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Abstract

On-demand delivery of audio and video clips in a vehicular network is a growing area

of interest. A given repository of such data items, each with an associated popularity,

may be available to the passengers of the vehicles. The vehicles themselves are equipped

with a ‘TiVO’ like device that has several gigabytes of storage and a wireless interface

allowing short range communication at 10s to 100s of Megabits per second. The goal is to

minimize the latency between request issuance and the time till a copy of the requested

item is encountered. This latency is termed the availability latency. This thesis explores

two generic tools to alleviate availability latency: (a) data replication (b) data delivery

scheduling.

With the replication study, we propose a general optimization formulation that seeks

to minimize average availability latency subject to a storage constraint per vehicle. We

explore the effects of a family of popularity-based replication schemes on availability

latency. When the vehicles follow a 2D random walk based mobility model, via analysis

and extensive simulations, we determine the optimal replication scheme that minimizes

latency across a wide parameter space with major dimensions being data item size and

client trip duration .

Once an appropriate static replication scheme has allocated replicas, the vehicles

themselves may be employed as data carriers to further improve availability latency.

These data carriers are termed zebroids. However, a zebroid’s local storage may be

completely exhausted. Hence, to accommodate this new data item, it may need to evict an

existing one. Various replacement policies such as LFU, LRU, random etc. are examined

and their relative performance is studied. Via analysis and extensive simulations we

study the behavior of zebroids as a function of large parameter space comprising data
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item repository size, storage per vehicle, number of vehicles, popularity distribution of

the data items, different replacement schemes for zebroids etc.

We validate the Markov model based observations with two independent validation

phases employing (a) freeway traffic information on a city map (b) real world traces from

a small bus network.
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Chapter 1

Introduction

The notion of ‘entertainment on wheels’ is no longer a distant dream. With today’s

technology, it is possible to present entertainment content in the form of audio and video

clips to passengers as they travel in their vehicles in a city. Advances in technology, both

in the area of storage and wireless communications, have contributed to the support of

on-demand delivery of such content among mobile vehicles. Vehicles may be equipped

with devices consisting of several gigabytes of storage, a fast processor, and a wireless

interface with bandwidths of several 10s or 100s of Megabits per second. These devices

are termed AutoMata [5] (formerly known as a C2P2 [21] for Car-to-Car-Peer-to-Peer)

and they collaborate to form a mobile ad-hoc network to deliver the requested data to a

client. The radio range of these devices is in the order of a few hundred feet.

The content exchanged between the vehicles may vary from traffic information such

as accident notifications and emergency vehicle arrival notifications to multimedia for

entertainment such as audio files, cartoons, movies and other video files. Without loss

of generality, throughout this thesis, we will use the term data item from now on with

the understanding that a data item can be an audio title, video title or any other useful

content.

In a typical scenario, a client of this application operating over an AutoMata network

is provided a list of available data items (see Figure 1.1). Several other components

may be involved in realizing such an application. Figure 1.2 depicts a realization of a

component diagram that may be used to realize such an application. We provide a very

brief overview of the functionality of some of the components.
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Figure 1.1: An example illustration of an AutoMata application.

Once a user initiates display of a data item, an admission control component [18]

ensures availability of both resources and the referenced data. Next, a data delivery

scheduling technique [20] utilizes resources as a function of time to deliver the data item

to a requesting AutoMata device. This component, may switch between several candidate

servers containing the referenced data item based on their proximity, current availability

of resources, and network conditions. This component is tied closely to an ad-hoc network

routing protocol which facilitates delivery of data between AutoMata devices. Example

protocols are DSR [34], DSDV [47], AODV [48] to name a few. Another system component

may monitor whether the system is providing a target AutoMata with the desired QoS

and make adjustments as necessary. Besides the above components, there may be others

responsible for addressing the security [64] and privacy [16] concerns of the user that may

be mandatory for practical use of the system. Additionally, suitable physical and MAC

layer optimizations may be needed to adapt to the wireless nature of the communication

medium between the vehicles.
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Figure 1.2: Components of an AutoMata application

While each of these components may warrant a separate thesis in itself, this the-

sis specifically explores possible realizations of three components, namely: Discovery

(PAVAN), Data replication (Static Replication Schemes), Data delivery scheduling (Ze-

broids). Along the process, we explore various trade-offs that have influenced the design

decisions for our proposed solution. Before we provide a brief overview of each of the

three studies mentioned above, we briefly introduce the prime metric of interest in our

study namely availability latency.

The time interval between when a request is issued by a client and a copy of the

requested data item is encountered by it is referred to as availability latency (denoted

by δ). A data item is available immediately when it resides in the local storage of the

AutoMata device serving the request yielding δ as zero. Users prefer lower availability

latency associated with data items. Studies [39] with peer-to-peer network systems have

indicated that users prefer a larger list of data items (files) each associated with a low

latency. This latency is a function of a number of parameters: (i) current location

of the client (ii) destination and travel path of the client (iii) mobility model of the

AutoMata equipped cars (iv) number of replicas constructed for the different data items

(v) placement of data item replicas across the AutoMata equipped cars. Without loss of

generality and to simplify the discussion, we assume the term car refers to an AutoMata-

equipped vehicle.
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The biggest challenge in such an environment is mobility of the vehicles. This causes

the network topology to change dynamically, hence traditional solutions proposed for

static environments may not be directly applicable. Moreover, connectivity of the network

at all times cannot be assumed as frequent partitioning may occur due to insufficient

density of vehicles in certain parts of the network. However, knowledge of the mobility

model dictating the vehicular movements may enable design of suitable schemes that

allow an application to provide better estimates of the availability latency for the data

items. In this thesis, we propose to incorporate knowledge of mobility into the design of

various mechanisms that help enhance the availability latency to user desired content.

We first present PAVAN, a policy framework that, for a given data item level of repli-

cation, describes the procedure that outputs the list of available titles and their associated

latency for users. One important finding of this study is that the degree of replication of

the data items is the key parameter that influences availability latency. We then study

the replication parameter in detail by proposing a family of static replication techniques

and explore their effect on availability latency under different parameter settings. Hav-

ing identified the performance improvements with static replication, we then study the

effect of data carriers, termed zebroids, in providing further improvements in availability

latency.

1.1 Overview of Case Studies

In this section, we summarize the findings of each of the three studies that are part of

this thesis proposal.

1.1.1 PAVAN

In this study, we present PAVAN, a Policy for Availability in Vehicular Ad-hoc Net-

works. This policy framework outlines how the list of titles available to a client and their

associated availability latency is computed. Here, we observe that when the degree of

replication for the data items is below a certain threshold, the PAVAN variant that uses

content density information and a predictive mobility model provides the best latency

4



performance. Identifying data replication as the key parameter that affects latency we

next explore alternate replication strategies and their tradeoffs.

1.1.2 Static Replication schemes

In this study, we explore the effects of static replication schemes on availability latency.

Given a data item repository, a certain vehicle density and a storage constraint per

vehicle, we present an optimization formulation to determine the optimal number of data

item replicas that minimize an average availability latency metric. We simplify the data

placement issue by allocating the replicas to the vehicles uniformly at random, with

the constraint that no two replicas of the same data item are placed in a vehicle. We

analytically capture the variation in latency as a function of the data item replication

levels when the vehicles obey a 2D random walk based Markov mobility model. We study

the performance of a family of replication strategies in such an environment. Various

design parameters are considered, such as size/display time of the data items, short/long

client trip durations, and different data item repository sizes, and their effect on the

optimal replication scheme is presented. This is followed by validation of the Markov

model based observations with two independent validation phases employing (a) a real

map of an urban environment that dictates the mobility transitions of the Markov model

and (b) fine-grained mobility traces from a real environment comprising buses moving

around a university campus area.

1.1.3 Zebroids

Once a static replication scheme has allocated replicas to the vehicles, zebroids can be used

to further improve availability latency. A zebroid is a vehicle whose path rendezvous with

both the client (data item requestor) and the server (vehicle containing that data item).

Aided by this spatio-temporal overlap, zebroids can transport a data item from the server

to the client. However, a zebroid’s local storage may be completely exhausted. Hence,

to accommodate this new data item, it may need to evict an existing one. Examples of

replacement policies that determine what item to evict are LFU, LRU, random among

others. The performance improvement in latency obtained with zebroids under conditions
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of infinite storage and no interference is captured analytically. This is followed by an

exhaustive simulation study that presents the behavior of zebroids as a function of large

parameter space. As with static replication schemes, observations with the Markov model

are validated by employing a Markov model derived from a real city map and also using

the bus-based vehicular traces.

1.2 Organization of this thesis

The rest of this thesis is organized as follows. Chapter 2 provides a description of the 2-tier

architecture used in our study and introduces some common terminology and definitions

used in this thesis. Chapter 3 describes PAVAN framework, results of the simulation study

to evaluate the performance of the PAVAN variants. Chapter 4 introduces the family of

frequency-based replication schemes that affect availability latency. presents the results

of the experimental study that evaluates the performance of the various schemes under

different parameter settings. Chapter 5 introduces zebroids as data carriers, describes the

various environments used in this study and a classification of the different carrier-based

replacement policies that are deployed in these environments, followed by detailed simu-

lation results with zebroids deployed in the various environments with different policies.

Chapter 6 gives a brief overview of the related work in the area. Chapter 7 concludes

this document by highlighting the major contributions of this dissertation.
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Chapter 2

Common Assumptions and Architectural Framework

In this chapter, we present the elements common to all the studies. In particular, they

share a similar set of assumptions, a 2-tier architecture and the simulation model. Below

we describe each in turn.

2.1 Assumptions

� The list of data items comprising the database repository and their frequency of

access is given and does not change. Moreover, the data items are not updated.

� There exists a 2-tier architecture comprising of (a) A high bandwidth data plane

made up of the ad-hoc peer to peer network between the vehicles featuring band-

widths in the order of 10s to 100s of Mbps (b) A low bandwidth control plane

similar to a cellular infrastructure between the vehicles and adjacent base stations

which may be connected to the internet (see Section 2.3).

� Studies [49, 62, 52] that have explored the optimal number of neighbors, and optimal

radio range to ensure connectivity in mobile wireless networks compliment our work.

We assume that vehicles within radio range communicate directly and multi-hop

transmissions are supported.

� We also assume the presence of suitable physical, MAC and routing layers and

do not consider various low level wireless channel issues that have been studied
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Database Parameters
T Number of data items.
Si Size of data item i
∆i Display time of data item i.
βi Bandwidth requirement of data item i.
fi Frequency of access to data item i.

Replication Parameters
Ri Normalized frequency of access to data item i, Ri = (fi)

n

∑T
j=1(fj)n

; 0 ≤ n ≤ ∞
ri Number of replicas for data item i, ri = min (N,max (1, bRi·N ·α

Si
c))

n Characterizes a particular replication scheme.
δi Average availability latency of data item i
δagg Aggregate availability latency for replication technique

using the nth power, 0 ≤ n ≤ ∞, δagg =
∑T

j=1 δj · fj

AutoMata System Parameters
N Number of AutoMata devices in the system.
α Storage capacity per AutoMata.
γ Trip duration of the client AutoMata.
ST Total storage capacity of the AutoMata system, ST = N · α.
G Number of cells in the 2D torus.

Table 2.1: Terms and their definitions

extensively [14, 1]. Additionally, we also ignore wireless channel and contention

issues.

2.2 Preliminaries

Here, we introduce some formalism in the notation used throughout this document. Ta-

ble 2.1 summarizes the notation for the commonly used parameters. Assume a network

of N mobile AutoMata devices, each with storage capacity of α bytes. The total storage

capacity of the system is ST =N · α. There are T data items in the database, each with

a display time of ∆i seconds and display bandwidth requirement of βi. Hence the size of

each data item is given by Si = ∆i · βi. The frequency of access to data item i is denoted

as fi with
∑T

j=1 fj = 1. Let the trip duration of the client AutoMata under consideration

be γ. Let ri represent the number of replicas for data item i.
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The availability latency for a data item i, denoted as δi, is defined as the time after

which a client AutoMata will find at least one replica of the data item accessible to it,

either directly or via multiple hops, for the data item display time (∆i). If this condition

is not satisfied for a given request for data item i, then we set δi to γ which indicates

that data item i will not be available to the client during its journey. Also, if ∆i exceeds

γ for a certain data item i then we set δi to γ. Note δi is the instantaneous availability

latency for a given request for data item i.

We are interested in the average availability latency observed across all the data items.

Hence, we weigh the average availability latency δi for every item i with its fi yielding

the aggregate availability latency (δagg) metric defined as follows:

δagg =
T∑

i=1

δi · fi (2.1)

The aggregate availability latency is the primary metric which we seek to optimize in

our studies.

2.3 Architectural Framework

A vehicular ad-hoc network, such as AutoMata, may potentially cover a large geographical

area, such as a metropolitan city. At such large distances, discovering available data items

becomes a very challenging problem. It is easy to see that on-demand flooding/simple

query-based approaches to resource discovery within the ad-hoc network will not scale

well.

Our solution is to adopt a hierarchical architecture that also leverages the existing

large scale heterogeneous wired-wireless cellular network infrastructure. This infrastruc-

ture aids in the collection of localized aggregate information that can be used to distribute

the decision making. Our two-tiered architecture, shown in Figure 2.1, consists of sepa-

rate data (edges labelled 3) and control networks (edges labelled 2). We now provide an

overview of the various components of this architecture.

Data network: The data network consists of the vehicular ad-hoc network of Au-

toMata devices. The system storage is distributed among the various AutoMata devices
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Figure 2.1: A hierarchical architecture.

within this network. At each instant, the communication is localized so that it is between

nodes that are moving within the same cell. We assume that every AutoMata in the same

cell is network connected. A typical path between two devices in the same cell may be

multi-hop. This is because the range of a cellular base station is almost certainly much

larger than the range of high bandwidth network devices (e.g., 802.11a [7]) employed by

AutoMata devices. The number of hops is expected to be short, on the order of 3 to 4

hops.

Control network: The control network is a low data rate cellular network infrastruc-

ture, with base stations dividing a large geographical area into localized cells. It provides

three key functionalities: (i) monitoring and collection of pertinent content and mobil-

ity information from individual car’s AutoMata devices to the base station; (ii) regional

consolidation and storage of this information into maps, mobility models and content

information by nearby base stations and remote servers within the cellular network in-

frastructure; and (iii) periodic update of pertinent regional map, mobility, and content

information of AutoMata devices within each cell. A base station may perform the last

step by broadcasting information. Control messages are typically small and require a low

data rate in the order of tens of Kilo bits per second (Kbps).
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Figure 2.2: An example 6× 6 map.

Briefly, we now examine the different components of the control information being

collected and broadcasted in each cell.

1. Regional Maps and Mobility Model: Several cells adjacent to each other can

be grouped into a single regional map. Figure 2.2 illustrates such a map for a system with

square cells. A base station locally monitors information about the number of AutoMata

devices in its cell, which cell a device came from, and which cell a device is moving

towards. This information from nearby cells is then used to construct a Markov inter-cell

mobility transition table over this regional map (see Section 2.4).

2. Data Item Replication Table: Based on regional as well as global input,

information is also maintained about the ID and duration of all data items, as well as

their replication levels. This table would have T rows, one for each possible data item.

While T might be potentially in the order of hundreds or thousands, note that each row

is small and in the order of tens of bytes.

3. Regional Lookahead Table: Based on current data, a regional lookahead table

is also created that maintains information about data items and AutoMatas within a

certain cell’s vicinity.

2.4 Simulation Model

We now describe the simulation model that is common to all our studies. We assume

a repository of homogeneous data items with identical bandwidth requirement, display
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time, and size (βi = β, ∆i = ∆, Si = S). Figure 2.2 shows an example map used

in our study. The map is divided into fixed size cells. Only AutoMatas within a cell

can communicate with each other either directly if they are in radio-range or via other

AutoMatas using multi-hop transmissions. In other words, the AutoMatas within a

cell form a connected sub-network. AutoMatas in adjacent cells cannot communicate

with each other. Without any loss of generality, to reduce the dimensionality of the

problem, we express the data item display time, ∆, as the amount of time required by

an AutoMata equipped vehicle to travel ∆ cells. We express α as the number of storage

slots per AutoMata. Each storage slot stores a data item fragment equivalent to a single

cell worth of data item display time. Moreover, we assume the amount of data displayed

in each cell is identical. Now, we represent both the size of a data item and the storage

slots in terms of the number of cells. This means that a data item has a display time

of ∆ cells and an AutoMata has α units of cell storage. For example, a data item with

display time of 4 cells (∆ = 4) requires 4 storage slots and an AutoMata provides 100

storage slots (α = 100).

The trip duration (γ) is also expressed as the number of cells traversed by the client

during its journey. We also define availability latency (δi) for data item i in terms of the

number of cells. In other words, δi is the number of cells after which a client AutoMata

will encounter a replica of the data item i, either directly or via multiple hops, for the

data item display time. Hence, the possible values of the availability latency are between

0 and γ. We only consider scenarios in which ∆ ≤ γ. Assume that γ = 6. For a data item

i with ∆i = 6, δi is either 0 or 6. δi = 0 means that at least one replica of that data item

was present in each of the 6 cells along the path of the client. δi = 6 means that at least

one cell along the path of the client was missing a replica of the data item. Similarly, for

data item j with ∆j = 5, δj is either 0, 1 or 6. If δj = 0, the client encountered at least

one replica of data item j along each of the first 5 cells along its path. If δj = 1, the

client encountered at least one replica of the data item along the last 5 cells of its path,

but not even a single replica in the first cell. Finally, δj = 6 indicates that there were at

least 2 cells along the path of the client, in which no replicas of data item j were present.
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As mentioned earlier, a Markovian mobility model describes the movement of the cars

which is probabilistic in nature. The vehicles equipped with AutoMata devices perform

a 2D random walk on the surface of a torus which constitutes the map. Each cell of

the map constitutes a state. A map of size G × G yields G2 states. These states are

self-contained and a transition from one state to another is independent of the previous

history of a car in that state. The mobility model is weighted toward the diagonal both

from the left to right and vice-versa (indicated by the shaded boxes in Figure 2.2). The

aggregate of the transitions from each cell (state) to every other state gives the G × G

probability transition matrix Q = [qij ] where qij is the probability of transition from

state i to state j. Using Markov chains, it is possible to estimate the distribution of the

steady-state probabilities of being in the various cells, by solving Π = Π ∗Q, where Π is

the vector representing the steady-state probabilities of being in the various cells (states).

We employ the Markov mobility model to dictate the movements of the vehicles. For

the initial part of this thesis, we assume that the vehicles move about as per a random

walk mobility model. Toward the latter half, we consider a Markov mobility model

derived from an underlying real city map. The transitions of vehicles located in various

cells are controlled by the freeway and side-street locations of the underlying city map.

We collected real-time traffic data during different time periods during the day to obtain

the percentage of vehicles transitioning between different freeways which in turn dictated

the Markov model transition probabilities.
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Chapter 3

PAVAN

In this chapter, we first define the availability problem in terms of the list of titles that

will be available to a client during its journey. The client is presented the available list of

titles with their associated latency. The idea is to present the client with as accurate a

list as possible so as to avoid user frustration. We present PAVAN as a policy framework

to generate this list, and evaluate how the different variants of PAVAN differ in their

accuracy of the match between the predicted list and actual list.

