power allocation given the set of senders and re-

ceivers at each time slot, all that remains to be done is to determine these sets at each

time slot, in order to minimize the overall power while meeting the delay constraint.

Let C(j, t) be the minimum energy needed to cover up to node j in t steps or less.

We can calculate this, using the following algorithm:
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C(j, t) = min
k∈(1,..,j)

[C(k, t− 1) + CP ({1...k}, {k + 1...j}, θ, H)] (4.2)

where C(k, 1) = CP (1, {2...k}, θ, H), C(1, t) = 0 ∀t.

Thus, in DMECB, the total minimum cost for covering n nodes by time T can be

found by calculating C(n, T ). In DMECM, and DMECU (MIA), the same approach

could be used, except for node n being replaced by the highest order destination in the

former and by the destination order in the latter.

A pseudocode for the algorithm is presented in Algorithm 1. The complexity of the

Algorithm 1 Delay constrained minimum energy cooperative transmission, given an

ordering (DMECT go)

1: INPUT: an ordered array of nodes of size n (where node i is the ith node in the
array), T (delay), d (destination), H (channel), θ (threshold).

2: OUTPUT: C (cost matrix)

3: Begin:

4: for i := 2 to n do

5: C(i, 1) := CP ([1, {2...i}], θ, H);
6: end for

7: for t := 1 to T do

8: C(1, t) := 0;
9: end for

10: for t := 2 to T do

11: for i := 1 to d do

12: for k := 1 to i do

13: x(k) := C(k, t− 1) + CP ([{1...k}, {k + 1...i}], θ, H);
14: end for

15: C(i, t) := min x

16: end for

17: end for

optimal scheduling and power allocation can be obtained by inspection of the above algo-

rithm: it invokes at most O(n2T ) calls to the CP solver, each of which takes polynomial
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time. Hence the DMECT go algorithm that does joint scheduling and power-control is a

polynomial time algorithm.

Note that the delay constraint T can be made sufficiently large (≥ n), or removed

entirely from the formulation, to cover the case of no delay constraints. In that case

the two-dimensional dynamic program proposed in (4.2), reduces to a one-dimensional

dynamic program:

C(n) = min
k

[C(k) + CP ({1...k}, {k + 1...n}), θ, H ] (4.3)

where C(n) is the minimum cost of covering node n using our cooperative memoryless

approach, starting from node 1 and C(1) = 0.

4.2 Optimal Unicast with Energy Accumulation

In this section we propose an optimal polynomial time algorithms for solving the unicast

problem with EA.

Theorem 4. In DMECU with EA, there exists a solution consisting of a simple path

between source and destination, which is optimum.

Proof. Let us prove by induction: For delay T = 1, the claim is trivially true, as the

optimal solution is a direct transmission from the source, s, to the given destination,

d. For T > 1, we prove the claim by induction. Assume that the claim is true for

T = k − 1. Pick any node in the network as the desired destination d. If the message
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can be transmitted from source s to d with minimum energy in a time frame less than

k, then an optimal simple path exists by the induction assumption. So consider the case

when it takes exactly T = k steps to turn on d. The system is memoryless, so d must

decode by accumulating the energy transmitted from a set of nodes, v, at time k. This can

be represented as log(1 +
∑

vi∈v pvikhdvi) ≥ θ. We observe that there must exist a node

vo ∈ v whose channel to d is equal or better than all the other nodes in v. Therefore, given

hdvo ≥ hdvi , ∀vi ∈ v−{vo} then log(1+
∑

vi∈v pvikhdvo) ≥ log(1+
∑

vi∈v pvikhdvi) ≥ θ.

In other words, if we add the power from all nodes in v and transmit instead from vo,

our solution cannot be worse. vo must have received the message by time k − 1, to be

able to transmit the message to d at time k. We know by the induction assumption that

the optimal simple path solution exists from source to any node to deliver the message

within k − 1 time frame. Thus, for T = k, there exists a simple path solution between s

and d, which is optimum.

Notice that the above theorem holds in the case where there is no delay constraint

as well. The proof follows an straightforward modification of the above proof and is

omitted for brevity.

Corollary 1. The Dijkstra’s shortest path algorithm provides the optimal ordering in

the case of minimum energy memoryless cooperative unicast, when there is no delay

constraint.

Proof. We have already established that an optimal minimum energy solution exists be-

tween source and destination, which is a simple path. The well-known Dijkstra’s shortest
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path algorithm can find the minimum cost simple path between source and destination.

Therefore, Dijkstra’s algorithm provides the optimal ordering.

Using theorem 4 we know that the optimal unicast solution from source to any des-

tination in DMECU (with EA) is given by a simple path. The cost paid by the optimal

solution can be calculated using the following algorithm: Let C(i, t) be the minimum

cost it takes for source node s to turn on i, possibly using relays, within at most t time

slots. Then we can write:

C(i, t) = min
k∈Nr(i)

[C(k, t− 1) + w(k → i)] (4.4)

with C(s, t) = 0, for all t and C(i, 1) = w(s → i), where Nr(i) is the set that contains

i and its neighboring nodes that have a non-zero channel to i, w(k → i) represents

the power it takes for k to turn on i using direct transmission. Given that, the solution

to OPTDMECU (with EA) is given by C(d, T ). Computing this lower-bound incurs a

running time of O(n3).

The unicast case (with EA), with no delay constraint, is still polynomially solvable.

Given Theorem 4 and Corollary 1, the optimal solution is simply the weight of the short-

est path given by the Dijkstra’s algorithm.

It is worth noticing that the crux of the difference between DMECU with EA and

with MIA, that allows the former to be polynomially solvable, while the latter is NP-

complete, lies in the optimality of single-node transmission. Namely, in the EA case, the
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multi-transmitters single-receiver case (multi-single) makes no sense as explained above

and instead it is optimal to put the combined power into the best channel. This allows

for the overall solution to be a simple path. However, in the MIA case, the many-to-one

transmission case does in fact make sense. That is due to the property of the log function,

creating an effect similar to what we observe in water-filling, where it is best to transmit

from the best channel up until some point, then from the second best channel and so

forth.

4.3 Approximation Algorithm for Broadcast with Energy

Accumulation

In section 3.4, we proved that DMECB is NP-complete and o(log(n)) inapproximable,

therefore it is hard to approximate DMECB to a factor strictly better than log(n). It

is of theoretical interest to know how close we can get to the optimal solution, using a

polynomial-time algorithm. In this section we show that existing approximation algo-

rithms for the bounded-diameter directed Steiner tree problem can be used to provide an

O(nε) approximation for DMECB in the case where EA is used. We do so by proposing

an approximation-preserving reduction to the directed Steiner tree problem.

The Steiner tree problem is a classic problem in combinatorial optimization [55]. We

focus on a variation of this problem, namely bounded diameter directed Steiner tree, de-

fined as follows. Given a directed weighted graph G(V,E), a specified root r ∈ V , and
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a set of terminal nodes X ⊆ V (|X| = n), the objective is to find the minimum cost ar-

borescence rooted in r and spanning all vertices in X , subject to a maximum diameter T .

Diameter refers to the maximum number of edges on any path in the tree. Notice that the

tree may include vertices not in X as well, these are known as Steiner nodes. Directed

Steiner tree problem is known to be NP -complete and O(log(n)) inapproximable [55].

In [54], the authors give the first non-trivial approximation algorithms for Steiner tree

problems and propose approximation algorithms that can achieve an approximation fac-

tor of O(nε) for any fixed ε > 0 in polynomial time. To the best of our knowledge this is

currently the tightest approximation algorithm known for this problem.

In order to reduce a given instance of the DMECB to an instance of the Steiner

tree problem, we first restrict DMECB by not allowing many-transmitter-to-one-receiver

(many-to-many) transmissions. Notice that in the proof of theorem 4, we had estab-

lished that many-to-one transmissions can be replaced with one-to-one transmissions

without loss of optimality. Therefore, by not allowing many-to-many transmissions, we

are left with one-to-one and one-to-many transmissions. We call this an integral version

of DMECB, DMECB-int. The integrality gap of the weighted set cover problem is shown

to be log(n) [55]; it is straightforward to extend that result to show that DMECB-int also

loses a factor of log(n), compared to optimal DMECB.

Consider an instance of DMECB-int, G(V,E), with (|V | = n) and s ∈ V being the

source node. To reduce this problem to an instance of directed Steiner tree problem, let

us construct a new graph G′, consisting of n clusters, x′, each corresponding to each node
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in G. Let each cluster be a bipartite graph, with n nodes on the left (marked as “ − ”)

and n nodes on the right (marked as “ + ”), as shown in Figure 4.1. The “ − ” nodes

are intra-connected within a cluster with edges of weight 0. In each cluster, x′ ∈ G′

corresponding to node v ∈ G, the “ + ” and “− ” nodes on each level, i, of the bipartite

graph are connected to each other with an edge of weight wi, representing the power

needed by the corresponding node v ∈ G to turn on its i closest neighbors. The i+ node

is then connected, with edges of weight 0, to all the “ − ” nodes in the corresponding

neighbor clusters. We further add a single root node, r ∈ G′, and connect it via a zero-

weight edge to all the “ − ” nodes in the cluster corresponding to s, x′
s. We assign the

root r and one desired “−” node from each cluster as terminal nodes and all other nodes

in G′ as Steiner nodes.

Let us look at an example of this construction, say node v1 ∈ G, whose closest 3

neighbors are (v2, v4, v6). We have an equivalent cluster x′
1 ∈ G′ corresponding to node

v1. x′
1 has 2n nodes, arranged in n levels. The weight between the two nodes in say

level 3 is equivalent to the power it takes for v1 to turn on (v2, v4, v6). Furthermore, the

node 3+ in cluster x′
1 is connected to the “−” nodes in clusters (x′

2, x
′
4, x

′
6) with edges of

weight 0. This construction allows us to find a way to allow v1 to transmit with different

power levels, without knowing what those powers might be in advance. We first add a

single root node, r, and connect it via a zero-weight edge to all the “ − ” nodes in the

cluster corresponding to s.

50



Figure 4.1: A simplified example of how clusters are constructed in G′.
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Run the directed Steiner tree algorithm on G′ to obtain a solution. The solution

must choose at least one node from each cluster, to meet the mandatory terminal nodes

requirement. Recall that each cluster in G′ corresponds to a node in G and that multi-

multi was not allowed. To convert the solution of the Steiner tree algorithm on G′ to a

solution of DMECB-int on G, we look at the parent of each cluster, which is a “+” node

in another cluster. Let’s say we want to see which node turns on v6 by looking at G′. We

look at the parent of x′
6 and see that it’s 3+ ∈ x′

1. So in G, we figure out that v1 must

transmit with enough power to turn on 3 of its closest neighbor (w3), and it is as a result

of this transmission that v6 comes on. Going through all the clusters and their parents,

we can establish an ordering and transmission power for all the nodes that should take

part in cooperation in G, and thus we have a solution for DMECB-int.

Theorem 5. For DMECB problem with EA, an O(nε) approximation ratio can be achieved

in polynomial time, for any fixed ε > 0.

Proof. As mentioned, the directed Steiner tree is o(log(n)) inapproximable, and the best

approximation algorithm currently available [54] gives an O(nε) approximation on the

optimal solution. We had already lost O(log(n)) to convert DMECB to its integral

form. The approximation algorithm proposed in [54] can approximate the optimal in-

tegral solution within O(nε). Therefore, using the above reduction, and applying the

directed Steiner tree approximation algorithm, we can approximate the optimal solution

to DMECB within O(nε × log(n)), which is equivalent to O(nε).
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The running time of the Steiner tree approximation algorithm is a function of ε, and

the tighter the approximation, the worse the running time. Similarly, using the above

mentioned reduction, the following result holds by directly applying the approximation

algorithms in [54]. Detailed discussions of the algorithms in [54] are beyond the scope

of this dissertation.

Theorem 6. For any fixed T > 0, there is an algorithm which runs in time nO(T ) and

gives an O(T log2(n)) approximation of the DMECB with EA.

4.4 Performance Evaluaion

For the simulations, we focus on the broadcast case. We consider a network of n nodes

uniformly distributed on a 15 by 15 square surface. The transmission starts from a node,

arbitrarily located at the left center corner of the network (0, 7). The channels between

all nodes are static, with independent and exponentially distributed channel gains (corre-

sponding to Rayleigh fading), where hij denotes the channel gain between node i and j.

The mean value of the channel between two nodes, hij , is chosen to decay with the dis-

tance between the nodes, so that hij = d−η
ij , with dij being the distance between nodes i

and j and η being the path loss exponent. The corresponding distribution for the channel

gains is then given by

fhij (hij) =
1

hij

exp

(

hij(k)

hij

)
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Based on the intuition developed in section 4.2, we use the Dijkstra’s shortest path al-

gorithm as our ordering heuristic. Simulations are repeated multiple times with the

same node locations but different fading realizations and average values are shown in

the graphs. Notice that the minimum power calculated by different algorithms, shown

on the y-axes of the graphs in this section, are normalized by unit power (rendering it

unit-less). The value of θ is, arbitrarily, chosen to be log(2) throughout this section.

In Figure 4.2, we calculate the optimal ordering by brute-force for a small number

of nodes and compare the performance of our algorithm, which uses Dijkstra’s shortest

path-based ordering, with the optimal performance. The results for the broadcast case,

with EA, is shown in this figure. As can be seen, Dijkstra’s algorithm provides a good

heuristic for ordering in this example and will be used throughout this section. Note

that, as can be seen in the figure, although the problem was proved to be o(log(n)) in-

approximable, it is possible to achieve near-optimal results in polynomial time in certain

practical settings where the network does not have any pathological properties. The in-

approximablity results contain all possible (including pathological networks) scenarios.