3.1 PAVAN variants

We now present the details of PAVAN and its alternate variants distinguished on the

basis of the input information given to them. Taking examples of data items as video

and audio clips, an example output produced by PAVAN is shown on the right hand

side of Figure 3.1. In the following discussion, we will assume specific examples of data

items as audio or video titles noting that it does not compromise the general applicability

of PAVAN. The output of PAVAN is the available title list displayed on an interactive

menu to the user showing all titles predicted to be available and their associated latency

after which they will be available to the client. The prediction and presentation of the

availability latency empowers users to make informed decisions.

The accuracy of PAVAN’s output depends on its provided information, i.e., its input.

As noted in Section 2.3, there are three essential pieces of information that can be provided

as input to PAVAN: the title replication table, the regional mobility table, and the regional
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Figure 3.1: An overview of PAVAN, its inputs and output.

look-ahead table. The global title replication table (shown in Figure 3.1) is provided to

all variants to PAVAN. These alternatives are different depending on whether PAVAN

is provided with either the mobility table, lookahead table, or both. Intuitively, the

“richer” the information input, the closer the output list is to the actual list (the list

of titles produced by a oracle aware of all future movements of AutoMatas). There is

a trade-off between obtaining richer information for the policy decision-making against

the overhead of having this information broadcast from the base station to AutoMata

devices. An additional input to PAVAN is the maximum delay tolerable by a client. This

provides an upper bound on the availability latency.

The mobility model given to PAVAN may be categorized into two types. It may be

either predictive (P ) where the transition matrix, Q, is used in each step, or steady-

state (SS) where only the equilibrium probabilities are used. Recall, the equilibrium

probabilities are obtained by solving the equality Π = Π · Q, where Π is the vector

representing the steady-state probabilities of being in the various cells (states).
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PAVAN Policy Input information
SSonly Steady-state mobility model
SSLt Steady-state mobility model and density of

the contents in the AutoMatas within a
pre-specified lookahead

PLt Predictive mobility model and density of
the contents in the AutoMatas within a
pre-specified lookahead

PLr Predictive mobility model and density of
the AutoMatas within a pre-specified
lookahead

Table 3.1: Four variants of PAVAN.

We now describe the alternative variants of PAVAN. SSonly provides PAVAN with

both SS and the global replication table. This means the location of all AutoMatas is the

same and is given by the steady-state matrix Π. Since no information about the contents

of the AutoMatas is provided, SSonly uses the global replication table and assumes that

an AutoMata contains the various titles governed by this global distribution. Aggregating

this information for all AutoMatas yields the title location matrix T . Note that T has

identical rows for each AutoMata since no information is known about their contents.

For each step along the path, the following procedure is applied:

Algorithm 3.1.1: proca(Steps,AutoMatas, titles)

for step ← 1 to Steps

cell id ← clients current cell

Conf ← 0

for i ← 1 to AutoMatas

if (AutoMata i located in cell id)

for j ← 1 to titles

if (AutoMata i contains title j)

Conf(j, step)+ = Π(i, cell id) ∗ T (i, j)
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Hence, for each title, this procedure yields the ‘Confidence’ of that particular title

for that step along the journey of the client. The higher the confidence, the higher the

predicted availability of the title at that step. At the end, the confidence for each title

across all steps is aggregated into a metric that is then mapped into the list of available

titles. This is achieved using the following procedure:

Algorithm 3.1.2: procb(Steps, titles)

for i ← 1 to titles

if Conf(i,j) ≥ m for every step j, 1 ≤ j ≤ Steps

Agg metric(i) =
∑Steps

j=1 Conf(i,j)

else Agg metric(i) = 0

If, for title i, Agg metric(i) > 0, then that title will appear in the client’s available

list. In all our experiments, we choose a value of m = 1. Intuitively, if the title has a

Confidence < 1 at even one step, on an average less than 1 copy of that title exists at

that step. Hence, the client may not find a copy of that title at that step. Such a title

is not shown in the predicted list. It should be noted that values of m less than one

result in optimistic predictions, while values of m greater than one result in conservative

predictions.

In addition to the mobility model and the global replication table, PAVAN can be

provided with the AutoMata density information and what content they carry. This can

be limited to a specific area defined by a Spatio-Temporal Lookahead (STL) parameter.

3.1.1 Spatio-Temporal Lookahead (STL) parameter

The SSLt variant of PAVAN consumes the global replication table, SS, and the contents

of those AutoMatas within a fixed geographical area defined by STL. A STL1 value of k

encompasses all k adjacent cells. When STL is 0, SSLt is similar to SSonly. Figure 3.2

shows an example 5 × 5 map with the client occupying the shaded cell. This figure

shows STL values of 1, 2, and 3. As one increases the value of STL, a client obtains

1We use k to denote the value of STL.
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Figure 3.2: The numbers in the cells indicate STL value for the shaded cell numbered 1.

information about additional cells that are further away. Note that a cell is assumed to

have eight adjacent neighbors. SSLt enables an AutoMata to incorporate the content of

all AutoMatas in k adjacent cells into T . The remaining AutoMata devices are assumed

to contain titles as per the global replication table.

The PLr variant of PAVAN considers the predictive mobility model (P ), the density

of the AutoMatas within the STL and the global replication table to produce the title

availability list. As the value of STL increases, the client obtains more information about

the number of AutoMatas in the various cells. When STL spans all cells, the client

obtains information about the number of AutoMatas in each cell of the entire network.

For a given client, PAVAN knows the location of AutoMatas within STL adjacent

cells. For all the other AutoMatas, their location is equally likely to be a cell in the map

outside those within the STL. This combined information about the initial positions of

the AutoMatas yields the initial location matrix L. At each step, we compute product of

Li and Qi, where i indicates the step under consideration, Q is the transition probability

matrix defined by the mobility model, and the initial value of Li = L. Note that the con-

tents of the AutoMatas are not known; hence, the Title matrix T is calculated according

to the global replication table. The Li and T matrices are used with procedures PROCA

(replacing Π by L) and PROCB in order to obtain the predicted list of available titles.

Finally, PLt denotes the variant of PAVAN with the following inputs: the global

replication table, P and Lt. When k = 1, PLt is provided with the content of AutoMatas

in its current cell, termed start cell. PLt assumes the remaining AutoMatas are equally
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likely to be in other cells of the network besides the ‘start cell’. This yields the initial

AutoMata Location matrix L. Again, we compute product of L and Qi at step i to obtain

location matrix Li at that step. Note that since the list of titles assigned to some of the

AutoMatas is known, namely the AutoMatas present in the start cell, we incorporate

that information in T . PLt assumes other AutoMatas have the titles distributed as per

the global title replication distribution. Hence, in this case, the rows of T need not all be

the same. When k > 1, the client obtains precise information about the density and the

contents of the AutoMatas in the cells that are reachable within a distance of k at the

current instant. Using this information the client obtains the Location matrix Li at each

step i using Li ∗Qi where initially Li = L. Similarly, the T matrix is obtained where the

information of the contents of all AutoMatas within the STL is known. Li and T can be

input to PROCA (again replacing Π by L) and PROCB to obtain Agg metric(i), which

is then converted into the client’s available titles list.

3.2 Simulation Study

We first describe the parameters of the simulation set-up, followed by a brief description

of the simulation results.

3.2.1 Experimental Set-up

The experimental set-up consists of a 6 × 6 map as shown in Figure 3. The mobility

model is weighted toward the diagonal both from left to right and vice-versa (due to gray

boxes). Assume that the client starts from cell 1 and travels along the path {1, 8, 15,

22, 29, 36}. Numbers in the bracket indicate the sequence of visited cell IDs. At the

start of a client’s journey, each variant of PAVAN retrieves its required information from

the control network. Subsequently, each variant of PAVAN (see Table 3.1) produces a

predicted list of available titles.

Initially, all AutoMatas are distributed uniformly across the cells in the map. This is

determined by a random initial seed. The distribution of titles across AutoMatas is also

chosen to be uniform. At each step, depending on the current AutoMata locations, each
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Model Weight(w1) Weight(w2) Weight(w3)
of a10 of a01 of a11

1 0 0 1
2 0 -5 1
3 -1 0 1

Table 3.2: Three utility models to evaluate alternative variants of PAVAN.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of replication (%)

k=1
k=3
k=5
k=6

Model 1 Utility 

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

Degree of replication (%)

k=1
k=3
k=5
k=6

Model 2 Utility 

3.3.a) Utility model 1 3.3.b) Utility model 2

Figure 3.3: A comparison of PAVAN with different inputs for utility models 1 and 2 as a
function of the degree of replication of the titles.

AutoMata moves to one of its adjoining cell as governed by the mobility model. Another

seed determines the choice of which cell an AutoMata moves to. Each AutoMata performs

six transitions according to the mobility model. The intersection of AutoMatas with the

cells along the client’s path yields the actual confidence values for a particular title seen in

a particular run of the simulation. For each run, a different random seed is used starting

from the same initial position. For each run, at each step, the client obtains the exact

distribution of titles in the network and the corresponding confidence values for each

title. These values are then translated to a list of titles for this particular run (actual

list) using the same procedure PROCB (see Section 3.1). For each run, the predicted list

is compared with the actual list and the utility models presented later in Section 3.2.2

depict the differences. All presented results are averages across 10,000 simulation runs.
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3.2.2 Utility Models

We use three utility models to quantify the quality of lists computed by different variants

of PAVAN. These models assign a different weight to the average number of false negatives

(denoted a10), false positives (denoted a01), and true positives (denoted a11). A false

negative is a title present in the actual list but not in the predicted list. A false positive

is a title present in the predicted list but not in the actual list. Finally, a true positive is

a title present in both the actual and predicted lists.

All utility models are represented as:

U = w1 · a10 + w2 · a01 + w3 · a11

We implement the alternative utility models by assigning a different weight to a10, a01,

and a11 (see Table 3.2). These models are as follows. Model 1 depends on those titles

that appear correctly in both the actual and the predicted lists. So its utility value ranges

from 0 to 1.

Model 2 severely penalizes those titles that appear in the predicted list but not in the

actual list. It assumes that a user would be greatly dissatisfied by choosing such titles

because they are not available. The utility of this model ranges in value from −5 to 1.

Model 3 penalizes those titles that appear in the actual lists but not in the predicted

ones. These available titles cannot be selected by a user because they are not predicated

as available. The utility of this model ranges in value from −1 to 1. Note that the penalty

for these false negatives is not as significant as false positives.

3.2.3 Results

In our experiments, we used 200 AutoMatas, unless stated otherwise, and 16 titles with

unique ids 1, 2, · · · 16. The percentage degree of replication of a title with id i is given

by:

Title− rep(i) =





2 · i 1 ≤ i≤ 10

20 + 5 · (i%10) 11≤ i≤ 16
(3.1)

This means title 1 has 4 copies, title 2 has 8 copies, and so on until title 10. Title

11 has 25 copies, title 12 has 30 copies, and so on until title 16. Replicas of a title are
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assigned to AutoMatas randomly. An AutoMata may contain several different titles, but

only one copy of a certain title.

Figure 3.3 presents a comparison of alternative variants of PAVAN. The graphs rep-

resent the utility values as a function of the different degrees of replication of the movie

titles. The predicted lists generated by PAVAN in all cases (where applicable) were calcu-

lated using the largest STL value (here, k=6, the length of the path of the client). Next,

we briefly describe the main lessons of this study.

Lesson 1: As the degree of replication increases beyond a certain threshold

all the variants of PAVAN start showing similar utilities. The value of the

threshold is different for different models. While for model 1, this replication threshold is

20%, it is approximately 50% with model 2. Two factors impact this observation. First is

the degree of title replication. Second is the predictive nature of a specific PAVAN policy.

The general trend indicates that as the degree of replication increases, the model

utility values also increase and converge toward 1 (maximum utility value for all models).

With the increase in the degree of title replication, the global replication table, which is

the base-line input to PAVAN, dominates the titles shown in the predicted lists yielding

higher true positives (a11). Here, both false-positives and false-negatives contribute an

insignificant amount toward the final observed utility for all models.

Model 2, which penalizes those titles that are present in the predicted but not in

the actual list, highlights the differences between the PAVAN variants. It is seen that,

in general, PLt outperforms the others. This is because it uses information about the

density and the contents of the AutoMatas within the STL. Since this utility model penal-

izes policies that over-predict, we see that SSonly performs the worst followed by SSLt.

With lower replication levels, in case of model 1, these policies were doing marginally

better than PLt because their over-predictive nature always resulted in higher a11 values.

The performance of PLr, which uses AutoMata density information and the predictive

mobility model, lies between the two extremes.

The results above indicate that SSonly and PLt represent the two extremes. Hence,

we eliminate results from the other two variants for the remaining sets of experiments

noting that their performance was always in between SSonly and PLt.
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Figure 3.4: Difference in the availability latencies as a function of the degree of replication
of the titles for different title display times.

Lesson 2: The accuracy of availability latency estimated by PLt is the

best when compared with other alternatives. Figure 3.4.a indicates the average

difference between the availability latency of SSonly and the actual observed latency as a

function of the different degrees of title replication for different title display times. The

graph shows the behavior for title display times of 1, 3, 5 and 6 cells. Figure 3.4.b shows

the same for PLt. Note the lower the difference in the availability latency, the better

the match between the predicted and the actual lists. We observe that the availability

latency of alternative PAVAN policies is significantly different and impacted by both the

display time of a title and trip duration. The main observation is that the peaks in the

curves for SSonly (over-predictive) are much higher than that for PLt (conservative).

With SSonly, the predicted list is very accurate when title display times are greater

than two and the degree of replication is less than 5%. This is because the average

availability latency is close to 6 in both cases. However, as the degree of replication

increases beyond 5%, the predicted availability latency drops at a faster rate than what

is seen with the actual availability latency. This difference is always positive because

SSonly always over-predicts irrespective of the title display time. Note that over-prediction

indicates a smaller predicted availability latency as compared to the actual one. Beyond
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Figure 3.5: Comparison of difference in the availability latencies of SSonly and PLt for
different AutoMata densities in a 10x10 map as a function of the degree of title replication.
The title display time under consideration spans 5 cells.

25% degree of replication, availability latency of all titles except those with display time

6 converge to zero. As the degree of replication increases, slowly the actual availability

latency catches up with the predicted one thereby making the difference between them

converge to zero.

With PLt, the availability latency difference always lies between -1 and +1.5 irrespec-

tive of the title display time. For all display times, beyond 20% replication, the difference

in the availability latency converges to 0. For degree of replication less than or equal

to 5%, the difference in the availability latency becomes negative. This means that the

predicted available latency is higher than the actual observed latency, thereby indicating

that for lower degrees of replication PLt is more conservative. The reason that the differ-

ence is not always 0 is due to the statistical variations inherent in the experiments. The

mobility model is probabilistic, hence if we consider extremely large scenarios, then even

for lower degrees of replication, the difference in the availability latency will converge to

0.

Lesson 3: The accuracy of the availability latency calculations for different

variants of PAVAN is sensitive to AutoMata density. Figures 3.5 indicates the
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behavior of SSonly and PLt with respect to the difference in availability latency metric

in a 10x10 map for AutoMata densities of 200 and 300, when considering a title with a

display time of 5 cells.

When the AutoMata density increases, for a given degree of replication, now there

are more number of replicas (AutoMatas) for each title. Hence, similar trends are seen as

earlier but the curves for all the PAVAN variants move to the left. Moreover, the curves

peak at a lower degree of replication.

Even though we have presented the results for one map, we also considered other

maps in our simulations. Obtained results show the map is an important parameter

that impacts the behavior of PAVAN significantly. Specifically, a lower degree of overlap

between the path of an AutoMata equipped vehicle and the gray cells in the map causes

the transition probabilities to rapidly diminish toward 0. In such cases, even if the degree

of replication of the titles is 100% the variants of PAVAN will always under-predict. This

will be the case even if the total number of gray cells increases beyond a certain threshold

because then the transition probabilities diffuse quickly. So, within a few steps, the

movement prediction probabilities will diminish having very little effect on the predicted

lists even in the case of 100% title replication. This effect will also be seen if the map

consists of entirely non-gray cells. In such cases, the trends are similar to those seen for

the lower replication titles.

In conclusion, SSonly is appropriate for certain utility models but not all. Also, the

degree of title replication has a profound impact on the availability latency metric. PLt

demonstrates a competitive performance for all utility models, all clip display times and

degrees of replication.

3.3 Summary

PAVAN is a novel policy that computes the time when different titles are available in

an ad-hoc network of AutoMata devices. It accomplishes this by employing a Markov

mobility model that consumes a regional map, a mobility transition table, and a regional

look ahead table. This input data is in the order of a few hundred bytes and provided by

a base station. Each AutoMata device invokes PAVAN independently. Obtained results
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demonstrate that one variant of PAVAN, that employs information about the density of

the vehicles, the content that they carry and their mobility pattern, provides the most

accurate availability latency when compared with other techniques. We quantified the

quality of lists computed by PAVAN policies using different utility models.

The accuracy of the PAVAN predictions crucially depends on the transition proba-

bilities of the Markov model. Unfortunately, with the UMassDieselNet [11] traces, the

locations of the buses were not available. For a data set that has an underlying map and

recorded locations of different vehicles with some fine/coarse granularity as they move

about constrained by the map, one can create a Markov model for this data set. The

Markov model will be employed by the PAVAN module to predict the list of available titles

and the accuracy of the predictions will be measured by looking at the actual vehicular

traces. This remains a future research direction as and when such a data set becomes

publicly available. Synthetic data sets obtained from microscopic vehicular simulators

like VISSIM/CORSIM may also be used for the above process, bringing the evaluations

a step closer to reality.
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Chapter 4

Static Replication Schemes

In this chapter, the focus is on how the degree of replication per data item affects avail-

ability latency. We consider a family of frequency-based replication strategies and study

their impact on availability latency. First, a general optimization formulation is presented

to determine which replication scheme minimizes the aggregate availability latency sub-

ject to a total storage constraint. Subsequently small data items and long client trip

durations, we solve the optimization in the case of sparse density of vehicles. Then, we

explore the latency performance in high density scenarios via simulations and present an

analytical approximation that captures the trends. The results are extended to consider

data items of larger size and short client trip durations. Subsequently, some of the re-

sults obtained with a 2D random walk model are evaluated on a map of the city of San

Francisco with the major freeways being captured by the transition probabilities of the

Markov mobility model. Finally, we explore the performance of the replication schemes

on a realistic data set comprising of movement traces of buses in a small neighborhood

in Amherst.

4.1 Family of Replication Policies

Given a data item repository (T ), a certain vehicle density (N), and a storage constraint

per vehicle (each with storage α), we present an optimization formulation to determine

the optimal number of data item replicas that minimize the average availability latency

metric. We simplify the data placement issue by allocating the replicas to the vehicles
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uniformly at random with the constraint that no two replicas of the same data item are

placed in a vehicle.