We next compare the performance of our cooperative algorithm with a smartly de-

signed non-cooperative algorithm (both using EA). Notice that in our cooperative algo-

rithm we make use of the wireless broadcast advantage (WBA), where transmission by

one node can be received by multiple nodes and cooperative advantage, where a node

can accumulate power from multiple transmitters.
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Figure 4.2: Performance with optimal ordering vs Dijkstra’s algorithm-based heuristic

ordering.
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If an algorithm is using the WBA, but not the cooperative advantage, it can be thought

of as an integral version of DMECB. This means that each node can receive the message

from one transmitter only (and cannot accumulate from multiple transmitters), however

one transmitter can transmit to multiple receivers.

We had established in section 4.3 that DMECB-int is also NP complete. It is how-

ever interesting to note that DMECB-int needs to solve a weighted set cover problem

when allocating powers as well; we know that set cover problem is o(log(n)) inapprox-

imable [55], so the non-cooperative case is o(log(n)) inapproximable, even when order-

ing is provided. Greedy algorithms exist [55] that give O(log(n)) approximations for the

weighted set cover problem, and thus provide a tight polynomial time approximation.

10 20 30 40 50 60 70 80 9050

100

150

200

Number of nodes

No
rm

al
ize

d 
Po

we
r

 

 

Non−Cooprative
Cooperative

Figure 4.3: Effect of cooperation for varying network size.
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Figure 4.4: Power-delay tradeoff in cooperative vs non-cooperative case.

Therefore, to simulate a smart non-cooperative algorithm, we use Dijkstra’s algorithm-

based ordering and the DMECT algorithm of section 4.1, with the exception that instead

of using an LP we use the greedy algorithm for power allocation.

The performance comparison between our proposed cooperative algorithm and the

smart non-cooperative algorithm, for different values of n is shown in Figure 4.3 and the

power-delay tradeoff for cooperative and non-cooperative algorithms are presented in

Figure 4.4. As can be seen, the cooperative algorithm outperforms the non-cooperative

algorithm, and the advantage is more pronounced when a delay constraint is imposed.

The performance gains obtained by using MIA is shown in Figure 4.5, for a sample

network of 30 nodes.
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Figure 4.5: Energy accumulation vs mutual information accumulation.

58



We next study the power-delay tradeoff of the cooperative algorithm for different

channel conditions and different values of network density ρ (in nodes/area). Figure

4.6 and Figure 4.7, show results for EA and MIA, respectively. These figures highlight

the sensitivity of the dense networks and those with poor channel conditions to delay

constraints and the importance of having smart algorithms to minimize the energy con-

sumption.
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Figure 4.6: Effect of network density on power-delay tradeoff.
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Figure 4.7: Different η values for information accumulation.

4.5 Decentralized Implementation

The algorithms discussed in this chapter are centralized algorithms. In this section, we

discuss a possible approach for a decentralized implementation of these algorithms in the

case where EA is used.

For simplicity, we start off by considering the single source with energy accumulation

without a delay constraint. As previously discussed, the unicast problem in this case is

optimally solvable and consists of a single path. We observed that the Dijkstra algorithm

could provide us with that optimal single path. An alternative algorithm is Bellman’s

shortest path algorithm developed in 1957. The distributed algorithm based on this work

is often referred to as Bellman-Ford algorithm, named after its inventors. Although, not
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regarded to be as fast as Dijkstra’s algorithm for graphs with non-negative edges, the dis-

tributed Bellman-Ford algorithm seems to provide a viable alternative to Dijkstra’s that

would allow us to have a distributed solution for the unicast case, in energy accumulation.

Next, let us consider the algorithm discussed in section 4.1, with EA. For this al-

gorithm, we already established that, given an ordering, an optimal polynomial time

solution exists and can be found using dynamic programming, for scheduling, and linear

programming, for power control, jointly. We proposed using Dijkstra’s algorithm for the

ordering and had verified, using simulations, that this ordering performs near-optimally

in typical settings. So, if ordering is given, using this insight we could try to find a

distributed approach.

Inspecting the dynamic program closely, for the case with delay constraint, we can

see that it works by filling out the elements of an n × T table, with n being the number

of nodes in the network and T being the delay. Assuming all nodes have the ordering

vector, we can have each node calculate their own corresponding row of the table using

the information that has been passed on to them by the node immediately preceding

them and then amend this to what they have received from the previous node and pass

it on to the node that proceeds them in the ordering. Notice that since the next node in

the neighboring is not necessarily their closest neighbor (in terms of channel strength)

they might need to pass on this information using some sort of distributed shortest path

algorithm. The final node in the ordering will then be in the possession of the entire table
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and can pass it on to all the nodes in the network. Once the nodes get a copy of the table,

they can locally calculate when they need to transmit and with what power.

Assuming channel conditions do not vary too frequently, this initial step need not

happen too frequently. This way, given ordering, we can find a distributed solution with

each node only having access to the ordering vector and the channel gains of its neigh-

bors.

If ordering is not given, the problem becomes more challenging. We have already

established that, without ordering, the problem is o(log(n)) inapproximable and have

proposed an O(nε) approximation algorithm based on the best existing approximation

algorithms for directed Steiner tree. A possible decentralized approximation algorithm

for the broadcast version of the problem with EA is using the observation that if we are to

broadcast the message to all the nodes in the network, we cannot possibly do better than

what it takes to transmit the message in an optimal unicast fashion to each of the nodes

in the network. Thus, for a given source, the minimum unicast optimal solution over all

nodes provides a lower bound on the optimal solution for the broadcast. We can further

observe that the optimal solution cannot be worse than n times the maximum unicast

optimal solution over all nodes. Using these observations, we can think of the following

distributed algorithm (in absence of ordering): We first run the distributed Bellman-Ford

algorithm, to establish a shortest path tree in the network - in the unconstrained case

and then use the distributed unicast solution developed above with the leaf nodes being

the destinations. Similarly, in the delay constrained case, we use the distributed solution
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for the delay constrained unicast case. This provides a distributed approximate for the

optimal broadcast problem. The approximation is O(n) in this case.

4.6 Summary

We considered the DMECT problem in memoryless wireless networks. We had proved

in the previous chapter that this problem is o(logn) inapproximable in broadcast and

multicast cases and is NP-complete in the unicast case when mutual information accu-

mulation is used. In this section we developed a polynomial-time algorithm that can

solve this NP-hard problem optimally for a fixed transmission ordering. Our empirical

results suggest that for practical settings, a near-optimal ordering can be obtained by

using Dijkstra’s shortest path algorithm. We have further showed that the unicast case

can be solved optimally and in polynomial time when EA is used. We have studied the

energy-delay tradeoffs and the performance gain of MIA using simulations, and evalu-

ated the performance of our algorithm under varying conditions. For the broadcast case

with EA, we presented an O(T log2(n)) approximation algorithm. We discussed how

some of the algorithms discussed could be implemented in a decentralized fashion and

proposed a decentralized O(n) approximation algorithm for the broadcast problem with

EA. The summary of the algorithmic results developed in this chapter are presented in

Tables 4.1.
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POSITIVE
RESULTS

Energy Accumulation Mutual Information Accumulation

Delay Constraint

(T )

Unconstrained Delay Constraint

(T )

Unconstrained

Broadcast •O(nε) for ε > 0
•O(T log2(n)),
for fixed T
• Polynomial
time given order-

ing (DMCT go)
• Polynomial

time algorithm
for T = 1, 2

Polynomial time
given ordering

1D dynamic pro-
gram

• Polynomial
time given order-

ing (DMCT go)
• Polynomial
time algorithm

for T = 1, 2

Polynomial time
given ordering

1D dynamic pro-
gram

Multicast Polynomial time
given ordering
(DMCT go)

Polynomial time
given ordering
(DMCT go)

Polynomial time
given ordering
(DMCT go)

Polynomial time
given ordering
(DMCT go)

Unicast Polynomial time Polynomial time • Polynomial
time given order-

ing (DMCT go)
T ≥ 4
• Polynomial

time algorithm
for T = 1, 2

—

Table 4.1: Summary of the algorithmic positive results.
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Chapter 5

Transmission in Presence of Interfering Flows

In this thesis so far, we have focused on the case where there is no interference present.

In this chapter, we consider the problem of energy-efficient transmission in multi-flow

multihop cooperative wireless networks 1. As we discussed in previous chapters, the

combinatorial nature of these schemes makes it difficult to design efficient polynomial-

time algorithms for joint routing, scheduling and power control. This becomes more

so when there is more than one flow in the network. It has been conjectured by many

authors, in the literature, that the multiflow problem in cooperative networks is an NP-

hard problem. In this chapter, we formulate the problem, as a combinatorial optimization

problem, for a general setting of k-flows, and formally prove that the problem is not only

NP-hard but it is o(n1/7−ε) inapproxmiable. To our knowledge, the results in this chapter

provide the first such inapproxmiablity proof in the context of multiflow cooperative

wireless networks. For the special case of k = 1, we prove that the solution is a simple

1The work described in this chapter, was done in collaboration with B. Krishnamachari and D. S.
Hochbaum and, is presented in part in [71]
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path, and offer a polynomial time algorithm for jointly optimizing routing, scheduling

and power control. We then use this algorithm to establish analytical upper and lower

bounds for the optimal performance for the general case of k flows. Furthermore, we

propose a polynomial time heuristic for calculating the solution for the general case and

evaluate the performance of this heuristic under different channel conditions and against

the analytical upper and lower bounds.

5.1 Introduction

In a wireless network, a transmit signal intended for one node is received not only by

that node but also by other nodes. In a traditional point-to-point system, where there

is only one intended recipient, this innate property of the wireless propagation channel

can be a drawback, as the signal constitutes undesired interference in all nodes but the

intended recipient. However, this effect also implies that a packet can be transmitted

to multiple nodes simultaneously without additional energy expenditure. Exploiting this

broadcast advantage, broadcast, multicast and multihop unicast systems can be designed

to work cooperatively and thereby achieve potential performance gains. As such, coop-

erative transmission in wireless networks has attracted a lot of interest not only from the

research community in recent years [36, 37, 39, 42, 43, 67, 68] but also from industry in

the form of first practical cooperative mobile ad-hoc network systems [49]. The majority

of the work in the cooperative literature has so far focused on the single flow problem,
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though recently there has been an increased interest in considering multiflow settings in

cooperative networks [58, 59, 61–63].

As previously discussed, networks is routing and resource allocation are key prob-

lems in cooperative networks. The situation is further complicated by the fact that the

routing and resource allocation depends on the type of cooperation and other details of

the transmission/reception strategies of the nodes. We consider a time-slotted system in

which the nodes that have received and decoded the packet are allowed to re-transmit

it in future slots. During reception, nodes add up the signal power (EA) received from

multiple sources. Details of EA, and possible implementations have been extensively

discussed in prior work [37, 39, 42, 59] and have been briefly highlighted in Chapter 2.

We focus on the problem of minimum-energy multiflow cooperative transmission in

this chapter, where there are k source-destination pairs, with the source node wanting to

send a packet to its respective destination nodes, in a multihop wireless network. Other

nodes in the network, that are neither the source nor the destination, may act as relays to

help pass on the message through multiple hops. The transmission is completed when

all the destination nodes have successfully received their corresponding messages. It has

been noted in the literature ( [64,68]) that a key tradeoff in cooperative settings is between

the total energy consumption and the total delay measured in terms of the number of slots

needed for all destination nodes in the network to receive the message. Therefore, we

take delay into consideration and focus on the case where there is a delay constraint,

whereby the destination node(s) should receive the message within some pre-specified
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delay constraint. We therefore formulate the problem of performing this transmission in

such a way that the total transmission energy over all transmitting nodes is minimized,

while meeting a desired delay constraint on the maximum number of slots that may be

used to complete the transmission. The design variables in this problem determine which

nodes should transmit, when, and with what power.

We furthermore assume that the nodes are memoryless, i.e., accumulation at the re-

ceiver is restricted to transmissions from multiple nodes in the present time slot, while

signals from previous time slots are discarded. This assumption is justified ( [64, 68])

by the limited storage capability of nodes in ad-hoc networks, as well as the additional

energy consumption nodes have to expand in order to stay in an active reception mode

when they overhear weak signals in preceding time-slots.

The main contribution of the work presented in this chapter is as follows: It has been

conjectured in the literature that the problem of jointly computing schedules, routing, and

power allocation for multiple flows in cooperative networks is NP-hard [61–63]. In this

chapter we formulate the joint problem of scheduling, routing and power allocation in a

multiflow cooperative network setting and formally prove that not only it is NP-hard, but

it is also o(n1/7−ε) inapproximable. (i.e., unless P = NP , it is not possible to develop

a polynomial time algorithm for this problem that can obtain a solution that is strictly

better than a logarithmic-factor of the optimum in all cases). We are not aware of prior

work on multiflow cooperative networks that shows such inapproximability results. We

further prove that for a special case of k = 1, the solution is a simple path and offer
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an optimal polynomial time algorithm for joint routing, scheduling and power control.

We establish analytical upper and lower bounds based on this algorithm and propose a

polynomial-time heuristic, the performance of which is evaluated against those bounds.

The rest of this chapter is organized as follows: In section 5.2 we provide a mathe-

matical formulation of the problem. In section 5.3 we consider the special case of k = 1

and prove the solution is a simple path and can be found optimally in polynomial time.

The inapproximablity results are presented in section 5.4 using reduction from minimum

graph coloring problem. We establish analytical upper and lower bounds for optimal per-

formance in section 5.5. A polynomial-time heuristic is proposed in section 5.6 and its

performance is evaluated under different channel conditions and against the performance

bounds. Concluding remarks are summarized in section 5.8.