We define the normalized frequency of access to the data item i, denoted Ri, as:

Ri =
(fi)n

∑T
j=1(fj)n

; 0 ≤ n ≤ ∞ (4.1)

Ri is normalized to a value between 0 and 1. The number of replicas for data item i,

denoted as ri, is:

ri = min (N,max (1, bRi ∗N ∗ α

Si
c)) (4.2)

This defines a family of replication schemes that computes the degree of replication

of data item i as the nth power of its frequency of access. Hence, the number of replicas

for title i, ri, lies between 1 and N . Note that ri includes the original copy of a data

item. One may simplify Equation 4.2 by replacing the max function with bRi∗N∗α
Si

c. This

would allow the value of ri to drop to zero for a data item i. This means that there is

no copy of the data item in the network. In this case, a hybrid framework might provide

access to the data item i. For example, a base station employing IEEE 802.16 [22] might

facilitate access to a wired infrastructure with remote servers containing the data item i.

The aggregate availability latency, δagg, depends on the value chosen for n, since n

determines the replicas per data item. Intuitively, the higher the replicas for a data item

i, the lower will be the latency, δi, experienced by a request for that data item. The core

problem of interest here is to keep the aggregate availability latency as low as possible

by tuning the data item replication levels, in the presence of storage constraints. We

assume that the database size is smaller than the total storage capacity of the system,
∑T

i=1 Si ≤ ST . Otherwise, data items cannot be replicated when at least one replica of a

data item must be present in the system. More formally, the optimization problem can

be stated as,

Minimize δagg, subject to
T∑

i=1

Si ≤ ST (4.3)

Implicit in this formulation is the design variable, namely, the desired replication for

each data item. The value of n in Equation 4.3 determines a ri value for each data item
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i with the objective to minimize δagg. This minimization is a challenge when the total

size of the database exceeds the storage capacity of a car,
∑T

i=1 Si > α. Otherwise,

the problem is trivial and can be solved by replicating the data item repository on each

device.

The optimization space that defines what value of n provides the best δagg is quite

large and consists of the following parameters: (i) density of cars, (ii) data item display

time, (iii) size of the data item, (iv) display bandwidth per data item, (v) data item

repository size, (vi) storage per car, (vii) client trip duration, (viii) frequency of access to

the data items, and (ix) mobility model for the cars. We first explore this parameter space

where the mobility model employed by the vehicles is a 2D random walk on the surface

of a torus. Not only does this provide tractability for mathematical analysis, but it turns

out that the biased Markov mobility models based on an underlying city map comprising

of freeways and side-streets show performance trends similar to those observed with the

simple 2D random walk based mobility model (see Section 4.6).

4.2 Data items with display time one and long client trip

duration

In this section, we consider small data items i.e. items with a display time of one, where

the client trip duration is long. We first present analytical approximations that capture

the performance of availability latency for an item as a function of the number of replicas

for that item for both a low and high density of replicas. Subsequently, we employ

simulations to determine the optimal replication exponent that minimizes the aggregate

availability latency.

4.2.1 Analysis

In this section, we assume data items with a display time of one cell and for a scenario

with a sparse density of data item replicas, derive a closed-form expression for the aggre-

gate availability latency. Subsequently, we use this expression to solve the optimization

problem to reveal that a square-root replication scheme minimizes this latency. Then,
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we derive an expression that approximates the aggregate availability latency in case of a

high density of data item replicas.

4.2.1.1 Sparse Scenario

In this section, we provide a formulation that captures scenarios with a low density of

vehicles. One can obtain the relationship between the δi and ri under a given storage

constraint. In general, the relationship is a function of the mobility model of the vehicles.

For illustration, we have considered that vehicles follow a random walk-based mobility

model on a 2D-torus. Aldous et al. [2] show that the mean of the hitting time for a

symmetric random walk on the surface of a 2D-torus is Θ(GlogG) where G is the number

of cells in the torus. Moreover, the mean of the meeting time for 2 random walks is half of

the mean hitting time. Furthermore, the distribution of the meeting times for an ergodic

Markov chain can be approximated by an exponential distribution of the same mean [2].

Hence,

P (δi > t) = exp
( −t

c ·G · logG

)
(4.4)

where the constant c ' 0.34 for G ≥ 25. Now since there are ri replicas, there are

ri potential servers. Hence, the the meeting time, or equivalently the availability latency

for the data item i is the time till it encounters any of these ri replicas for the first time.

This can be modelled as a minimum of ri exponentials. Hence,

P (δi > t) = exp

(
−t

c · G
ri
· logG

)
(4.5)

Note, however that this formulation is valid only for the cases when G >> ri, which is

the case for sparse scenarios. The expected value of δi is given by:

δi =
c ·G · logG

ri
(4.6)

For a given 2D-torus, G is constant, hence we have δi ∝ 1
ri

or equivalently, δi = C
ri

where

C = c ·G · logG.

Hence, we have the following optimization formulation,
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Min

[
T∑

i=1

fi · C

ri

]
(4.7)

Subject to:

T∑

i=1

ri = N · α (4.8)

ri ≤ N ;∀ i = 1 to T (4.9)

ri ≥ 1 ;∀ i = 1 to T (4.10)

Theorem 1. In case of a sparse density of vehicles, a replication scheme that allocates

data item replicas as a function of the square-root of the frequency of access to data items

minimizes the aggregate availability latency.

ri =





√
fi·N ·α∑T

j=1

√
fj

1
N ·α ≤

√
fi∑T

j=1

√
fj
≤ 1

α

max
(
1, min(

√
fi·C
γ0

, N)
)

in the general case

where γ0 is s.t.
∑T

i=1 ri = N · α

(4.11)

Proof. We solve the above optimization using the method of Lagrange multipliers. First,

we prove part(i) of the theorem.

The Lagrangian for the optimization can be written as:

H =
T∑

i=1

fi · C
ri

+ ϕ

[
T∑

i=1

ri −N · α
]

(4.12)

We solve for ri as follows:

∂H

∂ri
= −fi · C

r2
i

+ ϕ = 0 (4.13)
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ri =

√
C · fi

ϕ
(4.14)

Substituting ri in the constraint, we get:

ϕ =

(∑T
i=1

√
C · fi

N · α

)2

(4.15)

Finally, we get the optimal value of ri as,

ri =
√

fi ·N · α∑T
j=1

√
fj

(4.16)

The constraints are satisfied if 1
N ·α ≤

√
fi∑T

j=1

√
fj
≤ 1

α which proves part (i) of the

theorem.

Without this condition on fi, the above optimization can be re-written as the following

Lagrangian taking all the constraints into account as:

G =
T∑

i=1

fi · C
ri

+ γ0

[
T∑

i=1

ri −N · α
]
−

T∑

i=1

γi · (ri −N · α)−
T∑

i=1

βi · (−ri + 1) (4.17)

The Kuhn Tucker Conditions for the modified Lagrangian are:

−fi · C

r2
i

+ γ0 − γi + βi = 0; ∀ i = 1 to T (4.18)

T∑

i=1

ri ≤ N · α, γ0 ≥ 0, and γ0

[
T∑

i=1

ri −N · α
]

= 0 (4.19)

ri ≤ N , γi ≥ 0, and γi · (ri −N) = 0; ∀ i = 1 to T (4.20)

−ri ≤ −1, βi ≥ 0, and βi · (−ri + 1) = 0; ∀ i = 1 to T (4.21)

Solving Equation 4.18, we get,
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ri =

√
fi · C

γ0 − γi + βi
(4.22)

Equations 4.20 and 4.21 imply that either γi = 0 or ri = N and also either βi = 0 or

ri = 1 respectively. Therefore, the optimum solution for ri is given by,

ri = max

(
1, min(

√
fi · C

γ0
, N)

)
(4.23)

where γ0 is such that
∑T

i=1 ri = N · α proving part (ii) of the theorem.

Hence, in a sparse network, the optimal replication that minimizes the aggregate

availability latency is obtained if the number of replicas for a data item is proportional

to the square root of the frequency of access for that data item. Cohen et al. [13] proved

that for unstructured peer-to-peer networks the expected search size is minimized using a

square-root replication strategy which is shown to be optimal. The aggregate availability

latency metric in wireless mobile ad-hoc networks is analogous to the expected search

size used in peer-to-peer networks.

It should be noted that, in general, the optimal replication depends on how δi is related

to ri i.e. δi = F (ri) and F (·) is the function that will determine the optimal replication

strategy. The above methodology can be used to be obtain the optimal number of replicas

as long as F (·) is differentiable.

Figure 4.1 shows the typical trend shown by δi for a 10×10 torus, where ri is increased

from 1 to N where N = 100. In other words, in a G = 100 cell torus, N = 100 cars are

deployed, with ri of them having a replica for the data item. We only consider a single

data item, a request for that item can be issued at any vehicle chosen uniformly at random

among all the cars. If the item is stored locally, the latency is 0. The figure indicates

that when ri is small, (ri ≤ 20) the analytical approximation in Equation 4.6 is valid.

Subsequently, latency reduces at a much faster rate when compared to that predicted

by the sparse approximation. This is because for a given G, as ri increases, the latency

till any one of the ri replicas is encountered can no longer be modeled as the minimum
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Figure 4.1: Sparse analysis ( Equation 4.6) versus simulation obtained average availability
latency for a data item as a function of its replicas for a 10× 10 torus, when the number
of cars is set to 100.

of ri independent exponentials. In the next section, we provide an approximation that

captures the high density case.

4.2.1.2 Dense scenario

In this section, we provide an analytical formulation that captures the trends shown by

the availability latency in the presence of a high density of replicas. Recall that N cars

are distributed uniformly at random across G cells, ri off the N cars carry a copy of the

data item of interest. Here, we use the traditional definition of the expected availability

latency for title i, namely,

δi =
∞∑

k=0

k · P (δi = k) (4.24)

We first determine an expression for the case when the latency is 0. This occurs if

the data item is locally stored at a client or a data item replica is located in the same

cell as the client at which the request is issued. Hence, the probability that the latency

experienced by a client is zero is given by the following expression:

P (δi = 0) =
ri

N
+ (1− ri

N
) ·

(
1−

(
1− 1

G

)ri
)

(4.25)
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Figure 4.2: Figure 4.2(a) shows the validation of the analytical expression in Equation 4.25
for the probability that availability latency is zero. Figure 4.2(b) shows the probability
that the availability latency is zero as a function of the replicas for the data item for 5
different car densities {50, 100, 150, 200, 250}.

Figure 4.2(a) indicates that the analytical expression above matches the simulation

results quite well. For a given car density N , as the density of replicas increases, the

probability that the availability latency experienced by a client is zero also increases.

Figure 4.2(b) shows how this probability varies with increasing car density. Given a torus

comprising G cells, increase in P (δi = 0) shows a decreasing steepness as N increases.

This is because ri varies from 1 to N , and only when ri = N , P (δi = 0) = 1 since the

data item is locally stored by every car.

Define Ak as the event that a data item i is encountered by the client for the first

time in the kth cell. Let P (Ak) denote the probability of event Ak occurring. Let pk

denote the probability of encountering data item i in the kth cell, given that it was not

encountered in the previous k − 1 cells. Note that pk is a conditional probability. Also,

p1 = P (δi = 0) as defined by Equation 4.25. Then,

pk = 1−
(

1− 1
G− k + 1

)ri

; 2 ≤ k ≤ G (4.26)
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Figure 4.3: The complete picture depicting the availability latency for a data item ob-
tained via simulations as compared with its sparse and dense approximation as a function
of its replicas for a 10× 10 torus, when the number of cars is set to 100.

Note that the model assumes that not encountering the data item in the (k − 1)th

cell increases the probability of encountering it in the kth cell. Moreover, when k = G,

pk = 1 no matter what the value of ri, meaning that the maximum latency that a client

will encounter will always be no more than G. Although this is true for a high density

of replicas, this approximation is not valid for a sparse replica density, where pk may not

increase as k increases, especially for the first few steps of the client.

Note that, P (Ak) is a joint probability since encountering a data item for first time

in the kth cell indicates that it was not encountered in any of the previous k − 1 cells.

Clearly, pk and pk−1 are not independent, hence, we use the multiplication rule to obtain

the value of P (Ak) as,

P (Ak) = pk

k−1∏

j=1

(1− pj) ; 2 ≤ k ≤ G (4.27)

Then, the average availability latency (δi) for data item i is given by,

δi =
G∑

k=1

(k − 1)P (Ak) (4.28)
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Figure 4.4: Aggregate availability latency for different replication strategies for a 10× 10
torus when T = 100 and N = 50. Figures (a), (b), and (c) depict three different storage
values per car: {4,10,25}.

Figure 4.3 shows that the above equation captures the trend depicted by the average

availability latency for higher replica densities where the sparse and dense approximations

are plotted together with the latency obtained via simulations.

4.2.2 Simulation results

In this section, we present how the aggregate availability latency realized by the different

replication schemes is affected individually by the different parameters in the optimization

space.

In all our experiments, we assume that the various data item popularities are dis-

tributed as per the Zipf’s law [65]. This means that the frequency of the rth popular data

item is inversely proportional to its rank i.e.

fi =
1
iv∑T

j=1
1
jv

; 1 <= i <= T (4.29)

Here, the exponent v controls the skewness in the popularity distribution of the data

items. We denote w = −v as the skewness parameter. A higher value of w indicates that

most of the popularity weight is spread across the first few popular titles. Note that the

data item repository size is T and the denominator is simply a normalization constant.

Figure 4.4 depicts the latency performance for different replication schemes when

storage per car is increased from 4 to 25 slots. The title repository size is T = 100
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and the car density is N = 50 which implies that the total storage ST is increased

from 200 to 1250 slots. As expected the latency decreases as storage is increased. The

replication schemes with exponent values 0, 0.5, and 1 have been popularly studied in

the literature [13, 42, 17, 60, 58] and are labelled random, square-root, and linear

respectively. Below, we describe the main observations from this figure.

The random scheme allocates the same number of replicas per data item irrespective

of their popularity. Hence, in all cases, it yields the same aggregate availability latency

irrespective of the value of w. As the replication exponent increases from 0 to 1 progres-

sively more replicas are allocated for the popular data items. This increase in the replicas

is accelerated for higher values of w that provide a bias for the popular titles. Hence, we

see a sharp decrease in the availability latency from n = 0 to n = 0.3 for w = −1.5 and

w = −2. However, the maximum number of replicas per data item can never exceed N .

For a value of w = −0.5 in which case the popularity weight is spread more evenly among

all the data items, it almost doesn’t matter what the replication scheme is as seen by the

flat latency curves for w = −0.5.

When storage per car is low, α = 4, this represents a scenario with a sparse density of

data item replicas. In this case, the square-root replication scheme provides the minimum

latency. Also, the range where the replication exponent n varies from 0.4 to 0.6 shows

a latency very close to the square-root scheme. This is true even when the data item

popularities are skewed. Moreover, the range 0.4 ≤ n ≤ 0.6 shows near optimal latency

performance even when the storage is increased (see Figures 4.4(b) and (c)). In other

words, through the entire spectrum of the replica density, a replication scheme defined

by an exponent in this range will provide near optimal performance. For the rest of this

chapter, we will consider the square-root (n = 0.5) scheme as representative of this range

and compare its performance to the two extremes namely, random (n = 0) and linear

(n = 1).

4.2.2.1 Scale-up experiments

In these set of experiments, we maintain a constant ratio of the total storage to the

data item repository size (ST : T ). Figure 4.5 presents the performance of the three
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replication schemes when ST = 3000 and T = 600. Since ST = N · α, we vary the values

of (N ,α) as {(50,60), (100,30), (150,20), (200,15), (250,12)}. Since the total storage in

the system ST remains the same the number of replicas allocated per data item also

remains. As N increases, the number of potential clients increases, this accounts for

the slight upward trend in the latency curves for the different replication schemes. With

increasing skewness, for the same total storage, the latency realized by the square-root and

linear schemes reduces. This is because replicas assigned to the more popular data items

result in lower latency for those items because as the skewness parameter w increases, a

higher popularity weight assigned to these data items. The random replication scheme

is blind to the popularity of the data items and hence shows similar latency performance

independent of the value of w. For all but w = −0.5, it performs an order of magnitude

worse as compared to the square-root scheme.

4.2.2.2 Variation in car density

Next, we study the effect of car density on the performance of the replication schemes.

Figure 4.6 presents the performance of the three replication schemes as a function of the

car density when the storage per car is held constant at 3 for T = 100. Increase in the car

density increases the total storage in the system. Hence, more replicas per data item can

be allocated resulting in an overall decrease in the aggregate availability latency. This

is true for all replication schemes. However, here for w = −0.5 and w = −1 (beyond

N = 100), the random scheme shows slightly better performance than the linear scheme.

This is because for a lower skew in title popularities, assigning equal number of replicas

per data item is better than providing higher replicas for the popular data items which

do not have a sufficiently high popularity weight. However, for higher skew in popularity,

the behavior of the linear scheme starts paying richer dividends in reducing the overall

latency, hence, it outperforms the random scheme. In all cases, the square-root scheme

always yields the lowest aggregate availability latency.
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Figure 4.5: Scale-up experiments where the total storage to the data item repository size
is held constant at ST

T = 3000
600 . The number of cars and the storage per car are varied to

realize ST = 3000. 40
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Figure 4.6: Aggregate availability latency for the three replication schemes as a function
of the car density when the storage per car is fixed at 3. Here T = 100.
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4.2.2.3 Variation in storage per car

The total storage in the system can also be increased by keeping the car density constant

and increasing the storage per car. Figure 4.7 shows the performance of the three repli-

cation schemes as a function of the storage per car when the car density is held constant

at 50 for T = 50. As expected increasing storage reduces the latency for all the schemes.

In case of w = −0.5, the random and linear scheme show a latency performance within

10− 20% of the square-root scheme. However, with higher w values this difference blows

up with the square-root scheme providing a much lower latency as compared to the other

two.

4.2.2.4 Variation in data item repository size

Finally, we consider the effect of increasing the data item repository size for a given value

of car density and storage per car. Figure 4.8 depicts the latency performance of the

replication schemes as a function of T when N = 50 and α = 15 giving ST = 750. For the

same total storage, as the data item repository size increases, lesser replicas are assigned

per data item, resulting in an increase in the overall availability latency. With w = −0.5,

all the schemes show an almost linear increase in the latency as T increases. The increase

in the latency becomes less significant with increasing skewness because enough replicas

can still be assigned to the popular data items which have a major contribution to the

aggregate availability latency. With w = −1.5 and w = −2, the random scheme shows

a step function like behavior because increase in data item repository size from 100 to

400 first causes a reduction in the replicas for the popular data items. However, further

increase in T from 400 to 800 does not change the number of replicas for the popular

data items causing minimal change in the aggregate availability latency values.

4.3 Data items with display time one and short trip duration

The analysis and simulation results presented so far assumed that once a request is issued

at a client, it is willing to wait as long as it takes for its request to be satisfied. In other

words, the client trip duration was assumed to be unbounded. For the specific mobility
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Figure 4.7: Aggregate availability latency for the three replication schemes as a function
of the storage per car when data item repository size is 50 and car density is 50.
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Figure 4.8: Aggregate availability latency for the three replication schemes as a function
of the data item repository size for a car density of 50 and storage per car of 15.
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model under consideration, namely 2D random walk on a torus, the maximum latency

experienced by a client is bounded [2] as long as at least one replica of every time is

present in the system at all times. However, in more practical scenarios, the client may

have a certain maximum time it is willing to wait for request resolution. This is captured

by considering a finite trip duration, γ, for the client. The availability latency for item

i, δi, can be any value between 0 and γ − 1. If the client’s request is not satisfied, we set

δi = γ indicating that the client’s request for item i was not satisfied1.