5.2 Problem Formulation

Consider a network, G, with a total of n nodes, I = {1, .., n}. Assume we have r

source nodes, labeled S = {s1, s2, ..., sr}, and r corresponding destination nodes, D =

{d1, d2, ..., dr}. The source-destination nodes can be thought of as pairs, {(sk, dk)}rk=1,

all with the same delay constraint T . The goal is to deliver a unicast message from each

source to its corresponding destination, possibly using other nodes in the network as

relays. The objective is to do so using the minimum amount of sum transmit power and

within the delay constraint.
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We consider a cooperative wireless setting with EA and consider signal-to-intereference-

plus-noise (SINR) threshold model, [37,59,69,70]. That is, in order for node i to be able

to decode message k at time t, the following inequality needs to be satisfied:

∑

j∈sk(t)

pjthji

∑

u/∈sk(t)

puthui +N
≥ θ. (5.1)

Here sk(t) is the set of nodes transmitting the message k at time t, hij is a constant

between 0 and 1 representing the channel gain between node i and j, and N and θ are

constants representing the noise and the decoding threshold respectively.

Equation (5.1) can be re-written as

n
∑

j=1

hjip
k
jt − θ

r
∑

q=1
q $=k

n
∑

u=1

huip
q
ut − θN ≥ 0, (5.2)

where pkit is the power used by node i at time t to transmit message k.

The system is memoryless, meaning although we are allowed to accumulate the same

message from multiple sources during each time slot, we cannot accumulate over time.

The relays are half-duplex, meaning they cannot transmit and receive simultaneously.

The relays cannot transmit more than one message at the same time either.

In order to apply ideas driven by the rich literature on multicommodity flows [3]

to our problem, we need to somehow introduce the notion of delay constraint into the

multicommodity setting. What follows is a transformation of our network graph that

would allow for the multicommodity flow technique to be applied, while observing the
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delay constraint: For a delay constraint T , map the given network to a layered graph

with T layers as shown in Figure 5.1. Place a copy of all the nodes in the network

on each of the layers. Connect each node, on each layer, to its corresponding copy on

its neighboring layers with an edge weight of 0. Also create directed edges between

each node, on each layer k, and the nodes on the next layer k + 1, with edge weights

representing the amount of power required to transmit the message from the node on the

top level to the node on the bottom level, as a whole. Notice that there is no edge between

the nodes on the same level. Call the new graph G′. Assign the nodes corresponding to

the source nodes of G on level 1 of G′ as source nodes in G′ and the destination nodes on

level T of G′, corresponding to destination nodes in G, as destinations in G′, as shown

in the figure. Similar transformations have been used in the literature in the context of

multiflow transmission [62].

Without loss of generality, we assume unit length time slots. The nodes who want to

transmit are to do so at the beginning of each time slot, and the decoding (by nodes who

receive enough information during that time slot) will happen by the end of that time

slot. Let zkit be an indicator binary variable that indicates whether or not node i decodes

the message k during time slot t, as per inequality in equation (5.1). In other words,

we define zkit to be 1, if node i decodes message k during time slot t, and 0 otherwise.

Let pkit be the transmit power used by node i at each time t to transmit message k. We

define another binary variable xk
it, that is 1 if node i is allowed to transmit message

k at time t, and 0 otherwise. A node is allowed to transmit during a particular time
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slot, if it has already decoded that message in previous time slots, and it’s not receiving

or transmitting any other messages during that time slot. Notice that being allowed to

transmit does not necessarily mean that a transmission actually occurs. To take care of

actual transmissions, let us define vkit to be a binary variable that is 1 if node i transmits

message k at time t, and 0 otherwise.

The problem can then be formalized as a combinatorial optimization problem:

min Ptotal =
∑T

t=1

∑n
i=1

∑r
k=1 p

k
it (5.3)

s.t.

1. pkit ≥ 0, ∀i, t, k

2. xk
dkT+1 = 1, ∀k

3. xk
it+1 ≤ zkit + xk

it, ∀i, t

4. (−M)(1 − zkit) ≤ ykit, ∀i, t

5. pkit ≤ Mvkit, ∀i, t

6.
∑r

k=1

(

vkit + zkit
)

≤ 1, ∀i, t

7. vkit ≤ xk
it, ∀i, t, k

8. xk
sk1

= zksk1 = 1, ∀k

9. xk
i1 = zki1 = 0, ∀i ∈ I\{sk}

10. xk
it ∈ {0, 1}

11. zkit ∈ {0, 1}

12. vkit ∈ {0, 1}.
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Here ykit =
∑n

j=1 hjip
k
jt− θ

∑r
q=1
q $=k

∑n
u=1 huip

q
ut− θN , M is a large positive constant, and

the constraints have the following interpretations:

1. No negative power is allowed.

2. Every node in the destination set is required to have decoded the data by the end

of time slot T .

3. If a node has not decoded a message by the end of time slot t, that node is not

allowed to transmit that message at time t + 1.

4. zkti is forced to be 0 if message k is not decoded in time slot t.

5. pkit is forced to be 0, if node i is not transmitting message k at time t (i.e. if vkit = 0).

6. A node cannot transmit and receive at the same time and can only transmit or

receive a single message at each time slot.

7. vkit is forced to be 0, node i is not allowed to transmit message k at time t (i.e. if

xk
it = 0).

8. Only sources have the message at the beginning.

9. No one else has the message at the beginning.

10. x, z and v are binary variables.

We call this optimization problem MCUE, for multiflow cooperative unicast with Energy

Accumulation.
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Level 1 Level 2 Level 3 Level T

s1

s2

sr

d1

d2

dr

Figure 5.1: Applying the multicommodity flow technique for unicast cast
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5.3 Special Case of k = 1

In this section we consider MCUE for the special case of k = 1 and prove the problem

can be solved optimally and in polynomial time for this special case. We also provide a

polynomial-time algorithm to achieve the optimum solution.

Theorem 7. The optimal solution for MCUE is a simple path for k = 1, but not neces-

sarily so for k > 2.

Proof. The claim can be proved by induction on T : For delay T = 1, the claim is

trivially true, as the optimal solution is direct transmission from the source, s, to the

given destination, d. Let us assume the claim is true for T = t − 1. To complete the

proof, we need to show the claim holds for T = t. Pick any node in the network as

the desired destination d. If the message can be transmitted from source s to d with

minimum energy in a time frame less than t, then an optimal simple path exists by the

induction assumption. So consider the case when it takes exactly T = t steps to turn on

d. The system is memoryless, so d must decode by accumulating the energy transmitted

from a set of nodes, v, at time t. This can be represented as
∑

vi∈v

pvithdvi ≥ θ. We

observe that there must exist a node vo ∈ v whose channel to d is equal or better than

all the other nodes in v. Therefore, given hdvo ≥ hdvi , ∀vi ∈ v\{vo} then
∑

vi∈v

pvithdvo ≥

∑

vi∈v

pvithdvi ≥ θ. In other words, if we add the power from all nodes in v and transmit

instead from vo, our solution cannot be worse. vo must have received the message by

time t − 1, to be able to transmit the message to d at time t. We know by the induction
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assumption that the optimal simple path solution exists from source to any node to deliver

the message within t− 1 time frame. Thus, for T = t, there exists a simple path solution

between s and d, which is optimum.