4.3.1 Analysis

As before with Section 4.2.1, here, we present approximations for the average availability

latency in the presence of a low and high density of replicas for small data items in the

presence of short client trip durations.

4.3.1.1 Sparse Approximation

Recall that latency in the case of a 2D-random walk on a torus can be modeled as an

exponential distribution as:

P (δi > t) = λ · exp (−λ · t) (4.30)

where λ = ri
c·G·log G . The average availability latency with finite trip duration γ is then

given by,

δi =
∫ γ

0
x · λ · exp (−λ · t)dx +

∫ ∞

γ
γ · λ · exp (−λ · t)dx (4.31)

Hence, we get

δi =
c ·G · log G

ri
· [1− exp (

−γ · ri

c ·G · log G
)] (4.32)

1Another way of handling finite trip durations is to divide the input requests into satisfied and unsat-
isfied respectively, and only calculating the expected latency for the satisfied requests. We adopt such an
approach while evaluating the performance of different replication schemes using mobility derived from
traces of bus movements from a real test-bed, see Section 4.7.
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4.3.1.2 Dense Approximation

Recall that as defined in Section 4.2.1.2, Ak is the event that a data item i is encountered

by the client for the first time in the kth cell and P (Ak) is the probability that event Ak

occurs. Also, pk is the probability of encountering data item i in the kth cell, given that

it was not encountered in the previous k − 1 cells. Then,

pk = 1−
(

1− 1
G− k + 1

)ri

; 2 ≤ k ≤ γ (4.33)

Also, we rewrite P (Ak) incorporating the finite trip duration constraint as,

P (Ak) = pk

k−1∏

j=1

(1− pj) ; 2 ≤ k ≤ γ (4.34)

Let P (Aγ+1) denote the probability of not encountering the data item i during the

entire trip duration γ. Hence,

P (Aγ+1) =
γ∏

j=1

(1− pj) (4.35)

Then, the availability latency (δi) for data item i is given by,

δi =
γ+1∑

k=1

(k − 1)P (Ak) (4.36)

Figure 4.9 shows that the above approximations for low and high density of replicas

matches the latency obtained by simulations. In this case, the dense approximation is also

valid for a low density of replicas because the finite trip duration γ limits the maximum

value of the availability latency. For a low density of replicas in most cases the latency

will be higher than γ and hence it will be bounded by γ. For a higher replica density, the

value of γ is not as significant since the latency for that item will be much lower than γ.

4.3.2 Simulation Results

Figure 4.10 depicts the latency performance for different replication schemes when storage

per car is increased from 4 to 25 slots when the trip duration is set as 10. When storage
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Figure 4.9: Average availability latency for a data item as a function of its replicas for
a finite trip duration γ of 10. The simulation curves are plotted along with the sparse
and dense approximations for finite trip duration for a 10× 10 torus, when the number
of cars is set to 50.

per car is low, α = 4, this represents a constrained storage scenario. The linear scheme

that allocates more replicas to the popular data items shows superior performance as

compared to the square-root scheme. This is because in such scenarios the replicas per

data item is small, hence, only data items having a larger number of replicas will provide

a latency less than γ. Since the popular data items are the ones that requested more often

allocating more replicas for these items lowers the aggregate availability latency. Contrast

this scenario with the case of unbounded trip duration where a square-root replication

scheme always provided the minimum latency (see Figure 4.4).

The optimal scheme here is a super-linear one which allocates most of the replicas to

the first few popular data items after satisfying the constraint that at least one copy of

every data item must be present in the network. For a highly skewed scenario, w = −2,

allocating all the remaining storage for the most popular data item minimizes the latency.

This is because most of the popularity weight is associated with the most popular data

item which is requested very often.

As the storage per car is increased further the curves start becoming flatter and at

α = 25, see Figure 4.10(c), a replication scheme characterized by an exponent in the
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Figure 4.10: Aggregate availability latency for different replication strategies for a 10×10
torus for a finite trip duration of 10 when T = 100 and N = 50. Figures (a), (b), and (c)
depict three different storage values per car: {4,10,25}.

range, 0.3 ≤ n ≤ 1.0, shows near optimal performance. This is because the storage is

abundant enough for all these schemes to allocate a copy of the popular data items to

every car bringing the latency for these items to 0. The difference in the replicas allocated

for the lesser popular data items has minimal effect on the aggregate availability latency

on account of their lower request rate. Recall, the frequency of access to the data items

follows a Zipf distribution that depicts a heavy-tailed behavior.

4.4 Data items with higher display time and long client trip

duration

All the results so far considered a homogeneous repository of data items with a display

time (∆) of one. In this section, we consider data items with a higher ∆. In such cases,

the latency encountered by a client request is given by the earliest time when a contigu-

ous block of ∆ cells containing at least one replica of the request item is encountered.

Figure 4.11 depicts the average availability latency for a data item with a higher display

time (∆ = {2, 3, 4, 5}) as a function of the replicas for that item. Here, again we consider

a sparse density of replicas. For a given data item replica density, the latency increases

with the display time. As expected the latency reduces with increase in the replicas. A

simple curve-fit on the latency curves yields a close-match with the expression of the form
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Figure 4.11: Average availability latency for a data item as a function of its replicas for
different data item display times for a 10 × 10 torus. The latency is given by C

rσ
i

where
the exponent σ increases with data item display time.

δi =
C

rσ
i

(4.37)

where σ represents the exponent for a given data item display time and C is a constant

that is a function of the size of the torus. Note that the value of σ for data items with a

display time of one is one (see Equation 4.6). The values of σ increases with data item

display time. This indicates that an increase in the replicas provides a larger drop in the

latency for a data item with a higher display time. Intuitively, encountering a replica in

a contiguous block of ∆ cells becomes more and more difficult as ∆ increases. Hence, an

increase in the replica density provides a faster reduction in the latency for the higher ∆

items. This is captured by the increasing value of σ with ∆.

The specific formulation of Equation 4.37 has special significance. Equation 4.37 can

be plugged in directly into the optimization formulation in Section 4.2.1.1 to determine

the optimum replication scheme that minimizes the availability latency in case of data

items with higher display times. Following a similar procedure as stated in Theorem 1,

we get the following result.
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∆ σ n = 1
σ+1

2 1.3414 0.4271
3 1.7007 0.3703
4 2.0848 0.3242
5 2.4843 0.287

Table 4.1: Approximate optimal replication exponents for data items with higher data
item display times.

Corollary 1. In case of a sparse density of vehicles, with a repository of data items with

higher display times (∆ > 1), replication exponent n, such that n < 0.5, minimize the

aggregate availability latency metric.

Proof. Following a similar procedure as the proof listed in Theorem 1, we obtain the

optimal replication exponents for the σ values capturing higher data item display times

in Figure 4.11. Table 4.1 lists the display times and the corresponding approximate

optimal exponent values.

4.5 Data items with higher display time and short client

trip duration

In this section, we consider scenarios with short client trip durations with data items

having higher display times. This implies that the client is only willing to wait for a short

period for its request to be satisfied (denoted by γ). Otherwise the request is tagged with

a latency equal to γ.

Figure 2.2 shows a 6×6 grid used as the map for our experimental study. Assume that

the client starts from cell 1 and travels along the path {1, 8, 15, 22, 29, 36}. Numbers in

the bracket indicate the sequence of visited cell IDs. Hence, γ = 6. For our experiments,

we chose N = 200 and T = 100. We simulated a skewed distribution of access to the T

data items using a Zipf distribution with a mean of 0.27. The distribution is shown to

correspond to sale of movie theater tickets in the United States [15].

Initially, all cars are distributed across the cells of the map as per the steady state

distribution which is determined by a random number generator initialized with a seed.
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Figure 4.12: Figure 4.12(a) shows δagg of the sqrt, linear and random replication schemes
versus α for ∆ = 4 and N = 200. Figure 4.12(b) shows the % comparison of the linear
and random schemes wrt the sqrt scheme for this scenario. Region I and Region II,
respectively, indicate the parameter space where n = 1 and n = 0.5 perform the best.

Depending on the particular replication technique, the replicas for each data item are

calculated using Equation 4.2 and then distributed across the car. A car only contains a

maximum of one replica for a particular data item. The distribution of data item replicas

across the cars is uniform. At each step, depending on the current car location, it moves

to one of its adjoining cell (including itself) as governed by the mobility model. Another

seed determines the choice of which cell a car moves to. Since γ = 6, each car performs six

transitions according to the mobility model. We performed the comparisons for several

different data item distribution seeds starting from the same initial car positions. Next,

we varied the initial car positions by changing the initial seed. Specifically, we chose 50

different initial seeds and for each of these we used 50 seeds that decide the distribution

of the data item replicas among the cars. Thus, each point in all the presented results is

an average of 2500 simulations.

Below is an overview of the key lessons learnt from these experiments with higher

data item display times and a short trip duration:

� The optimal value of n varies as a function of the scarcity of the network storage

51



� When storage is scarce, the optimal aggregate availability latency is realized by

using a higher value of n.

� Even a random scheme with n = 0 is good enough when storage is abundant relative

to the repository size.

When storage is extremely scarce, with larger data item sizes (∆ > 1), linear (n = 1)

scheme provides the best performance. This is because it allocates more replicas for the

popular data items at the cost of assigning very few for the remaining data items. In this

case, the contribution to δagg is a function of the δ for the more popular data items since

for the less popular data items there will be insufficient replicas to reduce their δ. On

the other hand, since the random scheme is blind to the data item access frequencies, on

an average, it assigns equal number of replicas for each data item thereby providing the

worst performance.

The square root (n = 0.5) scheme assigns fewer replicas for the popular data items

than the linear scheme. As we increase the amount of storage, there is a cut-off point

along the storage axis, where allocating more replicas for the popular data items provides

negligible improvement in δagg. It is beyond this point that the square root scheme starts

outperforming the linear scheme. This is because the square root scheme can use the extra

storage savings for allocating replicas for the less popular data items, thereby reducing

their δ.

To illustrate, Figure 4.12 shows the variation of δagg as a function of α for ∆ = 4.

Since δagg is a function of the value of n, hence, here we denote it as δagg(n = i). For

Figure 4.12(b), the y-axis represents the percentage comparison of the linear (n = 1) and

the random (n = 0) schemes with respect to the square root (n = 0.5) scheme calculated

as,

Γ =
(

δagg(n = i)− δagg(n = 0.5)
δagg(n = 0.5)

)
× 100; where i = {0, 1} (4.38)

Figure 4.12(b) shows two distinct regions in which the schemes with n = 0.5 and n = 1

perform well under certain parameter settings within the design space. For α <= 20, the

linear scheme (n = 1) performs the best. For 20 <= α <= 360, the square root scheme
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(n = 0.5) performs the best. Beyond this value even a random scheme (n = 0) provides

a competitive latency performance.

With ∆ = x and T = y, the value of α needed to replicate the entire database on

each car is αdb = x · y. At a certain storage threshold (earlier than αdb), the random

scheme assigns enough replicas to the popular data items to bring their δ down. In this

case, all the data items have the same number of replicas, thereby producing a low δ

for every data item. Hence, from this point onward, even a random scheme provides a

good performance. However, this point requires sufficient storage per car and hence a

random scheme may be appropriate only for over-provisioned scenarios. As illustrated in

Figure 4.12(b) with N = 200, T = 100, and ∆ = 4, the storage threshold is around 360

slots per car. For ∆ = 5, and 6, this threshold is approximately 450 and 540, respectively.

These are loose upper bounds.

4.5.1 Aggregate availability latency as a function of car density (N)

Car density, which in turn affects the available storage in the system, has a major impact

on the performance of δagg for all the schemes. With the decrease in the car density

to N = 100, the number of replicas allocated by the schemes is reduced thereby giving

comparatively larger values of δagg across the same storage axis. As α is increased, the

drop in the δagg curves for all the schemes is not as steep as seen in the case with N = 200.

Again, this is because the number of replicas is not increasing at such a high rate. The

storage is reduced by an order of 2, hence a higher value of α is needed to produce the

same drop in δagg as was seen in the case with N = 200 cars. This is observed across all

values of ∆.

For all experiments, we also calculated the standard deviations (SD) and the standard

error of the mean (SEM). The 95% confidence intervals determined as 1.96 ∗ SEM are

quite small and accordingly the curves are quite smooth. However, the standard deviation

is quite large, especially for the cases when δagg is low for high values of ∆ and α. This is

because a low latency requires the data item to be present in every cell along the journey

depending on the value of ∆. As ∆ increases, it becomes increasingly difficult to meet
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this condition thereby showing a high variance in δagg. The large SD value is an empirical

observation about the nature of the random process.

Here, we summarize the main results obtained so far with the 2D random walk based

mobility model. For data items with a display time of one and long client trip duration,

we have the following: in case of sparse density of data item replicas, we analytically

solved storage constrained optimization to minimize the availability latency, yielding that

a replication scheme that allocates replicas for a data item as per the square-root of its

frequency of access provides the optimal aggregate availability latency. With a higher

density of replicas, a scheme that allocates replicas as the nth root of the data item

access frequencies where 0.4 ≤ n ≤ 0.6 provides near optimal latency. In all cases, we

presented the relative performance of three well-known replication schemes, namely, linear

(allocates replicas in direct proportion to the data items’ frequencies), square-root, and

random (allocates equal number of replicas per data item).

For data items with a display time of one and short client trip duration, we found that

a linear replication scheme provides a superior performance. In such cases, a super-linear

replication scheme that allocates a large number of replicas to the popular data items

provides the optimal latency. With data items with larger display time and long client

trip duration, we found that higher nth root replication schemes where n < 0.5, show

optimal latency performance. Finally, with a short client trip duration, we found that in

extremely low storage scenarios, a linear scheme shows superior performance, in moderate

to high storage scenarios a square-root replication scheme provides superior performance

while in abundant storage scenarios even a random replication scheme is good enough to

provide a low latency.

4.6 Evaluation with a real map

In this section, we describe the performance of the various replication schemes where the

vehicular movements are dictated by an underlying map of the San Francisco Bay Area.

Figure 4.13(a) depicts a section of the San Francisco Bay area with the major freeways

and their intersections. We superimpose a 2D-grid on this map and the individual cells

are labelled with the respective freeway id that they cover as shown in Figure 4.13 (b).
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Figure 4.13: A map of the San Francisco Bay Area obtained from http://maps.google.com
is shown in Figure 4.13(a). Figure 4.13(b) superimposes a 15× 15 grid on this map and
labels the cells appropriately with the freeway IDs that they overlap with.

This 2D-grid serves to capture the underlying map at a coarse granularity. Most of the

probability mass is concentrated on the cells that represent the major freeways. The

non-labelled cells have equal transition probabilities to each of its neighboring eight cells.

The outgoing transition probabilities at a cell that represents an intersection between

two freeways are calculated as follows. As an example, consider the intersection of the

freeways 880 and 85 as shown in Figure 4.14. We obtained the traffic density seen on the

freeways before and after the intersection from Caltrans data provided by the California

department of transportation [44]. The website allowed real time gathering of vehicle

traffic data. We considered a time window between 7-8 pm for a particular week and

averaged the vehicular density seen during this period. The day-to-day statistics were

quite similar, here, we show an example of how the actual data was converted into the

probability transition values that formed the basis of the Markov mobility model. Similar

calculations were employed to populate the entire transition probability matrix. Finally,

to eliminate finite edge effects, we converted the 15×15 grid into a torus by allowing cars

at the boundaries to appear at the opposite ends with equal transition probabilities.
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Figure 4.14: The intersection between freeways 880 and 85 is captured in the figure along
with the equivalent probability transitions in the Markov model based on data obtained
from Caltrans regarding the vehicular densities.

The transition matrix was used to generate the car movements. We provide a notion

of directionality to the car movements by ensuring that the next step for a cars movement

takes into account both the current cell as well as the previous cell which a car traversed.

This is done by storing both the cell IDs as part of the state of the Markov chain.

Consequently, the flip-flop movements of the cars is avoided thereby ensuring that car

movements are constrained by the underlying freeway structure of the map and are not

entirely random. We used these car movements to investigate the relative performance

of the various replication schemes under such a scenario.

4.6.1 Results with replication schemes

In this section, we present some representative results for the various replication schemes

obtained by employing the Markov mobility model previously derived from a map of the

San Francisco Bay area. Below we describe the three sets of experiments used in our

evaluation for comparison of the linear, square-root, and random replication schemes. As

before, requests are issued, one at a time at each time-step at vehicles in a round-robin

manner, as per a Zipf distribution with a mean of 0.27. The three sets of experiments

were:

� For data item repository size T set as 25, client trip duration, γ, set as 10, storage

per car, α, set as 2, the latency performance with the various replication schemes

is studied as a function of increasing car density N (see Figure 4.15).
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Figure 4.15: Performance of various replication schemes as a function of car density when
T = 25, α = 2, and γ = 10. Figure 4.15(b) shows the performance wrt the linear scheme.

� For data item repository size T set as 25, client trip duration, γ, set as 10, car

density, N , set as 50, the latency performance with the various replication schemes

is studied as a function of increasing storage per car α (see Figure 4.16).

� For car density, N , set as 50, client trip duration, γ, set as 10, storage per car, α,

set as 2, the latency performance with the various replication schemes is studied as

a function of increasing data item repository size T (see Figure 4.17).

In all cases, the main conclusion is that the linear replication scheme shows superior

performance as seen in Section 4.3 for the case with data item size equal to 1 and finite

client trip duration. The trends seen with this model are similar to those seen with a uni-

form Markov mobility model with equal transition probabilities. This result suggests that

the uniform probability transition matrix based Markov model may be a good indicator

of the performance that may be seen with a model derived from real maps.

4.7 Evaluation with real movement traces

We now evaluate the latency performance of the static replication schemes using traces

obtained from a bus-based DTN test-bed called UMassDieselNet [11]. First, we briefly
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Figure 4.16: Performance of various replication schemes as a function of storage per car
when T = 25, N = 50, and γ = 10. Figure 4.16(b) shows the performance wrt the linear
scheme.
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Figure 4.17: Performance of various replication schemes as a function of data item repos-
itory size when N = 50, α = 2, and γ = 10. Figure 4.17(b) shows the performance wrt
the linear scheme.

58



describe the test-bed and present some properties of the mobility model followed by the

buses. Then, we describe the details of the experimental set-up and the results comparing

the square-root, linear, and random replication schemes under different parameter settings

using these traces.

4.7.1 UMassDieselNet Traces

Here, we briefly describe the details of the UMassDieselNet test-bed and present some

properties of the mobility model that characterizes the movement of the vehicles that

are part of the test-bed. The UMassDieselNet network operates daily around the UMass

campus and the surrounding county. It comprises of 30 buses equipped with a Linux

based computer coupled with a IEEE 802.11b wireless interface that permits ad-hoc

communication between the buses when they are in radio range. An IEEE 802.11b access

point is also connected to the brick computer that allows DHCP access to passengers

within the bus. The traces are available for a period of 60 days, the logs describe every

encounter between every pair of buses that occurred during the day. These traces do not

contain the logs for accesses made between the passengers and the access point within the

bus. The identity of the buses involved in the encounter, the time of encounter and amount

of data transmitted during the encounter are logged in the trace files. Certain buses had

long routes while others had short ones. Unfortunately, due to technical difficulties, the

GPS device on the buses were unable to provide details about the bus locations during

the encounter.