Considering the above theorem, the MCUE problem formulation (for the special case

of k = 1) reduces to:

min Ptotal =
∑T

t=1

∑n
i=1 pit (5.4)

s.t.
1. pit ≥ 0, ∀i, t

2. xdT+1 = 1

3. −M(1− xit+1) ≤
n
∑

j=1
hjipjt − θN, ∀i, t

4. pit ≤ Mxit, ∀i, t

5. xs1 = 1

6. xi1 = 0, ∀i '= s

7. xit ∈ {0, 1}

This can be solved optimally in polynomial time using dynamic programming. Let

C(i, t) be the minimum cost it takes for source node s to turn on i, possibly using relays,

within at most t time slots. Then we can write:

C(i, t) = min
j∈Nr(i)

[C(j, t− 1) + wji] (5.5)
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with C(s, t) = 0, for all t and C(i, 1) = wsi, where Nr(i) is the set that contains i and

its neighboring nodes that have a non-zero channel to i, wji represents the power it takes

for j to turn on i using direct transmission. Thus the solution to (5.4) is given by C(d, T )

and its computation incurs a running time of O(n3).

5.4 Inapproximability Results

For k = 1, we proved in Theorem 5.3, that the optimal solution is a simple path. For

k > 2, we can consider the following counter-example to argue that the solution is not

necessarily a single-path. Consider the scenario shown in Figure 5.2, where T = 3,

where the edge weights are equal and the edges shown in gray show strong interference.

The red nodes cannot by themselves transmit the message to d2, as it causes interference

for d1 and d3 preventing them from being able to decode the data. However, they can

cooperate with each other, by each sending with half power to get the message to d2

without causing too much interference for the other destinations.

s3

s2

s1 d1

d2

d3

Figure 5.2: An example of k > 2, with T = 3, where the optimal solution is not a single
path.
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To investigate the complexity of MCUE, let us start by looking at a sub-problem.

Imagine a one hop setting of k source nodes and their corresponding k destination nodes,

with no relay nodes. Due to interference, not all sources can transmit simultaneously.

The task is to schedule the sources appropriately, so that everyone can get their message

delivered to their corresponding destination within a time delay T . The problem is to

find the minimum such T . Let us call this problem MOSP, for multi-source one-hop

scheduling problem2. It is important to note that MCUE is at least as hard as MOSP.

Thus, any hardness results obtained for MOSP imply hardness of MCUE.

In this section, we derive inapproximablity results for MOSP by showing that any

instance of minimum graph coloring problem [3] can be reduced to an instance of MOSP.

Lemma 3. MOSP is o(n1/7−ε) inapproximable, for any ε > 0.

Proof. Given an instance G(V,E), |V | = n, of the minimum graph coloring, we con-

struct a bipartite graph G′, with the bi-partition X and Y with |X| = |Y | = n. For each

node vi ∈ G, we place two nodes ui ∈ X and u′
i ∈ Y and connect them with an edge

(ui, u
′
i). Also for every edge in G, eij = {vi, vj}, place two edges (ui, u

′
j) and (uj, u

′
i) in

G′. We assign ui and u′
i to be a source and destination pair respectively for all i. We set

equal edge weights for all the edges in G′ and set θ > 1 to get an instance of MOSP.

A simple example is shown in Figure 5.3. Notice that the gray edges in the figure

represent interference, and by setting θ > 1, a message can be successfully decoded if

and only if there is no interference at that node.

2This is essentially the problem considered in [66], though no proof of complexity is given in that
paper.
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u3

u4

v1

v2

v3

v4
u2

u1 u′1

u′2

u′3

u′4

G G′

Figure 5.3: Example construction of G′, for a given G.

This in turn means two sources in G′ can simultaneously transmit if and only if

there is no edge in between them in G. Thus, the set of nodes that are transmitting

simultaneously in G′ correspond to an independent set in G. Consequently, the optimal

solution to MOSP is equal to the minimum graph coloring of G, which is known to be

o(n1/7−ε) inapproximable [65]. The following theorem follows by noticing that MOSP

is a special case of MCUE.

Theorem 8. MCUE is o(n1/7−ε) inapproximable,for any ε > 0.

Notice that the inapproximability result, given by Theorem 8, is stronger than, and

implies, the NP-hardness result. In other words, it implies that not only finding the

optimal solution is NP-hard but finding a polynomial time approximation algorithm that

approximates the optimal solution to MCUE with a factor of o(n1/7−ε) is also NP-hard.
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5.5 Performance Bounds

In section 5.4, we proved that MCUE problem is in general inapproximable. However,

it was shown in section 5.3 that the problem can be solved optimally and in polynomial

time for the special case of k = 1. In this section, we used the results of section 5.3 to

obtain performance bounds for MCUE.

5.5.1 An Analytical Lower Bound

In this section we establish a lower bound on the optimum solution to MCUE.

To get a better intuition for this lower bound, let us start off by considering the optimal

solution to MCUE for the case when there is only one flow present in the network. As

before, we have n nodes and a channel H , but this time the source s wants to transmit

the message to a particular destination d, using the minimum energy within a given delay

constraint T . The system is cooperative in that other nodes in the network, may be

utilized as memoryless energy accumulating relays to help achieve the minimum energy

goal. Based on section 5.3, the solution can be found by calculating C(d, T ) where

C(d, T ) is defined as per equation (5.3).

To find a lower bound for MCUE for a general case of r flows, with source-destination

pairs {(sk, dk)}rk=1, all with the same delay constraint T , we notice that the cost paid by

optimal MCUE to cover each node cannot be lower than the optimal minimum cost paid
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by each source sk to cover its corresponding destination dk in the absence of other inter-

fering flows. Based on that observation we derive the following lower-bound, LB(T ),

for the OPTMCUE for r flows when the delay constraint is T :

LB(T ) =
r

∑

k=1

C(dk, T ) (5.6)

where C(dk, T ) is defined as per equation (5.3). In other words, C(dk, T ) calculates the

minimum cost of optimal single flow transmission to cover a destination dk, starting from

its corresponding source under a delay constraint T . LB(T ) takes the sum of those costs

and use it as lower-bound - since we know OPTMCUE has to cover all these flows and

cannot do so any better than the optimal solution for a single flow. Computing this lower

bound incurs a running time of O(n3).

5.5.2 An Analytical Upper Bound

In this section we establish an upper bound on the optimum solution to MCUE, for the

general case of r flows, with T ≥ r.

The upper bound is established by considering the multiplexing solution. At the

extreme end of T = r, we would allow one time slot for each of the r flow to transmit

its message, while the other flows are silent. For a general time T (> r) we break the

time into r blocks T = (τ1, τk, ...τr), such that
∑r

k=1 τk = T . We assign each block to

one of the flows, while the other flows are silent. We calculate C(dk, τk), defined as per
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equation (5.3). For a given tuple T , the summation of the total energy required by all

flows to complete their transmission can be achieved by calculating:

UB(T ) =
r

∑

k=1

C(dk, τk) (5.7)

This sum would provide an upper bound for OPTMCUE. For a general T ≤ r, we will

have
(

T−1
k−1

)

possibilities for assigning the time slots to different flows. The upper bound

is calculated as follows:

UB(T ) = min
T

UB(T ) (5.8)

To compute this upper bound we need to carry on the computation for calculating

a single flow MCUE, discussed in section 5.3,
(

T−1
k−1

)

× r times. Thus the upper bound

incurs a running time of O(n3).