Figure 4.18 shows the number of buses that were active on each day of the 60 day

period during which the traces were collected. We only considered traces where the

number of active buses was greater than 15. This accounted for 52 traces. In general,

the traces indicated a sparse density of buses where there was a high degree of locality

in the encounters. In other words, if 2 buses encounter each other at the beginning

then they will continue to encounter each other more frequently than other buses. This is

captured in Figure 4.19 where we set a minimum separation time between two consecutive

encounters of the same pair of buses to consider it a different encounter. In Figure 4.19(b),

the separation time is set as 20 seconds as compared to 0 seconds set for Figure 4.19(a).
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Figure 4.18: The number of active buses for each trace representing the bus encounters
for each day of a 60-day period. The buses operated from 7am to 5pm.
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Figure 4.19: The CDF of the time between encounters averaged across all the traces for
2 different separation times 0s (Figure 4.19(a)) and 20s (Figure 4.19(b)).
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4.7.2 Experimental Set-up

In this section, we describe the details of the simulation set-up used for evaluation of

the replication schemes employing the UMassDieselNet traces. Each trace represents the

movements of buses during that particular day. There is no correlation between trace

movements across days. Hence, we process each trace one at a time and then average the

results observed across all the days noting that the average is indicative of the performance

seen on most days. However, certain days do appear as outliers since the number of active

buses differs from day-to-day.

As before we consider a finite data item repository of size T . Each bus is assumed to

carry α storage slots. Replicas for each data item are determined based on a replication

scheme and then allocated across the buses uniformly at random. The constraint is that

at least one copy of every data item must be present in the network at all times. We

consider the three representative replication schemes: random, square-root, and linear

and study the relative performance of the schemes.

Since the buses only operate for a finite amount of time we consider two separate

metrics (i) Average availability latency for satisfied requests (ii) Normalized unsatisfied

request rate. Requests for the T titles are generated as per a Zipf distribution with an

exponent w = −0.73. The duration during which the buses were active during a day is

determined apriori and subject to this duration requests are issued at equal inter-arrival

times. A generated request is assigned to a bus chosen uniformly at random. A request

is assumed to be satisfied either if the data item requested is locally stored or another

bus carrying the requested item is encountered at some point after the request is issued.

Those requests that are not satisfied at the end of the day are tagged as unsatisfied

requests.

4.7.3 Results

In this section, we briefly describe the main results from evaluation of the performance of

the replication schemes using the UMassDieselNet traces. For the first set of experiments

we vary the values of (T ,α) as {(5,1), (10,2), (15,3), (20,4), (25,5)} (see Figure 4.20).

The linear replication scheme provides the lowest average availability latency for satisfied
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Figure 4.20: Aggregate availability latency for satisfied requests and the aggregate un-
satisfied request metric for the random, square-root, and linear replication schemes are
shown in Figure 4.20(a) and (b) respectively. The ratio of the storage per car to the data
item repository size, α

T is maintained as 1:5.

requests (about 10− 25% better than the square-root scheme). The linear and square-

root scheme show similar performance in terms of the normalized unsatisfied requests.

The random scheme shows poor performance both in terms of latency as well as the

normalized unsatisfied requests.

Figure 4.21 shows the performance of the replication schemes when the data item

repository size is fixed at 25 and the storage per bus is increased. Increase in storage

leads to increase in the replicas per data item, hence, as expected for all schemes, the

latency and the normalized unsatisfied requests go down. The linear scheme continues to

show superior performance with respect to both metrics.

Figure 4.22 shows the performance of the replication schemes when the storage per bus

is fixed at 3 and the data item repository size is increased. As the data item repository

size is increased, lesser replicas are allocated per data item resulting in an increase in

the latency as well as the unsatisfied requests. Initially the increase in latency is linear

but slowly becomes sub-linear. Note that the data item repository size cannot be made

arbitrarily large since the number of active buses is constrained. As before the linear

scheme always shows the best performance.
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Figure 4.21: Aggregate availability latency for satisfied requests (Figure 4.21(a)) and the
aggregate unsatisfied request metric (Figure 4.21(b)) as a function of the storage per car
for a data item repository size of 25.
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Figure 4.22: Aggregate availability latency for satisfied requests (Figure 4.22(a)) and
the aggregate unsatisfied request metric (Figure 4.22(b)) as a function of the data item
repository size when storage per car α is fixed at 3.
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The mobility model provided by the traces represents an extremely sparse density

of buses where inherently there is a limit to the maximum amount of time for request

satisfaction (namely the last encounter time on the trace). The finite trip duration in con-

junction with the low density and encounter model favors a linear scheme which allocates

more replicas for the popular data items. The popular data items are requested more

frequently, and within the finite time for request satisfaction, have a higher probability of

being satisfied on account of the larger number of replicas. The square-root scheme tries

to allocate replicas less aggressively to the more popular data items in favor of the less

popular ones. This hurts its performance since the less popular data items have a very

low probability of being satisfied. Nevertheless, in such scenarios, a random scheme that

allocates replicas equally across the data items shows the worst performance.

We now consider an equivalent scenario with the Markov mobility and study its prop-

erties in terms of the time between encounters (see Figure 4.23). The aim is to capture a

similar scenario as depicted by the UMassDieselNet traces (compare with Figure 4.19(a)).

We consider a similar set-up to experimental scenario described in Figure 4.20. Similar

to the trends seen with the traces, Figure 4.24 shows that the linear replication scheme

outperforms the square-root and the random schemes in terms of the latency for satis-

fied requests. The performance in terms of the normalized unsatisfied requests is quite

similar for the three schemes. These results suggest that the results obtained from the

Markov mobility model may be applicable across a vast range of scenarios comprising

different mobility models. Adequate adjustment to the transition probabilities of the

Markov model may enable this model to suitably capture the mobility trends of other

models such as Manhattan, Highway, Random Way-Point etc.

4.8 Summary

In this chapter, we have investigated the performance of various replication schemes for

a mobile ad hoc network of AutoMata devices. These schemes compute the degree of

replication for each data item as a power law function of its popularity, i.e., frequency of

access. We propose a general optimization formulation to minimize the average availabil-

ity latency subject to a total constraint enforced by the car density and the storage per
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Figure 4.23: CDF of the time between encounters from the Markov model for a 25× 25
torus with a car density of 15.
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Figure 4.24: Aggregate availability latency for satisfied requests and the aggregate un-
satisfied request metric as obtained from an equivalent scenario employing the Markov
model. The ratio of the storage per car to the data item repository size, α

T is maintained
as 1:5.
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car. While it may be possible to solve this optimization under some scenarios, because

of the large parameter design space we solve the problem indirectly using simulations.

Obtained results indicate the following key lessons:

� For a repository with data items having size 1 and with unbounded client trip

duration, a square-root replication scheme minimizes availability latency

� For a repository with data items having size 1 and with finite client trip duration,

linear/super-linear replication schemes show superior performance

� For a repository with data items having size > 1 and with unbounded client trip

duration, higher nth order replication schemes minimize the aggregate availability

latency where n > 2 (see Equation 4.1)

� For a repository with data items having size > 1 and with finite client trip duration,

a linear scheme shows superior performance for highly constrained storage scenarios

while a square-root scheme shows superior performance over a large storage space.

Obtained results are validated with Markov models derived from different maps of

cities such as San Francisco that constraint the movements of the vehicles on the basis

of the underlying freeway structure. We also investigate the performance of the various

replication schemes with traces obtained from a bus-based DTN test-bed called UMass-

DieselNet, also providing the equivalence between the trace-based mobility model and

the Markov model.

A promising future research direction that will complement the above results is to

explore heterogeneity. While this study has considered a homogeneous repository of

data items, it may be useful to extend our evaluation to a heterogeneous repository of

items with different display times and sizes. Moreover, the vehicles themselves may have

different quantities of available storage and different trip durations.
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Chapter 5

Zebroids

The choice of a replication scheme has a significant impact on the availability latency

experienced by the client requests. In particular, we saw that a square-root replication

scheme provides the minimum aggregate availability latency in case of unbounded trip

duration, while a linear replication scheme provides superior performance for finite trip

durations. We now try to answer the following question: Can the availability latency

be improved further after an appropriate static replication scheme has computed the

replicas per data item? Recall that the replication schemes mentioned earlier do not

consider placement of the replicas. Hence, a system may dynamically reorganize the

replicas across the vehicles on the basis of the currently active requests to make better

use of the available system storage. Specifically, appropriate vehicles may be scheduled to

carry a data item on behalf of a server (vehicle containing the requested item) to a client

requesting it, thereby reducing its latency. These data carriers are labeled zebroids. In

this chapter, we quantify the improvements in latency that can be obtained by employing

these data carriers along with the incurred overhead.

The organization of this chapter is as follows. Section 5.1 formally defines a zebroid

and gives a brief overview. Section 5.2 describes how the zebroids may be employed.

Section 5.3 briefly describes the replacement policies that may be employed by a zebroid.

Section 5.4 provides details of the analysis methodology employed to capture the per-

formance with zebroids. Section 5.5 describes the details of the simulation environment

used for evaluation. Section 5.6 enlists the key questions examined in this study and an-

swers them via analysis and simulations. Section 5.7 presents some representative results
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with zebroids when employing a Markov mobility model for the vehicles that adheres to

the location of major freeways in the San Francisco Bay area. Section 5.8 provides an

evaluation of the performance of zebroids on traces obtained from a real DTN test-bed

comprising 30− 40 buses. Finally, Section 5.9 provides brief conclusions of the study.

5.1 Overview of Zebroids

In this section, we provide a brief overview of the use of zebroids as data carriers. Selec-

tion of zebroids is facilitated by the two-tiered architecture. The control plane enables

centralized information gathering at a dispatcher present at a base-station1. Some ex-

amples of control information are currently active requests, travel path of the clients and

their destinations, and paths of the other cars. For each client request, the dispatcher

may choose a set of z carriers that collaborate to transfer a data item from a server to

a client (z-relay zebroids). Here, z is the number of zebroids such that 0 ≤ z < N ,

where N is the total number of cars. When z = 0 there are no carriers, requiring a

server to deliver the data item directly to the client. Otherwise, the chosen relay team

of z zebroids hand over the data item transitively to one another to arrive at the client,

thereby reducing availability latency (see Section 5.2 for details). To increase robustness,

the dispatcher may employ multiple relay teams of z-carriers for every request. This may

be useful in scenarios where the dispatcher has lower prediction accuracy in the informa-

tion about the routes of the cars. Finally, storage constraints may require a zebroid to

evict existing data items from its local storage to accommodate the client requested item.

Hence, suitable replacement policies may be employed by a zebroid.

In this chapter, we quantify the following main factors that affect availability latency in

the presence of zebroids: (i) data item repository size, (ii) car density, (iii) storage capacity

per car, (iv) client trip duration, (v) replacement scheme employed by the zebroids, and

(vi) accuracy of the car route predictions. For a significant subset of these factors, we

address some key questions pertaining to use of zebroids both via analysis and extensive

simulations.

1There may be dispatchers deployed at a subset of the base-stations for fault-tolerance and robustness.
Dispatchers between base-stations may communicate via the wired infrastructure.
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5.2 Solution Approach

When a client references a data item missing from its local storage, the dispatcher iden-

tifies all cars with a copy of the data item as servers. Next, the dispatcher obtains the

future routes of all cars for a finite time duration equivalent to the maximum time the

client is willing to wait for its request to be serviced. Using this information, the dis-

patcher schedules the quickest delivery path from any of the servers to the client using

any other cars as intermediate carriers namely zebroids. Hence, it determines the optimal

set of forwarding decisions that will enable the data item to be delivered to the client in

the minimum amount of time. Note that the latency along the quickest delivery path that

employs a relay team of z zebroids is similar to that obtained with epidemic routing [59]

under the assumptions of infinite storage and no interference.

A modified version of the Bellman Ford’s shortest path algorithm is employed to

determine this path along the encounter graph of the cars. In the following, we give a

brief description of this algorithm.

A client waits for a maximum of γ time steps for each issued request to be satisfied.

Hence, we construct graph G = (V, E), the encounter graph of the cars for a given

request where V is the set of all cars (|V | = N) and E is the set of edges {(u,v,t) such

that 0 ≤ t ≤ γ}. An edge (u,v,t) exists in G only if cars u and v encounter each other at

time step t and u and v are non-servers. For a given data item request, the dispatcher

identifies the set of cars that have a copy of this item as servers. Now the quickest path

from each of these servers to the client is determined individually using the following

algorithm listed below:

Here s is the client car, parent[v] stores the car id that handed a copy of the requested

data item to car v, and d[s] stores the length of the quickest path to the client. Finally,

the quickest path from all of these is selected as the minimum delay path to the client.

Each car along this path except the server and the client represent a z-relay zebroid. The

complexity of this modified Bellman Ford algorithm is O(N3 · γ). However, in actual

practice the complexity is much lower since on an average not all N cars encounter each

other. Moreover, with a random walk like mobility model, cars that meet once may meet

quite often due to the locality property.
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Algorithm 5.2.1: QuickestPath(V,E, s)

for each v in V[G]

d[v] = ∞
parent[v] = NIL

prevEncounterT ime[v] = −1

d[s] = 0

for i ← 1 to |V [G]| − 1

for each edge (u,v) in E[G]

for t ← 1 to γ

if (d[v] > t)&(prevEncounterT ime[v] ≤ t)

d[v] = t

parent[v] = u

prevEncounterT ime[v] = t

We use the above algorithm in sparse scenarios when N is small (N <= 100). In

other cases, we simulate an epidemic routing kind of dissemination for the trip duration

number of steps. Then we determine the earliest time the client car was infected, if at

all, this establishes the minimum latency encountered by a client. Since each car stores

the parent car that handed over the requested item to it, the sequence of cars involved in

carrying the data item from a server to the client along the minimum latency path can

be determined as a simple look-up operation.

If we restrict the length of the quickest path to a maximum of 2 hops, with the

additional restriction that the first edge (u,v,t) along this path should have t = 1, then

the zebroid used becomes a one-instantaneous zebroid with z = 1. Recall that u will

be a server and t = 1 signifies the instantaneous transfer of the data item from u to v,

the zebroid. The zebroid then meets the client directly thereby satisfying the request.

In some cases, the dispatcher might have inaccurate information about the routes of

the cars. Hence, a zebroid scheduled on the basis of this inaccurate information may

not rendezvous with its target client. To minimize the likelihood of such scenarios, the
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dispatcher may schedule multiple zebroids. This may incur additional overhead due to

redundant resource utilization to obtain the same latency improvements.

The time required to transfer a data item from a server to a zebroid depends on its

size and the available link bandwidth. With small data items, it is reasonable to assume

that this transfer time is small, especially in the presence of the high bandwidth data

plane. Large data items may be divided into smaller chunks enabling the dispatcher to

schedule one or more zebroids to deliver each chunk to a client in a timely manner. This

remains a future research direction.

Initially, number of replicas for each data item are computed as per a static replication

scheme (see Chapter 4). This scheme computes the number of data item replicas as a

function of their popularity. It is static because number of replicas in the system do

not change and no replacements are performed. Hence, this is referred to as the ‘no-

zebroids’ environment. We quantify the performance of the various replacement policies

with reference to this base-line that does not employ zebroids.

One may assume a cold start phase, where initially only one or few copies of every

data item exist in the system. Many storage slots of the cars may be unoccupied. When

the cars encounter one another they construct new replicas of some selected data items

to occupy the empty slots. The selection procedure may be to choose the data items

uniformly at random. New replicas are created as long as a car has a certain threshold

of its storage unoccupied. Eventually, a majority of the storage capacity of a car will be

exhausted.

5.3 Carrier-based Replacement policies

In this section, we briefly describe the different replacement schemes that may be em-

ployed by a zebroid. The replacement policies considered here are reactive since a re-

placement occurs only in response to a request issued for a certain data item. When the

local storage of a zebroid is completely occupied, it needs to replace one of its existing

items to carry the client requested data item. For this purpose, the zebroid must select

an appropriate candidate for eviction. This decision process is analogous to that encoun-

tered in operating system paging where the goal is to maximize the cache hit ratio to
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prevent disk access delay. We present below a list of carrier-based replacement policies

employed in our study which are adapted from different page replacement policies used

in operating systems [57].

1. Least recently used (LRU) LRU-K [45] maintains a sliding window containing

the time stamps of the Kth most recent references to data items. During eviction,

the data item whose Kth most recent reference is furthest in the past is evicted.

Here, we consider the case with K = 1. Depending on whether the evictions are

based on the least recently used data item across all client requests (lru-global) or

only the individual client’s requests (lru-local), we consider global or local variants

of the LRU policy.

2. Least frequently used (LFU) (a) Local (lfu-local): Each AutoMata keeps

track of the least frequently used data item within its local repository. During

eviction 2, this is the candidate replica that is replaced. (b) Global (lfu-global):

The dispatcher maintains the frequency of access to the data items based on requests

from all clients. When a zebroid contacts the dispatcher for a victim data item, the

dispatcher chooses the data item with the lowest frequency of access.

3. Random policy (random) In this case, the chosen zebroid evicts a data item

replica from its local storage chosen uniformly at random.

The replacement policies incur the following overheads. First, the complexity associ-

ated with the implementation of a policy. Second, the bandwidth used to transfer a copy

of a data item from a server to the zebroid. Third, the average number of replacements

incurred by the zebroids. Note that in the no-zebroids case neither overhead is incurred.

The metrics considered in this study are aggregate availability latency, δagg, percent-

age improvement in δagg with zebroids as compared to the no-zebroids case and average

number of replacements incurred per client request which is an indicator of the overhead

incurred by zebroids.

2The terms eviction and replacement are used interchangeably.
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Note that the dispatchers with the help of the control plane may ensure that no data

item is lost from the system. In other words, at least one replica of every data item is

maintained in the ad-hoc network at all times. In such cases, even though a car may

meet a requesting client earlier than other servers, if its local storage contains data items

with only a single copy in the system, then such a car is not chosen as a zebroid.

5.4 Analysis Methodology

Here, we present the analytical evaluation methodology and some approximations as

closed-form equations that capture the improvements in availability latency that can

be obtained with both one-instantaneous and z-relay zebroids. First, we present some

preliminaries of our analysis methodology.

� Let N be the number of cars in the network performing a 2D random walk on a
√

G×√G torus. An additional car serves as a client yielding a total of N + 1 cars.

Such a mobility model has been used widely in the literature [55, 53] chiefly because

it is amenable to analysis and provides a baseline against which performance of

other mobility models can be compared. Moreover, this class of Markovian mobility

models has been used to model the movements of vehicles [6, 50, 66].

� We assume that all cars start from the stationary distribution and perform inde-

pendent random walks. Although for sparse density scenarios, the independence

assumption does hold, it is no longer valid when N approaches G.