5.6 A Polynomial-time Heuristic

In this section we propose a polynomial time heuristic for MCUE, the performance of

which is later evaluated against that of the bounds established earlier in this chapter.

To recap, consider a network, G, with a total of n nodes, I = {1, .., n}. Assume

we have r source nodes, labeled S = {s1, s2, ..., sr}, and r corresponding destination

nodes, D = {d1, d2, ..., dr}. The source-destination nodes can be thought of as pairs,
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{(sk, dk)}rk=1, all with the same delay constraint T . The goal is to deliver a unicast

message from each source to its corresponding destination, possibly using other nodes

in the network as relays. The objective is to do so using the minimum amount of sum

transmit power and within the delay constraint.

The algorithm works greedily by scheduling flows one by one. Each flow is given

more slots than its previous flows, to ensure a feasible solution always exist. That means

the algorithm works for T ≥ r. Each flow, with the exception of the final flow, uses

more power than required to deliver its message. This is achieved by assigning a higher

threshold to that flow when scheduling the flow. After scheduling, the nodes that will

be transmitting at each time slot and the power they use for transmission is passed on to

the next flow. Each flow, when scheduling itself, will ensure that its transmission will

not disturb the transmission of previously scheduled flows. A lower threshold is used to

check for disturbance, than the one used for scheduling the flow itself. Let us now look

at the details of the algorithm.

We schedule the r flows greedily, starting from the one that causes the least distur-

bance. Without loss of generality, let us assume that we are scheduling the flows in the

order 1 to r. We have a total of T time slot, for flow 1, we assign T1 time slots for

transmission, for flow 2, we assign T2 and so forth, such that:

1 ≤ T1 < T2 < ... < Tk < ..Tr = T (5.9)
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Recall that time-slots are in unit durations, thus can increment in integer units, thus

each flow has at least one more time slot at its disposal than its immediate predecessor,

ensuring that a feasible solution always exists.

In section 5.2, we defined θ to be the decoding threshold as per equation (5.1). For

this multi-flow setting, each flow is assigned its own θ value, such that:

θ1 > θ2 > ... > θk > ...θr = θ (5.10)

Flow 1 is scheduled with T1 and θ1, as per algorithm in section 5.3. We store the nodes

that are scheduled to transmit in each time slot, and their transmit power and their cor-

responding receivers in a black list B, as such B(t) gives us the set of already scheduled

nodes that are transmitting at time t and their corresponding powers, and their corre-

sponding receiving nodes.

For the kth flow, we pick a subset of nodes (as potential relays) and use a modified

version of the algorithm discussed in section 4.1, and assign an ordering to those nodes.

Let us call this ordered subset Ik = (1k, 2k, ..., jk, ..., nk), where 1k corresponds to sk

and nk corresponds to dk. This set could for instance be obtained by picking the nodes

that would have been picked if we were to run the single-flow algorithm of section 5.3

for flow k. Recall that given ordering the algorithm in section 4.1, would find the optimal

scheduling and power allocation in polynomial-time. In order to use that algorithm, we

need to modify the power allocation part to ensure that when assigning powers to the cur-

rent flow we are not disturbing the previously scheduled flows. Let us call the modified
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version of power allocation algorithm LPMF (for linear program multi-flow). LPMF ,

to be specified shortly, would calculate the instantaneous optimal power allocation for

flow k at time t, given the set of instantaneous senders and receivers for flow k and the

set B(t) (of senders and receivers of flows 1 to k − 1 and their corresponding powers at

that time slot).

Given this modified power allocation algorithm, all that remains to be done is to

determine these sets at each time slot, in order to minimize the overall power while

meeting the delay constraint. Let Ck(jk, t) be the minimum energy needed for flow k

to cover up to node jk in t steps or less. We can calculate this, using the following

deterministic dynamic program:

Ck(jk, t) = min
ik∈(1,..,jk)

[Ck(ik, t− 1) + LPMF ({1...ik}, {ik + 1...jk}, θk, H,B(t))]

(5.11)

where Ck(ik, 1) = LPMF (1k, {2k...ik}, θk, H,B(t)) ∀ik ∈ Ik\1k, and Ck(1k, t) =

0 ∀t.

Thus, for flow k, the total minimum cost for covering nk nodes by time Tk can be

found by calculating Ck(nk, Tk).

Let us now look at the design of LMPF . LMPF is defined similar to that of

power allocation algorithm in (4.2), except we have to take a few new points into ac-

count. Consider LMPF for flow k, the algorithm takes as an input a set of transmitters

(TXk(t) = {1...ik}) and a set of receivers (RXk(t) = {ik+1...jk}), and the set of already
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scheduled nodes for that time-slot and their corresponding powers B(t), the channel be-

tween the nodes and the receiving threshold θk. For this flow, the new set of rules to

abide by would be:

1. A node cannot transmit a message for flow k at time t, if it has already been sched-

uled to participate in another flow in that time slot. In another words,

∀q ∈ TXk(t), if q ∈ B(t) then pkqt = 0.

2. A node cannot receive a message for flow k at time t, if it has already been sched-

uled to participate in another flow in that time slot. This renders the power allo-

cation task infeasible with the given set of transmitting and receiving nodes. In

another word,

∀q ∈ RXk(t), if q ∈ B(t) then LPMF ({1...ik}, {ik + 1...jk}, θk, H,B(t)) = ∞.

After having taken the above two conditions into account, we can proceed with the linear

program as follows:

min
∑

q∈TXk(t)

pkqt (5.12)

s.t.
1. pkqt ≥ 0, ∀q ∈ TXk(t)

2.
∑

q∈TXk(t)

hqjp
K
qt − θk

∑

u∈TXf (t)

hujp
f
ut − θkN ≥ 0, ∀j∈RXk(t)

∀f∈{1,...,k−1}

3.
∑

v∈TXf (t)

hvzp
f
vt − θf

∑

u∈TXg(t)
g $=f

huzp
g
ut − θfN ≥ 0,

∀z∈RXf (t)
∀g∈{1,...,k}
∀f∈{1,...,k−1}
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Where constraint 1 ensures that there are no negative powers. Constraint 2 ensures that

the nodes assigned to receive flow k at time t will in fact accumulate enough energy to

decode the message, despite the existing interference. Constraint 3 ensures that the power

being assigned to nodes in flow k, is not disturbing the previously scheduled flows. This

algorithm is referred to as LPMF ({1...ik}, {ik + 1...jk}, θk, H,B(t)). As a notation,

LPMF ([{x...y}, {z...α}], θ, H,B(t)) = 0, if z ≥ α

5.7 Performance Evaluation

In this section we compare the performance of the proposed heuristic against the analyt-

ical bounds for an example network with an arbitrarily chosen three flows. We also look

at the effect of channel degradation in the overall performance.

We consider a network of 100 nodes uniformly distributed on a 20 by 20 square sur-

face. The channels between all nodes are static, with independent and exponentially dis-

tributed channel gains (corresponding to Rayleigh fading), where hij denotes the channel

gain between node i and j. The mean value of the channel between two nodes, hij , is

chosen to decay with the distance between the nodes, so that hij = d−η
ij , with dij being the

distance between nodes i and j and η being the path loss exponent. The corresponding

distribution for the channel gains is then given by

fhij (hij) =
1

hij

exp

(

hij(k)

hij

)
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Notice that the minimum power calculated by different algorithms, shown on the

y-axes of the graphs in this section, are normalized by value of θ (rendering it unit-less).

Figure 5.4 shows the performance of the heuristic against that of the analytical bounds.

As can be seen the heuristic is performing close to the lower bound. Notice that the lower

bound is an unachievable lower bound, in that it assumes no interference is present. This

means that its performance is not achievable by any algorithm. This is more emphasized

when we have fewer time slots available, and thus we need to use more power to transmit

the message creating a lot of interference that is ignored by the lower bound. As we get

more time-slots available to us, the performance of the heuristic and the bounds seem to

converge, which is what we expect as the solution goes to a multiplexing solution in all

cases.
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Figure 5.4: Performance of the heuristic against the analytical upper and lower bound.
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Figure 5.5: Effect of channel degradation on the total energy consumed.

We see the effect of poor channel conditions in Figure 5.5. As expected the perfor-

mance is degraded as the channel conditions become poor, this highlights the importance

of having smart algorithms to minimize the energy consumption in such scenarios.

5.8 Summary

In this chapter we formulated the problem of minimum energy cooperative transmission

in a delay constrained multiflow multihop wireless network, as a combinatorial optimiza-

tion problem, for a general setting of k-flows and formally proved that the problem is not

only NP-hard but it is o(n1/7−ε) inapproxmiable. To our knowledge, the results in this

chapter provide the first such inapproxmiablity proof [64] in the context of multiflow

cooperative wireless networks. It is interesting to note that although the minimum graph
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coloring problem is NP-hard, the fractional graph coloring can be solved in polynomial

time. That presents an interesting venue for future work and for designing possible ap-

proximation algorithms for this problem.

We further proved that for a special case of k = 1, the solution is a simple path and

offered an optimal polynomial time algorithm for joint routing, scheduling and power

control. We then used this algorithm to establish analytical upper and lower bounds for

the optimal performance for the general case of k flows. Furthermore, we proposed a

polynomial time heuristic for calculating the solution for the general case and evalu-

ated the performance of this heuristic under different channel conditions and against the

analytical upper and lower bounds.
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Chapter 6

Conclusions and Future Directions

In this thesis, we formulated the novel problem of delay constrained minimum energy

cooperative transmission (DMECT) in wireless networks, encompassing both EA and

MIA. We have shown that this problem is o(logn) inapproximable in broadcast and

multicast cases and is NP-complete in the unicast case when mutual information accu-

mulation is used . For the broadcast case with EA, we have presented an O(T log2(n))

approximation algorithm.

Another key algorithmic contribution has been to show a polynomial algorithm that

can solve this NP-hard problem optimally for a fixed transmission ordering. Our empiri-

cal results suggest that for practical settings, a near-optimal ordering can be obtained by

using Dijkstra’s shortest path algorithm. We have further showed that the unicast case

can be solved optimally and in polynomial time when EA is used. We have studied the

energy-delay tradeoffs and the performance gain of MIA using simulations, and evalu-

ated the performance of our algorithm under varying conditions. The summary of the
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algorithmic results developed are presented in Tables 3.1 and 4.1.The empty slots are

still open problems.

We further formulated the problem of minimum energy cooperative transmission in a

delay constrained multiflow multihop wireless network, as a combinatorial optimization

problem, for a general setting of k-flows and formally proved that the problem is not only

NP-hard but it is o(n1/7−ε) inapproxmiable. To our knowledge, the results in this chapter

provide the first such inapproxmiablity proof in the context of multiflow cooperative

wireless networks.

We observed that for a special case of k = 1, the solution is a simple path and

offered an optimal polynomial time algorithm for joint routing, scheduling and power

control. We then used this algorithm to establish analytical upper and lower bounds for

the optimal performance for the general case of k flows. Furthermore, we proposed a

polynomial time heuristic for calculating the solution for the general case and evalu-

ated the performance of this heuristic under different channel conditions and against the

analytical upper and lower bounds.

There are many interesting open problems and research directions yet to be investi-

gated in this field. In the following, we highlight a number of these directions, which are

of particular interest to the author and the results of which we consider to be of significant

theoretical and practical impacts.

• One area, that is of particular interest, is investigating the approximability gap in

the broadcast case with EA. We have already proved that this problem is o(log(n))
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inapproximable, however the current best positive approximation result we have

for this problem gives an approximation factor of O(T log2(n)). It would be inter-

esting to see whether or not we can tighten up this gap.

Notice that we obtained our approximation algorithm by proposing a mapping be-

tween our problem and the directed Steiner tree problem that preserved the ap-

proximation factor. We, thus, argued that the best known approximation results

for directed Steiner tree applies directly to our work. Hence, we are so far using

the existing approximation algorithms of directed Steiner tree as a block box. The

conjecture is that a closer examination of how those approximation algorithms for

directed Steiner tree were developed, and applying those techniques [72, 73] di-

rectly to our problem, might lead to a tighter approximability gap.

• Throughout the thesis, we did not make any assumptions on the structure of the

network when deriving inapproximability results. We did however note, through

simulations, that our proposed algorithms were performing close to optimal for

uniform distribution of nodes for example. It would be interesting to investigate

achieving better inapproximablity results by making assumptions on the structure

of the network.

• We proved that the multiflow problem is o(n1/7−ε) inapproxmiable and proved a

heuristic that performed good in simulations. It would be interesting to establish

approximation algorithms for this problem and see how close we can get to the

theoretical limit. We drove the inapproximablity results using minimum graph
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coloring problem. Good approximation algorithms exists for this problem [95–

97], and it is interesting to note that the fractional graph coloring can be solved

in polynomial time. That presents an interesting venue for future work and for

designing efficient heuristics for this problem. Investigating multicommodity flow

problem and its approximation algorithms [74, 76] in the context of our problem

might also lead to interesting results.

• Applying game theory to cooperative wireless settings is currently a vibrant field

of research [98–100]. Another interesting venue that might be promising to inves-

tigate is applying game theory to the above setting by either trying to develop a new

distributed approach based on the assumption that the nodes are selfish and might

not be willing to, left on their own, cooperate; or by applying game theory analysis

to the distributed version of our existing algorithms and analyze the performance

under the assumption that the nodes are selfish.

• More recently there has been a growing interest in the research community in in-

vestigating the practical aspects of cooperative schemes setting geared toward de-

veloping practical schemes capable of harvesting the gains predicted by analytical

models [49, 81, 83]. Evaluating the proposed algorithms under more realistic set-

tings (perhaps through direct implementation of distributed protocols on software

radio platforms) remains an interesting venue for future research and would cer-

tainly help in moving this work towards practice.
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