� Let the size of data item repository of interest be T . Also, data item i has ri

replicas. This implies ri cars, identified as servers, have a copy of this data item

when the client requests item i.

All analysis results presented in this section are obtained assuming that the client is

willing to wait as long as it takes for its request to be satisfied (unbounded trip duration

γ = ∞). With the random walk mobility model on a 2D-torus, there is a guarantee that

as long as there is at least one replica of the requested data item in the network, the
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client will eventually encounter this replica [2]. Later, we extend our analysis to consider

finite trip duration γ.

Consider a scenario where no zebroids are employed. In this case, the expected avail-

ability latency for the data item is the expected meeting time of the random walk under-

taken by the client with any of the random walks performed by the servers. Aldous et

al. [2] show that the the meeting time of two random walks in such a setting can be mod-

elled as an exponential distribution with the mean C = c ·G · log G, where the constant

c ' 0.17 for G ≥ 25. The meeting time, or equivalently the availability latency δi, for

the client requesting data item i is the time till it encounters any of these ri replicas for

the first time. This is also an exponential distribution with the following expected value

(note that this formulation is valid only for sparse cases when G >> ri): δi = cGlogG
ri

The aggregate availability latency without employing zebroids is then this expression

averaged over all data items, weighted by their frequency of access:

δagg(no− zeb) =
T∑

i=1

fi · c ·G · log G

ri
=

T∑

i=1

fi · C
ri

(5.1)

5.4.1 One-instantaneous zebroids

Recall that with one-instantaneous zebroids, for a given request, a new replica is created

on a car in the vicinity of the server, provided this car meets the client earlier than any of

the ri servers. Moreover, this replica is spawned at the time step when the client issues

the request. Let N c
i be the expected total number of nodes that are in the same cell as

any of the ri servers. Then, we have

N c
i = (N − ri) · (1− (1− 1

G
)ri) (5.2)

In the analytical model, we assume that N c
i new replicas are created, so that the

total number of replicas is increased to ri + N c
i . The availability latency is reduced since

the client is more likely to meet a replica earlier. The aggregated expected availability

latency in the case of one-instantaneous zebroids is then given by,
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δagg(zeb) =
T∑

i=1

fi · c ·G · log G

ri + N c
i

=
T∑

i=1

fi · C
ri + N c

i

(5.3)

Note that in obtaining this expression, for ease of analysis, we have assumed that

the new replicas start from random locations in the torus (not necessarily from the same

cell as the original ri servers). It thus treats all the N c
i carriers independently, just

like the ri original servers. As we shall show below by comparison with simulations,

this approximation provides an upper-bound on the improvements that can be obtained

because it results in a lower expected latency at the client.

It should be noted that the procedure listed above will yield a similar latency to that

employed by a dispatcher employing one-instantaneous zebroids (see Section 5.2). Since

the dispatcher is aware of all future car movements it would only transfer the requested

data item on a single zebroid, if it determines that the zebroid will meet the client earlier

than any other server. This selected zebroid is included in the N c
i new replicas.

5.4.2 z-relay zebroids

The expected availability latency with z-relay zebroids can be calculated using a coloring

problem analog similar to an approach used by Spyropoulos et al. [55]. Consider a data

item i requested by the client. Recall that, there are N total cars and ri replicas for data

item i. Assume that each of these ri replicas is colored red, while the other cars including

the client are colored blue. Whenever a red car encounters a blue car, the latter is colored

red.

The expected number of steps until the client is colored red then gives the average

availability latency with z-relay zebroids. If at a given step, there are k red cars (k ≥ ri),

then there will be N−k blue cars. Recall that meeting time between cars can be modelled

as an exponential distribution. Hence, by the property of exponential distribution, the

average time until any of the k red cars meets any of the N +1−k blue cars is C
k·(N+1−k) .

Now, the expected time until all the cars are colored red is
∑N

k=ri

C
k·(N+1−k)

Note that the client may be colored red in any one of these steps with equal probability.

Consequently, the expected time till the client is colored red is given by,
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δi =
C

N + 1− ri

N∑
m=ri

m∑

k=ri

1
k · (N + 1− k)

(5.4)

Evaluating the above expression, we get,

δi =
C

N + 1
· 1
N + 1− ri

· [N · log
N

ri
− log (N + 1− ri)] (5.5)

Now, the aggregate availability latency (δagg) with z-relay zebroids is obtained by

definition,

δagg(zeb) =
T∑

i=1

[fi · C

N + 1
· 1
N + 1− ri

·

(N · log
N

ri
− log (N + 1− ri)) ] (5.6)

5.5 Simulation Methodology

The simulation environment considered in this study comprises of vehicles such as cars

that carry a fraction of the data item repository. A prediction accuracy parameter in-

herently provides a certain probabilistic guarantee on the confidence of the car route

predictions known at the dispatcher. A value of 100% implies that the exact routes of

all cars are known at all times. A 70% value for this parameter indicates that the routes

predicted for the cars will match the actual ones with probability 0.7. Note that this

probability is spread across the car routes for the entire trip duration. We now provide

the preliminaries of the simulation study and then describe the parameter settings used

in our experiments.

� Similar to the analysis methodology, the map used is a 2D torus. A Markov mobility

model representing a unbiased 2D random walk on the surface of the torus describes

the movement of the cars across this torus.

� Each grid/cell is a unique state of this Markov chain. In each time slot, every car

makes a transition from a cell to any of its neighboring 8 cells. The transition is
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a function of the current location of the car and a probability transition matrix

Q = [qij ] where qij is the probability of transition from state i to state j. Only

AutoMata equipped cars within the same cell may communicate with each other.

� The parameters γ, δ have been discretized and expressed in terms of the number of

time slots.

� An AutoMata device does not maintain more than one replica of a data item. This

is because additional replicas occupy storage without providing benefits.

� Either one-instantaneous or z-relay zebroids may be employed per client request for

latency improvement.

� Unless otherwise mentioned, the prediction accuracy parameter is assumed to be

100%. This is because this study aims to quantify the effect of a large number of

parameters individually on availability latency.

Here, we set the size of every data item, Si, to be 1. α represents the number of

storage slots per AutoMata. Each storage slot stores one data item. γ represents the

duration of the client’s journey in terms of the number of time slots. Hence the possible

values of availability latency are between 0 and γ. δ is defined as the number of time slots

after which a client AutoMata device will encounter a replica of the data item for the first

time. If a replica for the data item requested was encountered by the client in the first

cell then we set δ = 0. If δ > γ then we set δ = γ indicating that no copy of the requested

data item was encountered by the client during its entire journey. In all our simulations,

for illustration we consider a 5× 5 2D-torus with γ set to 10. Our experiments indicate

that the trends in the results scale to maps of larger size.

We simulated a skewed distribution of access to the T data items that obeys Zipf’s

law [65] with a mean of 0.27. This distribution is shown to correspond to sale of movie

theater tickets in the United States [15]. For the sake of completeness, we provide a brief

overview of a Zipf distribution. This means that the frequency of the rth popular data

item is inversely proportional to its rank i.e.
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fi =
1
iv∑T

j=1
1
jv

; 1 <= i <= T (5.7)

Here, the exponent v controls the skewness in the popularity distribution of the data

items. We denote w = −v as the skewness parameter. A higher absolute value of w

indicates that most of the popularity weight is spread across the first few popular titles.

Note that the data item repository size is T and the denominator is simply a normalization

constant.

We employ a replication scheme that allocates replicas for a data item as a function of

the square-root of the frequency of access of that item. The square-root replication scheme

is shown to have competitive latency performance over a large parameter space [19]. The

data item replicas are distributed uniformly across the AutoMata devices. This serves as

the base-line no-zebroids case. The square-root scheme also provides the initial replica

distribution when zebroids are employed. Note that the replacements performed by the

zebroids will cause changes to the data item replica distribution. Requests generated as

per the Zipf distribution are issued one at a time. The client car that issues the request is

chosen in a round-robin manner. After a maximum period of γ, the latency encountered

by this request is recorded.

Initially, all cars are distributed across the map as per the steady-state distribution

governed by Q. This initial placement of cars across the map is determined by a random

number generator initialized with a seed. All results presented in this section are averages

over 10 such seeds each invoking 20,000 requests. Hence, each point in all the presented

results is an average of 200,000 requests.

The 95% confidence intervals are determined for all sets of results. These intervals are

quite tight for the metrics of latency and replacement overhead, hence, we only present

them for the metric that captures the percentage improvement in latency with respect to

the no-zebroids case.
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5.6 Results

In this section, we describe our evaluation results where the following key questions are

addressed. With a wide choice of replacement schemes available for a zebroid, what is

their effect on availability latency? A more central question may be: Do zebroids provide

significant improvements in availability latency? What is the associated overhead incurred

in employing these zebroids? What happens to these improvements in scenarios where a

dispatcher may have imperfect information about the car routes? What inherent trade-

offs exist between car density and storage per car with regards to their combined as well

as individual effect on availability latency in the presence of zebroids? We present both

simple analysis and detailed simulations to provide answers to these questions as well as

gain insights into design of carrier-based systems.

5.6.1 Zebroid replacement schemes

In this section, we describe how replacement policies employed by zebroids impact avail-

ability latency. For illustration, we present ‘scale-up’ experiments where one-instantaneous

zebroids are employed (see Figure 5.1). By scale-up, we mean that α and N are changed

proportionally to keep the total system storage, ST , constant. Here, we set T = 50 and

ST = 200. We choose the following values of (N ,α) = {(20,10), (25,8), (50,4), (100,2)}.
The figure indicates that a random replacement scheme shows a competitive performance.

This is because of several reasons.

Recall that the initial replica distribution is set as per the square-root replication

scheme. The random replacement scheme does not alter this distribution since it makes

replacements blind to the popularity of a data item. However, the replacements cause

dynamic data re-organization so as to better serve the currently active request. Moreover,

the mobility pattern of the cars is random, hence, the locations from which the requests

are issued by clients are also random and not known a priori at the dispatcher. These

findings are significant because a random replacement policy can be implemented in a

simple decentralized manner.
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Figure 5.1: Availability latency when employing one-instantaneous zebroids as a function
of (N ,α) values, when the total storage in the system is kept fixed, ST = 200.

The lru-global and lfu-global schemes provide a latency performance that is worse

than random. This is because these policies rapidly develop a preference for the more

popular data items thereby creating a larger number of replicas for them. During evic-

tion, the more popular data items are almost never selected as a replacement candidate.

Consequently, there are fewer replicas for the less popular items. Hence, the initial dis-

tribution of the data item replicas changes from square-root to that resembling linear

replication. The higher number of replicas for the popular data items provide marginal

additional benefits, while the lower number of replicas for the other data items hurts the

latency performance of these global policies. The lfu-local and lru-local schemes have

similar performance to random since they do not have enough history of local data item

requests. We speculate that the performance of these local policies will approach that of

their global variants for a large enough history of data item requests. On account of the

competitive performance shown by a random policy, for the remainder of the paper, we

present the performance of zebroids that employ a random replacement policy.

As part of our future work, it remains to be seen if there are other more sophisticated

replacement schemes that may have a performance better than random. Moreover, the

distribution of replicas seems to have a profound impact on the availability latency in the
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Figure 5.2: Latency performance with one-instantaneous zebroids via simulations along
with the analytical approximation for a 10× 10 torus with T = 10.

presence of zebroids. Exploring and analyzing the cumulative effect of different replica

distributions with zebroids presents a promising future research direction. A concrete

goal is the investigation of a replacement scheme that over time converges to a replica

distribution resembling that provided by a square-root replication scheme.

5.6.2 Zebroids performance improvement

We find that in many scenarios employing zebroids provides substantial improvements in

availability latency.

5.6.2.1 Analysis

We first consider the case of one-instantaneous zebroids. Figure 5.2.a shows the variation

in δagg as a function of N for T = 10 and α = 1 with a 10× 10 torus using Equation 5.3.

Both the x and y axes are drawn to a log-scale. Figure 5.2.b show the % improvement in

δagg obtained with one-instantaneous zebroids. In this case, only the x-axis is drawn to

a log-scale. For illustration, we assume that the T data items are requested uniformly.

Initially, when the network is sparse the analytical approximation for improvements in

latency with zebroids, obtained from Equations 5.1 and 5.3, closely matches the simulation
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results. However, as N increases, the sparseness assumption for which the analysis is

valid, namely N << G, is no longer true. Hence, the two curves rapidly diverge. The

point at which the two curves move away from each other corresponds to a value of

δagg ≤ 1. Moreover, as mentioned earlier, the analysis provides an upper bound on the

latency improvements, as it treats the newly created replicas given by N c
i independently.

However, these N c
i replicas start from the same cell as one of the server replicas ri.

Finally, the analysis captures a one-shot scenario where given an initial data item replica

distribution, the availability latency is computed. The new replicas created do not affect

future requests from the client.

Next, we consider the case where z-relay zebroids are employed (see Figure 5.3). Sim-

ilar observations, like the one-instantaneous zebroid case, apply since the simulation and

analysis curves again start diverging when the analysis assumptions are no longer valid.

However, the key observation is that the latency improvement with z-relay zebroids is

significantly better than the one-instantaneous zebroids case, especially for lower stor-

age scenarios. This is because in sparse scenarios, the transitive hand-offs between the

zebroids creates higher number of replicas for the requested data item, yielding lower

availability latency. Moreover, it is also seen that the simulation validation curve for

the improvements in δagg with z-relay zebroids approaches that of the one-instantaneous

zebroid case for higher storage (higher N values). This is because one-instantaneous

zebroids are a special case of z-relay zebroids.

5.6.2.2 Simulation

We conduct simulations to examine the entire storage spectrum obtained by changing car

density N or storage per car α in order to also capture scenarios where the sparseness

assumptions for which the analysis is valid do not hold. We separate the effect of N

and α by capturing the variation of N while keeping α constant (case 1) and vice-versa

(case 2) both with z-relay and one-instantaneous zebroids. Here, we set the repository

size as T = 25. Figure 5.4 and 5.5 respectively capture the two cases mentioned above.

With Figure 5.4.b, keeping α constant, initially increasing car density has higher latency

benefits because increasing N introduces more zebroids in the system. As N is further
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Figure 5.3: Latency performance with z-relay zebroids via analysis and simulations for a
10× 10 torus with T = 10.

increased, ω reduces because the total storage in the system goes up. Consequently,

the number of replicas per data item goes up thereby increasing the number of servers.

Hence, the replacement policy cannot find a zebroid as often to transport the requested

data item to the client earlier than any of the servers. On the other hand, the increased

number of servers benefits the no-zebroids case in bringing δagg down. The net effect

results in reduction in ω for larger values of N . Similar trends are seen by keeping N

constant and increasing α (see Figure 5.5.b).

The trends mentioned above are similar to that obtained from the analysis. However,

somewhat counter-intuitively with relatively higher system storage, z-relay zebroids pro-

vide slightly lower improvements in latency as compared to one-instantaneous zebroids.

We speculate that this is due to the different data item replica distributions enforced

by them. Note that replacements performed by the zebroids cause fluctuations in these

replica distributions which may effect future client requests. Exploring other suitable

choices of parameters that can capture these changing replica distributions may be a

useful future research direction.
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Figure 5.4: Latency performance with both one-instantaneous and z-relay zebroids as a
function of the car density when α = 2 and T = 25.

5.6.3 Zebroid overhead

We find that the improvements in latency with zebroids are obtained at a minimal re-

placement overhead (< 1 per client request).

5.6.3.1 Analysis

With one-instantaneous zebroids, for each client request a maximum of one zebroid is em-

ployed for latency improvement. Hence, the replacement overhead per client request can

amount to a maximum of one. Recall that to calculate the latency with one-instantaneous

zebroids, N c
i new replicas are created in the same cell as the servers. Now a replacement

is only incurred if one of these N c
i newly created replicas meets the client earlier than

any of the ri servers.

Let Xri and XNc
i

respectively be random variables that capture the minimum time

till any of the ri and N c
i replicas meet the client. Since Xri and XNc

i
are assumed to be

independent, by the property of exponentially distributed random variables we have,

Overhead/request = 1 · P (XNc
i

< Xri) + 0 · P (Xri ≤ XNc
i
) (5.8)
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Figure 5.5: Latency performance with both one-instantaneous and z-relay zebroids as a
function of α when N = 50 and T = 25.

Overhead/request =
ri
C

ri
C + Nc

i
C

=
ri

ri + N c
i

(5.9)

Recall that the number of replicas for data item i, ri, is a function of the total storage

in the system i.e., ri = k ·N · α where k satisfies the constraint 1 ≤ ri ≤ N . Using this

along with Equation 5.1, we get

Overhead/request = 1− G

G + N · (1− k · α)
(5.10)

Now if we keep the total system storage N · α constant since G and T are also

constant, increasing N increases the replacement overhead. However, if N ·α is constant

then increasing N causes α to go down. This implies that a higher replacement overhead

is incurred for higher N and lower α values. Moreover, when ri = N , this means that

every car has a replica of data item i. Hence, no zebroids are employed when this item is

requested, yielding an overhead/request for this item as zero. Next, we present simulation

results that validate our analysis hypothesis for the overhead associated with deployment

of one-instantaneous zebroids.
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Figure 5.6: Replacement overhead when employing one-instantaneous zebroids as a func-
tion of (N ,α) values, when the total storage in the system is kept fixed, ST = 200.

5.6.3.2 Simulation

Figure 5.6 shows the replacement overhead with one-instantaneous zebroids when (N ,α)

are varied while keeping the total system storage constant. The trends shown by the

simulation are in agreement with those predicted by the analysis above. However, the

total system storage can be changed either by varying car density (N) or storage per

car (α). Figures 5.7.a and Figure 5.7.b respectively indicate the replacement overhead

incurred with both one-instantaneous and z-relay zebroids when α is kept constant and

N is varied and vice-versa.

We present an intuitive argument for the behavior of the per-request replacement

overhead curves. When the storage is extremely scarce so that only one replica per data

item exists in the AutoMata network, the number of replacements performed by the

zebroids is zero since any replacement will cause a data item to be lost from the system.

The dispatcher ensures that no data item is lost from the system. At the other end of

the spectrum, if storage becomes so abundant that α = T then the entire data item

repository can be replicated on every car. The number of replacements is again zero

since each request can be satisfied locally. A similar scenario occurs if N is increased
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Figure 5.7: Replacement overhead with zebroids for the cases when N is varied keeping
α = 2 (figure 5.7.a) and α is varied keeping N = 50 (figure 5.7.b).

to such a large value that another car with the requested data item is always available

in the vicinity of the client. However, there is a storage spectrum in the middle where

replacements by the scheduled zebroids result in improvements in δagg (see Figures 5.4.b

and 5.5.b).

Moreover, we observe that for sparse storage scenarios, the higher improvements with

z-relay zebroids are obtained at the cost of a higher replacement overhead when com-

pared to the one-instantaneous zebroids case. This is because in the former case, each of

these z zebroids selected along the lowest latency path to the client needs to perform a

replacement. However, the replacement overhead is still less than 1 indicating that on an

average less than one replacement per client request is needed even when z-relay zebroids

are employed.

Note that the average replacement per request metric does not explicitly capture the

bandwidth overhead associated with the transfer of items to the zebroids. This bandwidth

overhead may be significant in the case of multiple simultaneous active requests. We

intend to explicitly incorporate these bandwidth considerations in our model as part of

our future research.
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5.6.4 Zebroids with inaccurate route predictability

We find that zebroids continue to provide improvements in availability latency even with

lower accuracy in the car route predictions. We use a single parameter p to quantify

the accuracy of the car route predictions. This parameter inherently provides a certain

probabilistic guarantee on the confidence of the car route predictions for the entire trip

duration.

5.6.4.1 Analysis

Since p represents the probability that a car route predicted by the dispatcher matches

the actual one, hence, the latency with zebroids can be approximated by,

δerr
agg = p · δagg(zeb) + (1− p) · δagg(no− zeb) (5.11)

δerr
agg = p · δagg(zeb) + (1− p) · C

ri
(5.12)
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Expressions for δagg(zeb) can be obtained from Equations 5.3 (one-instantaneous)

or 5.6 (z-relay zebroids).

5.6.4.2 Simulation

Figure 5.8 shows the variation in δagg as a function of this route prediction accuracy

metric. We observe a smooth reduction in the improvement in δagg as the prediction

accuracy metric reduces. For zebroids that are scheduled but fail to rendezvous with the

client due to the prediction error, we tag any such replacements made by the zebroids as

failed. It is seen that failed replacements gradually increase as the prediction accuracy

reduces.

In this study, we have considered a metric that probabilistically governs errors in the

car route predictions. Another possible choice for the metric is similar to that used by

Jun et al. [36] where the car routes are assumed to follow a Gaussian distribution defined

by a mean and a variance. The estimates about the mean and the variance can be

built at the dispatcher based on the history of the individual car movements. Exploring

such alternate choices of prediction control metrics presents a promising future research

direction.

5.6.5 Maximum improvement with zebroids

Surprisingly, we find that the improvements in latency obtained with one-instantaneous

zebroids are independent of the input distribution of the popularity of the data items.

5.6.5.1 Analysis

The fractional difference (labelled ω) in the latency between the no-zebroids and one-

instantaneous zebroids is obtained from equations 5.1, 5.2, and 5.3 as

ω =

∑T
i=1

fi·C
ri
−∑T

i=1
fi·C

ri+(N−ri)·(1−(1− 1
G)ri)∑T

i=1
fi·C
ri

(5.13)

Here C = c · G · log G. This captures the fractional improvement in the availability

latency obtained by employing one-instantaneous zebroids. Let α = 1, making the total
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storage in the system ST = N . Assuming the initial replica distribution is as per the

square-root replication scheme, we have, ri =
√

fi·N∑T
j=1

√
fj

. Hence, we get fi = K2·r2
i

N2 , where

K =
∑T

j=1

√
fj . Using this, along with the approximation (1− x)n ' 1− n · x for small

x, we simplify the above equation to get,

ω = 1−
∑T

i=1
ri

1+
N−ri

G∑T
i=1 ri

(5.14)

In order to determine when the gains with one-instantaneous zebroids are maximized,

we can frame an optimization problem as follows:

Maximize ω, subject to
T∑

i=1

ri = ST (5.15)

Theorem 2. With a square-root replication scheme, improvements obtained with one-

instantaneous zebroids are maximized with a uniform input popularity distribution of the

data items.

Proof. Using the Lagrangian multipliers method, the optimization can be expressed as:

Max

{
1−

T∑

i=1

G · ri

N · (G + N − ri)
+ λ ·

[
T∑

i=1

ri −N

]}
(5.16)

We solve for ri to obtain:

ri = G + N −G ·
√

G + N

G ·N · λ (5.17)

Note that in Equation 5.17, while ri is independent of i, it is the same for all titles i

and is given by N
T . It can be verified that the maximum ω occurs at this value of ri since

∂2ω
∂r2

i
< 0. This implies that fi = 1

T , in other words, all the data items must have the same

popularity.

5.6.5.2 Simulation

We perform simulations with two different frequency distribution of data items: Uni-

form and Zipf (with mean=0.27). Similar latency improvements with one-instantaneous
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Figure 5.9: Improvement in availability latency with one-instantaneous zebroids as a
function of (N ,α) values, when the total storage in the system is kept fixed, ST = 200.

zebroids are obtained in both cases. This result has important implications. In cases

with biased popularity toward certain data items, the aggregate improvements in latency

across all data item requests still remain the same. Even in scenarios where the frequency

of access to the data items changes dynamically, zebroids will continue to provide similar

latency improvements.

5.6.6 Zebroid trade-offs with car density and storage per car

Our findings indicate that higher latency improvements can be obtained with zebroids

when there are more cars with lower storage than fewer ones with higher storage.

5.6.6.1 Analysis

Consider the case of one-instantaneous zebroids. The fractional difference (labelled ω) in

δagg between the no-zebroids and one-instantaneous zebroids cases is obtained in Equa-

tion 5.13. Using the approximation (1−x)n ' 1−n ·x for small x, we simplify the above

equation to get,
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ω = 1−
∑T

i=1
G·fi

ri·(G+N−ri)∑T
i=1

fi

ri

(5.18)

Recall that the number of replicas for data item i, ri, is a function of the total storage

in the system i.e., ri = k·N ·α where k has to satisfy the constraint that 1 ≤ ri ≤ N . Given

a total system storage N · α, we find that except for N all other terms in Equation 5.18

are constant. Also, with increasing N , ω increases. However, for a constant N · α, if N

increases, α has to reduce. This indicates for a given system storage, higher improvements

in latency with zebroids are obtained with higher car density and lower storage per car.

5.6.6.2 Simulation

Figure 5.9 validates the insight obtained from the analysis in that the improvements in

latency go up with higher N and lower α values when N · α = 200. The increase in N

increases the zebroid density enabling the dispatcher to almost always find a zebroid that

can deliver the requested data item to the client earlier than any of the potential servers.

This trade-off between the two system parameters of number of cars and storage per car

may have important implications in the design of carrier-based networks that improve

availability latency.

Although we have assumed a constant storage per car for all cars, in practical scenar-

ios, there may be variable storage per car. Part of the AutoMata device storage space may

be reserved by a user for his preferred titles which the user may not seek to erase/evict.

These considerations may create a more heterogeneous environment with variable storage

per car. In addition, zebroids may need to take into account user preferences prior to

making these replacements. Incorporating all these considerations into the model is likely

to pay richer dividends in estimating latency in real deployments.

5.6.7 Impact of different trip durations and repository sizes

In this section, we describe the impact of different trip durations and repository sizes on

availability latency in the presence of zebroids.
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Figure 5.10: Improvement in δagg with one-instantaneous zebroids for different client trip
durations in case of 10× 10 torus with a fixed car density, N = 100.

5.6.7.1 Analysis

In most practical scenarios, the client will wait for a maximum duration within which it

expects its issued request to be satisfied. Here, we consider the case where the client has a

finite trip duration γ, similar to that considered in the simulation environment (γ = 10).

The availability latency, δi, can be any value between 0 and γ−1. If the client’s request is

not satisfied, we set δi = γ indicating that the client’s request for item i was not satisfied.

Recall that latency in the case of a 2D-random walk on a torus can be modelled as

an exponential distribution as:

P (δi > t) = λ · exp (−λ · t) (5.19)

where λ = ri
c·G·log G . The average availability latency with finite trip duration γ is then

given by,

δi =
∫ γ

0
x · λ · exp (−λ · t)dx +

∫ ∞

γ
γ · λ · exp (−λ · t)dx (5.20)

Hence, we get
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Figure 5.11: Shows improvement in availability latency as a function of the car density
for different repository sizes with α = 2 and γ = 10.

δi =
c ·G · log G

ri
· [1− exp (

−γ · ri

c ·G · log G
)] (5.21)

The aggregate availability latency with finite trip duration is then given by,

δagg(no− zeb) =
T∑

i=1

fi · c ·G · log G

ri
· [1− exp (

−γ · ri

c ·G · log G
)] (5.22)

In the presence of one-instantaneous zebroids, the aggregate availability latency can

be obtained using a procedure similar to that used in Section 5.4.1, giving

δagg(zeb) =
T∑

i=1

fi · c ·G · log G

(ri + N c
i )

· [1− exp (
−γ · (ri + N c

i )
c ·G · log G

)] (5.23)

The above equations yield the improvements in latency with finite trip duration. We

consider a 10 × 10 torus with N = 100 cars each with one storage slot (α = 1). The

distribution of data item replicas is assumed to be uniform. Hence, as we increase the

size of the data item repository (T ) the number of replicas per data item decreases.

Specifically, the value of T is varied as {1, 2, 4, 10, 20, 25, 50, 100}. Then, the number

of replicas per data item changes as {100, 50, 25, 10, 5, 4, 2, 1}. Figure 5.10.a and 5.10.b
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capture the latency performance obtained via analysis and simulations respectively for

different trip durations.

We now describe the behavior of the curves for a given finite trip duration γ. When

T = 1, every car has a copy of the item, hence, no car can serve as a zebroid. As T

increases, replicas per item go down. Hence, some cars can potentially serve as zebroids,

providing some improvements in availability latency. As T is further increased, a peak

is reached beyond which the improvements start diminishing. This is because if T is

large then the number of server replicas per item becomes small. Hence, the likelihood

of finding another car in the vicinity of such a server that will meet the client earlier

also reduces. Moreover, as γ increases, peak improvements in latency are obtained with

higher T .

5.6.7.2 Simulation

Here, we present simulation results that capture the effect of different repository sizes

on the availability latency when the trip duration γ = 10 (see Figure 5.11). For a fixed

storage per car, sufficient car density is needed to provide higher improvements in latency

for a given repository size. This implies that from a system designer’s point of view, if an

estimate of the total car density is known, then sufficient gains in latency with zebroids

can be realized by adjusting the repository size of titles presented to the users.

While a homogeneous repository of data items has been assumed throughout this

study, sizes of data items such as audio clips are typically smaller than video clips. One

way in which our model can be extended to consider such a heterogenous repository is to

assume that every data item can be divided into a set of constant-sized blocks. Different

blocks of an item may be stored across different cars. During data delivery, zebroids will

be scheduled to ensure timely delivery of the various blocks of a requested data item to a

client. Next, we validate a subset of the observations with zebroids with traces collected

from a small vehicular test-bed.
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5.7 Evaluation with a real map

In this section, we describe the performance improvements obtained with zebroids in a

scenario where the vehicle movements are dictated by an underlying map of the San

Francisco Bay Area. The details about how the Markov model was derived from the

underlying map are described in Chapter 4, Section 4.6. Below we describe briefly the

experimental set-up and corresponding results obtained with zebroids when such a Markov

model is employed.

5.7.1 Results with zebroids

In this section, we present some representative results for the improvements in latency

that are obtained with both one-instantaneous and z-relay zebroids when employing the

Markov mobility model previously derived from a map of the San Francisco Bay area. As

before, requests are issued, one at a time at each time-step at vehicles in a round-robin

manner, as per a Zipf distribution with a mean of 0.27. At a time only one request is

active, each request is active for a maximum of client trip duration number of steps (set

as γ = 10). In the following, we describe briefly the experiment set-up followed by a brief

description of the main observations.

� The total storage in the system is held constant as ST = 200. The values of (N,α)

are varied as {(20,10), (25,8), (50,4), (100,2), (200,1)} to realize this value of ST . For

data item repository size T set as 25, client trip duration, γ, set as 10, the latency

performance with zebroids is studied as a function of the different (N,α) values (see

Figure 5.12). Similar trends are obtained as were seen in Section 5.6.6. In other

words, having more cars with lower storage provides higher latency improvements

as opposed to having fewer cars with higher storage.

� For data item repository size T set as 25, client trip duration, γ, set as 10, storage

per car, α, set as 2, the latency performance with zebroids is studied as a function

of increasing car density N (see Figure 5.13).
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Figure 5.12: Performance with zebroids as a function of different (N ,α) values when the
total storage in the system is held constant at ST = 200, γ = 10. Figure (b) shows the
percentage improvement with zebroids when compared to the no-zebroids case.
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Figure 5.13: Performance with zebroids as a function of car density when T = 25, α = 2,
and γ = 10. Figure (b) shows the percentage improvement with zebroids when compared
to the no-zebroids case.
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Figure 5.14: Performance with zebroids as a function of storage per car when T = 25,
N = 50, and γ = 10. Figure (b) shows the percentage improvement with zebroids when
compared to the no-zebroids case.

� For data item repository size T set as 25, client trip duration, γ, set as 10, car

density, N , set as 50, the latency performance with zebroids is studied as a function

of increasing storage per car α (see Figure 5.14). As seen in Section 5.6.2, we observe

that there exists a storage density range that provides the highest improvements

with zebroids.

� For car density, N , set as 50, client trip duration, γ, set as 10, storage per car, α,

set as 2, the latency performance with zebroids is studied as a function of increasing

data item repository size T (see Figure 5.15). Again, the trends seen are similar

to that observed in Section 5.6.7. For a small data item repository size, employing

zebroids has almost no benefits over simply using the square-root static replication

scheme. However, as the data item repository size increases, for the same total

storage in the system (ST = N · α), the replicas per data item reduces, thereby

increasing the utility of zebroids. However, if the data item repository is too large

then the utility of zebroids is reduced because of the constraint that at least one

replica of every data item must be present in the system at all times. Moreover,
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Figure 5.15: Performance with zebroids as a function of data item repository size when
N = 50, α = 2, and γ = 10. Figure (b) shows the percentage improvement with zebroids
when compared to the no-zebroids case.

the replicas per data item are further reduced thereby reducing the probability of

finding a lower latency path from any server to the requesting client.

In all cases, it is seen that z-relay zebroids provide a higher latency improvement as

compared to one-instantaneous zebroids albeit at a higher replacement overhead. Again,

these results suggest that the uniform probability transition matrix based Markov model

may be a good indicator of the performance that may be seen with a model derived from

real maps.

5.8 Evaluation with Real Traces

In this section, we evaluate the performance of employing zebroids using traces obtained

from the UMassDieselNet bus-based DTN test-bed [11]. The details of the test-bed and

the properties of the traces have been explained in Chapter Section. Next, we describe

the simulation set-up for the evaluation of zebroids followed by a brief explanation of the

main results.
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Figure 5.16: Aggregate Availability Latency for Linear, Sqrt, and Random Replication
Schemes for Zipf values -0.5, -1.0, -1.5, and -2.0
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5.8.1 Experimental Set-up

The UMassDieselNet traces represent the movements of buses during a particular day.

There is no correlation between trace movements across days. Hence, we process each

trace at a time and then average the results observed across all the days noting that the

average is indicative of the performance seen on most days. However, certain days do

appear as outliers since the number of active buses differs from day-to-day.

As before we consider a finite data item repository of size T . Each bus is assumed

to carry α storage slots. Initially, replicas for each data item are determined based on a

square-root replication scheme then allocated across the buses uniformly at random. The

constraint is that at least one copy of every data item must be present in the network at

all times. Requests for data items are generated as per a Zipf distribution. We consider 2

different scenarios, (a) requests are issued for each data item at each bus at the start of the

day (see Section 5.8.2.1) (b) requests for the data items are issued at equal inter-arrival

times (see Section 5.8.2.2).

5.8.2 Results

In this section, we briefly describe the main results from evaluation of the performance

of zebroids using the UMassDieselNet traces.

5.8.2.1 Requests issued at the start of the day

As a base-line result for comparison, we first consider an optimistic scenario to evaluate

the maximum improvements that can obtained with zebroids. Requests for each data

item are issued at each bus at the start of the day. For each request, we consider the

best possible latency that can be obtained by employing zebroids. The scheduled relay

teams of zebroids for the different requests do not interfere with each other. In other

words, if there is a lower latency path from a server (bus with the requested data item)

to the requesting client via other buses then storage constraints within the buses will not

prevent the relay team of z zebroids to deliver the item to the client. We consider three

different environments for the case without zebroids where the replicas for the data item

are allocated as per the linear, square-root, and random replication schemes. Starting
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from these three initial distributions, we employ zebroids to study the improvement in

the aggregate availability latency. If a request cannot be satisfied then it is tagged with

a maximum trip duration. This maximum trip duration is calculated on the basis of the

duration of the traces across the 52 days. Hence, we only consider one metric namely the

aggregate availability latency across all the requests.

Figure 5.16 shows the latency performance with the different replication schemes

compared with the respective cases when zebroids are employed for 4 different data item

popularity distributions. The values of (T ,α) are varied as {(5,1), (10,2), (15,3), (20,4),

(25,5) }. In all cases, significant improvements in latency are obtained by employing

zebroids. The improvements with the random replication scheme with and without ze-

broids are independent of the specific (T ,α) value. This is because the random replication

scheme allocates replicas blind to the popularity of the data items. The linear replication

scheme provides the lowest latency, because of the finite trip duration (see Chapter), the

improvements are more pronounced with skewed popularity distributions and larger data

item repositories.

5.8.2.2 Requests issued at equal inter-arrival times during the day

Here, requests are generated as per a Zipf distribution with an exponent w = −0.73.

The duration during which the buses were active during a day is determined apriori and

subject to this duration requests are issued at equal inter-arrival times. A generated

request is assigned to a bus chosen uniformly at random. A request is assumed to be

satisfied either if the data item requested is locally stored or another bus carrying the

requested item is encountered at some point after the request is issued. Those requests

that are not satisfied at the end of the day are tagged as unsatisfied requests. Hence, we

consider two separate metrics (i) Average availability latency for satisfied requests (ii)

Normalized unsatisfied request rate.

For each request, a relay-team of z buses may be employed to improve its availability

latency. The z-relay zebroids are scheduled on the basis of the state of the network at

the time that the request is issued. Note that this relay team of buses are scheduled

across space and time. As per the schedule, the time when one of the buses is supposed
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to hand over a copy of the requested item to another one, the recipient may not have

any free slots to perform the transfer. This is because the slots may all be occupied

by items reserved for previously scheduled requests. When the z-relay team of zebroids

is scheduled, the dispatcher only takes into account the spatio-temporal rendezvous of

the buses with the client without regards to the content that the buses carry. This is

because the content of the buses will change as other requests are issued into the system.

Hence, not every scheduled z-relay transfer may be successful. If every zebroid in a z-relay

schedule is able to carry the requested item then the item will be successfully delivered

to the client yielding lower availability latency. Hence, we consider two other metrics:

number of scheduled zebroids and number of zebroids that were actually able to carry the

data item. As before the metrics obtained with zebroids are compared with a scenario

without zebroids (no-zebroids case).

For the first set of experiments we vary the values of (T ,α) as {(5,1), (10,2), (15,3),

(20,4), (25,5), (30,6)}, see Figure 5.17. The latency for satisfied requests with zebroids

is about 15 − 20% lower than the no-zebroids scheme while the normalized unsatisfied

requests with and without zebroids are the same. The replacement overhead for zebroids

is depicted in Figure 5.18. While the zebroids scheduled for all the (T ,α) values is the

same, a higher percentage of these scheduled zebroids are employed for higher data item

repository sizes.

Figure 5.19 shows the performance with zebroids when the data item repository size

is fixed at 10 and the storage per bus is increased. Increase in storage leads to increase

in the replicas per data item, hence, as expected the latency with the both cases, with

and without zebroids, reduces. Similarly, the normalized unsatisfied requests go down.

Initially, the latency with zebroids is lower than the no-zebroids case. But as the storage

is increased, the no-zebroids case starts outperforming the case with zebroids. This is

because employing zebroids results in changes in the distribution of the data item replicas.

Because of the finite duration of the traces, a steady-state for this distribution is never

reached. So the changes in the number of data item replicas caused by replacements

for the earlier requests have a detrimental effect on the latency for the future requests.

With the no-zebroids case, the data item replicas are allocated as per the square-root
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Figure 5.17: Aggregate availability latency and normalized unsatisfied requests with ze-
broids for the case when the ratio of T : α is maintained as 5 : 1 and requests are issued
as per a Zipf distribution at equal inter-arrival times.
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Figure 5.18: Replacement overhead incurred by employing zebroids when the ratio of
T : α is maintained as 5 : 1 and requests are issued as per a Zipf distribution at equal
inter-arrival times.
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replication scheme and this distribution does not change. This provides a better latency

performance on an average. Similar trends are seen in the unsatisfied requests metric

beyond a storage per bus value of 2.

As more data item replicas are introduced into the system, lesser number of requests

can benefit from employing zebroids. This is captured in Figure 5.19(d) where the average

number of zebroids scheduled per request reduces with increase in the storage per bus.

Recall that for a given request, a relay team of z zebroids is only scheduled if it provides

a lower latency than that provided by the no-zebroids case.

Figure 5.20 shows the performance with zebroids when the storage per bus is fixed

at 3 and the data item repository size is increased. As the data item repository size

is increased, lesser replicas are allocated per data item resulting in an increase in the

latency as well as the unsatisfied requests. This is seen both in the cases with and without

zebroids. Moreover, the increase in latency for satisfied requests without zebroids is much

sharper, significant latency improvements can be obtained by employing zebroids with

larger repositories (see 5.20(b)). This can be seen by the higher number of zebroids

scheduled with a larger repository in Figure 5.20(d). However, if the repository size is

very large then because of the constraint that at least one copy of every data item must be

present in the network at all times, very few buses can be employed as zebroids, yielding

a similar latency for the cases with and without zebroids.

5.9 Summary

In this chapter, we examined the improvements in latency that can be obtained in the

presence of data carriers, termed zebroids, that deliver a data item from a server to a

client. We quantified the variation in availability latency as a function of a rich set of pa-

rameters such as car density, storage per car, data item repository size, and replacement

policies employed by zebroids. Our key findings are as follows. A naive random replace-

ment policy employed by the zebroids exhibits competitive latency benefits at a minimal

replacement overhead. Zebroids continue to provide improvements even in the presence

of lower accuracy in the predictions of the car routes. Improvements in latency obtained
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Figure 5.19: Performance with zebroids as a function of the storage per car when the data
item repository size is held constant at 10. Requests are issued as per a Zipf distribution
at equal inter-arrival times.
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(c) Unsatisfied requests (d) Replacement overhead

Figure 5.20: Performance with zebroids as a function of the data item repository size
when the storage per car is held constant at 3. Again, requests are issued as per a Zipf
distribution at equal inter-arrival times.
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with one-instantaneous zebroids are maximized with a uniform input popularity distribu-

tion of the data items. Also, for a given total system storage, presence of more cars with

a low storage capacity yields higher improvements in latency when compared with fewer

cars with a high storage capacity. The conclusions seem to be robust to the fact that the

Markov mobility model may be derived from a underlying real city map. Finally, similar

observations as obtained with the Markov model are realized from employing zebroids on

traces collected from small vehicular test-bed (UMassDieselNet).

Extensions to zebroids that consider data items of larger size remains to be inves-

tigated. The larger data items may be divided into chunks and multiple relay team of

zebroids may be scheduled to ensure that each chunk reaches the client at the appropriate

time. Incorporation of explicit bandwidth constraints into the Markov model so that it

can be better equipped for scenarios where multiple simultaneous requests are active in

the system also remains a subject of future investigation. Also, zebroids may also be used

for delivery of data items that carry delay sensitive information with a certain expiry.

Extensions to zebroids that satisfy such application requirements present an interesting

future research direction.

108



Chapter 6

Related Work

In this chapter, we provide a brief overview of the related work in the area. We first present

a description of various system components that will be a part of an operational AutoMata

application. Next, we provide a description of the various studies on replication in mobile

ad-hoc networks. Subsequently, we present related works in the area of delay tolerant

networks where data carriers like zebroids have been employed. Finally, we conclude

with a concise account of some related studies in the area of Intelligent Transportation

Systems (ITS) where our results may be directly applicable.

6.1 Other Components of an AutoMata Application

The graphical user interface that displays the list of available titles with their associated

latency may be complimented by a number of other components that are needed for

realizing an AutoMata application. Below, we describe some typical components that

may be part of such a system. Note that the related works described in this subsection

are beyond the scope of this thesis, we present them here for providing a unified picture.

Even though these components have been described in the introduction, we relist them

here for completeness.

Once a user initiates display of a data item, an admission control component [18]

ensures availability of both resources and the referenced data. Next, a data delivery

scheduling technique [20] utilizes resources as a function of time to deliver the data item

to a requesting AutoMata device. This component, may switch between several candidate
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servers containing the referenced data item based on their proximity, current availability

of resources, and network conditions. This component is tied closely to an ad-hoc network

routing protocol which facilitates delivery of data between AutoMata devices. Example

protocols are DSR [34], DSDV [47], AODV [48] to name a few. Another system component

may monitor whether the system is providing a target AutoMata with the desired QoS

and make adjustments as necessary. Besides the above components, there may be others

responsible for addressing the security [64] and privacy [16] concerns of the user that may

be mandatory for practical use of the system. Additionally, suitable physical and MAC

layer optimizations may be needed to adapt to the wireless nature of the communication

medium between the vehicles.

6.2 Replication in MANETs

Replication in MANETs has been explored in a wide variety of contexts. Several studies

predict partitions in the network and pre-emptively replicate data to ensure continuous

data availability. Li et al. [40, 38] use a group mobility model to predict the movement

of the nodes and replicate pre-emptively to ensure existence of at least one server per

group for continuous data availability. Our study is different in that not only does it

use a different mobility model which is Markovian in nature, but the metric we seek to

optimize is the latency until the first encounter of a replica of a requested data item. Our

mobility model is more flexible because by suitably adjusting the transition probabilities

between the various cells in the map it can approximate other mobility models such as

highway, manhattan, random walk mobility model [4] and others. Moreover, we consider

storage constraints per node and how available storage can be best utilized to improve

availability latency. Storage aspects have not been considered in the studies mentioned

above.

Hara [23] proposes three replica allocation methods, one that allocates replicas to

nodes only on the basis of their local preference to data items, another that additionally

considers the contents of the connected neighbors while performing the allocation to re-

move some redundancy and finally, one that discovers bi-connected components in the

network topology and allocates replicas accordingly. The frequency of access of the nodes
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to data items is known in advance and does not change. Moreover, the replica alloca-

tion takes place periodically in a specific period termed the relocation period. Several

extensions to this work have been proposed where replica allocation methods have been

extended to consider data items with periodic [25, 27] and aperiodic [30, 26] updates. Fur-

ther extensions to the proposed replica allocation methods consider the stability of radio

links [32], topology changes [33] and location history of the data item access log [28, 29].

In [31], the authors consider data items that are correlated by virtue of being requested

simultaneously and present the performance of the replica allocation methods proposed

earlier. All the above studies are based on simulations of the proposed replica allocation

methods.

Our study differs from the above studies based on the initial proposals by Hara et

al. [23] in the following ways. The above studies use a heuristic approach where the

methods are evaluated via simulations. On the other hand, in our study, we propose an

optimization formulation for the optimal replication strategy that minimizes aggregate

availability latency. We analytically compute the optimal replication for sparse density

scenarios and employ extensive simulations to study dense cases. Secondly, the above

studies consider the number of requests satisfied as a fraction of the total requests as the

prime metric of interest without regards to the latency per request. In our studies, we

not only strive to increase the number of satisfied requests but also strive to minimize the

availability latency per request. Thirdly, we do not assume the presence of any relocation

period during which replica allocation takes place.

Related studies [51, 61, 24] have appeared in the context of cooperative caching in

mobile ad-hoc networks where the objective is to use caching to reduce the mobile node’s

latency in accessing data items. The proposed techniques take into account the request

pattern of the nodes and the topology of the network as the nodes move while making

a caching decision. In our studies, nodes (cars) do not perform any caching. We simply

calculate the number of replicas per data item that will minimize availability latency.

These replicas are then placed across the cars uniformly at random, hence, car’s local

storage is fully utilized.

111



However, after the static replication schemes have allocated the replicas across the

cars, we have experimented with zebroids that perform dynamic data reorganization to

better equip the system storage to the active user requests. Since the zebroids are cars

whose local storage is fully utilized, we use different cache replacement policies that

yield different replica distributions over time. We are not aware of any other work that

employs dynamic data reorganization, across a distributed storage environment comprised

by mobile vehicles, to improve user latency.

6.3 Sparse Network Architectures

Recently, several novel and important studies such as ZebraNet [35], DakNet [46], Data

Mules [53], Message Ferries [63], SWIM [54], and Seek and Focus [55] have analyzed

factors impacting intermittently connected networks consisting of data carriers similar in

spirit to zebroids. Table 6.1 provides an overview of these studies. Factors considered

by each study are dictated by their assumed environment and target application. A

novel characteristic of our study is the impact on availability latency for a given database

repository of items. In future work, it may be useful to integrate these diverse studies

along with our work under a comprehensive general model/framework that incorporates

all possible factors, environmental characteristics, and application requirements.

The various studies can be characterized into reactive and proactive on the basis of

whether the mobility of the nodes is controlled. In the reactive case, node movements are

dictated by a specific mobility model and applications rely on the movement inherent in

these nodes for data delivery. In the proactive case, the node movement can be adapted

pro-actively to deliver data and also in some cases reduce data delivery latency. We first

summarize the studies that use proactive schemes followed by a brief description of ones

that employ reactive schemes.

Li and Rus [41] introduce a scheme that computes the optimal trajectory for relaying

a message among nodes. However, for larger networks, supporting multiple simultaneous

message transmissions using this algorithm is difficult because the scheduling problem

becomes intractable. Along the same lines, in [63], special nodes called message ferries

that follow non-random movement paths allow data delivery between other nodes whose
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Study Potentially Mobility Model Delivery Energy Delay How many Storage

Mobile copies

Nodes created?

ZebraNet [35] All Controlled + species Many to X Many X

dependent One

DakNet [46] One Controlled One to One

One

Message All Random + One to X X One

Ferries [63] Controlled One

SWIM [54] Most Random without Many to X Many

predictions Some

Data Mules [53] Some Random without Many to One X

predictions One

Seek and All Random without One to X X One

Focus [55] predictions One

Our Work All Random with Any to X One or X

predictions One More

Table 6.1: Related studies on intermittently connected networks.

movements are governed by a random mobility model. The movement of message ferries

can be controlled in order to obtain data from nearby source nodes and deliver it to the

appropriate sink nodes when in vicinity. Message transmissions only take place via direct

transmissions. In a follow-up work [37], latency-energy tradeoffs are demonstrated by

the authors where a single ferry follows a known trajectory and the other nodes schedule

their sleep/wakeup schedule in accordance with when the ferry will be in the vicinity.

Comparison with reactive protocol like DSR indicate significant energy savings while

suffering only a small drop in delay performance.

In the ZebraNet project [35], sensors are attached to zebras to study the wild life

behavior. The sparse nature of the network prevents formation of a connected network.

Hence, data is obtained from the sensors when humans drive by in a car or some other

vehicle. Similarly, in the DakNet project [46], vehicles are used to transfer data between

villages and cities using a store and forward mechanism. Our work with zebroids differs

from all the above studies that can categorized in the proactive realm, in that, it is

reactive and employs a random walk mobility model. The movement of the various nodes

(vehicles in our case) is dictated by this model and cannot be controlled explicitly as was

utilized in the above studies.
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Nodes that obey a random mobility model have been widely studied in the context of

reactive schemes. There have been a large number of studies on the analysis of properties

of random walks [2] on a torus. Some recent studies like [55, 53] have used the 2D

random walk mobility model in the context of routing in intermittently connected mobile

networks. Our mobility model is similar to that used in these studies.

In [53], DataMules are used to route data from static sensors to the base-stations

in a sparse sensor network. In our studies, all nodes are mobile and have the same

capabilities. In [55], using latency or meeting time and number of transmissions as the

metrics of interest, the authors present comparisons of a randomized, utility based and

an hybrid (seek and focus) approach with an optimal scheme via analysis as well as

simulations. The metric of meeting time used in this study is analogous to our notion

of availability latency. In a followup study [56], the authors introduce a new multi-copy

routing algorithm where the source “sprays” a certain number of copies into the network

and then waits until one of those copies meets the destination. Through analysis and

simulations, this spray and wait algorithm is shown to have the lowest average delay and

low transmission cost in terms of the number of packets when compared with alternate

schemes. However, our study differs from the work by Spyropoulos et al. [55], in that,

their study does not consider a storage constraint per node as is the case with zebroids.

The storage constraint requires zebroids to make decisions about which data item replicas

should be kept in local storage to minimize overall availability latency. Moreover, we do

not expect energy to be a very constrained resource in a vehicular ad-hoc network, hence

we have not consider number of transmissions as a metric in our studies. Finally, their

study does not employ an interference model that will constrain the available bandwidths

for data transfer in a vehicular ad-hoc network.

Some studies in the mobile infostation context have relied on replication and caching

techniques to reduce data delivery latency. Small and Haas [54] propose the Shared

Wireless Infostation Model (SWIM) where the infostation architecture is combined with

the ad-hoc networking model. Here, the infostations act as data sinks. By replicating and

hence spreading data across the mobile nodes data delivery latency at the infostations can

be greatly reduced. This study uses a differential equation model to analytically determine
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the time until the data is spread to all the nodes. Presence of static infostations, a different

mobility model, an absence of a storage constraint per node and a different architectural

framework and application makes this study significantly different from ours.

6.4 Intelligent Transportation Systems (ITS)

In the ITS framework, the vehicular network is viewed as a MANET and messages are

forwarded from one vehicle to another realizing several applications like vehicle accident

notification broadcast, pre-emptive emergency vehicle arrival information etc [9, 10]. Car-

Net [43] is a scalable ad hoc network system of cars using a grid location service and

geographic routing to achieve scalability for applications such as traffic congestion and

fleet tracking. Along similar lines, several other projects such as FleetNet [8], VGrid [3],

DRIVE [12] have been proposed. Our work compliments these studies in that the lessons

about replication under storage constraints and minimization of availability latency in

vehicular networks are directly applicable to these systems. This is because our frame-

work is fairly general, in that, examples of data items across which we seek to minimize

latency may be highway repair notification messages etc.
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Chapter 7

Conclusions

We briefly summarize the major contributions of this dissertation. The proposed Au-

toMata application for delivery of content such as audio or video clips to passengers in

their vehicles which is the primary motivation of this thesis is novel. The problems tackled

in this dissertation examine complementary aspects such as data discovery (chapter 3),

data replication (chapter 4), and data delivery scheduling (chapter 5) in such an environ-

ment. Moreover, the metrics of interest in such an application (for example availability

latency, overhead etc.), the questions we propose, our solution approach, and our pro-

posed methodology for evaluation in itself serve as a guideline to future research when

data from live vehicular test-beds will be available for testing out the behavior in real

deployments. We have also presented a feasibility analysis to show that employing the

cellular infrastructure as a control plane and vehicular ad-hoc peer-to-peer network as the

data plane has sufficient bandwidth to realize such an application. Next, we summarize

the key contributions of each of the three studies that are part of this thesis.

7.1 PAVAN

In the PAVAN work presented in Chapter 3, the key contributions are as follows:

� We introduce PAVAN as a novel policy framework for addressing the availability

problem to compute when different data items are available in an ad-hoc network

of AutoMata devices
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� We propose novel utility models to evaluate the effectiveness of the PAVAN predic-

tions with regards to the false-positives, false-negatives, and true-positives.

7.2 Static Replication Schemes

In the static replication schemes study presented in Chapter 4, the key contributions are

as follows:

� Given a data item repository, proposed an optimization formulation to minimize

the average availability latency subject to a storage constraint per vehicle

� Analytically solved the optimization in the case of a sparse density of replicas yield-

ing the square-root replication scheme as the optimum

� Obtained a mathematical expression that captures the behavior of availability la-

tency as a function of the number of data item replicas

� Examined the relative performance of 3 popular replication schemes: linear, square-

root, and random for a large number of parameter settings:

– Data item size = 1 and unbounded client trip duration

– Data item size = 1 and finite client trip duration

– Data item size > 1 and unbounded client trip duration

– Data item size > 1 and finite client trip duration

� Validated main results employing vehicular movements dictated by an underlying

map of the San Francisco Bay Area

� Evaluated the latency performance of the replication schemes using traces obtained

from a bus-based DTN test-bed called UMassDieselNet [11]. Provided an equiva-

lence between the Markov model and the mobility model represented by the traces
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7.3 Zebroids

Finally, in the zebroids study presented in Chapter 5, the key contributions are as follows:

� Introduced the concept of zebroids as data carriers and proposed a modified Bell-

man Ford’s algorithm to yield the optimum delivery schedule for the relay team of

zebroids that minimizes latency for a given client request

� Quantified the variation in availability latency with zebroids as a function of a rich

set of parameters such as car density, storage per car, data item repository size,

popularity of data items, client trip duration, number of zebroids employed, and

replacement policies employed by zebroids.

� For a sparse density of data item replicas, proposed and validated a mathematical

formulation to capture the improvements in latency with zebroids when compared

to the latency provided by static replication schemes

� Evaluation of the performance of different replacement policies at zebroids that

yielded that a random replacement scheme provides superior performance

� Changes in popularity of the data items do not impact the latency gains obtained

with one-instantaneous zebroids.

� Validated main results with zebroids using a map of the San Francisco Bay area to

dictate and constrain the movements of the vehicles in accordance with the location

of major freeways captured by the equivalent Markov model

� Evaluated the performance employing zebroids using traces obtained from the bus-

based UMassDieselNet test-bed.

We acknowledge that realistic validation of the Markov model is far from complete.

In that regards, much additional work remains to demonstrate the practical applicability

of the Markovian approach to realize an AutoMata based application. This represents a

concrete direction for future doctoral dissertations.

However, this dissertation does present a concrete step toward understanding the dif-

ferent nuances involved in realizing an application in a vehicular ad-hoc network. The
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huge parameter space involved makes it extremely challenging to come up with compre-

hensive mathematical models that can capture system performance. Starting from first

principles and tying the different pieces together as we develop enough understanding of

the same presents a promising approach in this direction. In many ways, this thesis along

with other missing pieces of the AutoMata application will serve as a proof of concept

that it is now realistic to start thinking about deployment of on-demand delivery appli-

cations for passengers in their vehicles. New standards such as the IEEE 802.16 WiMax

further compliment this thesis in that they may be used to bolster both the control and

the data plane, thereby alleviating some of request traffic in such a network.
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