ENERGY-EFFICIENT INFORMATION PROCESSING AND ROUTING IN
WIRELESS SENSOR NETWORKS

— CROSS-LAYER OPTIMIZATION AND TRADEOFFS

by

Yang Yu

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

August 2005

Copyright 2005 Yang Yu

Dedication

To my dear parents and sister!

Thank you all for your love!

ii

Acknowledgements

First and foremost, I would like to express my deepest appreciation and gratefulness to my
advisors, Prof. Prasanna and Prof. Krishnamachari. They have not only taught me knowledge,
skills, and experience in terms of research, but also mentored me in my life and career. I thank
them for all their guidance, support, inspiration, and encouragement during the past years.

I would like to thank other members on my defense and qualify exam committee, including
Prof. Suhkatme, Prof. Raghavendra, Prof. Pedram, and Prof. Golubchik. They have offered
many useful feedback that finally brings the completion of this thesis.

During these years, I have been working in both Prof. Prasanna’s research group — P-
Group and Prof. Krishnamachari’s group — Autonomous Network Research Group (ANRG).
The pleasant research atmosphere in both groups is so helpful and enjoyable. I would like to
thank all the members in the group, including Ammar Alhusaini, Zachary Baker, Amol Bakshi,
Seonil Choi, Sethavidh Gertphol, Gokul Govindu, Bo Hong, Shyam Kapadia, Gang Lu, Sumit
Mohanty, Gerald R. “Jerry” Morris, Jingzhao Ou, Neungsoo Park, Animesh Pathak, Sundeep
Pattem, Narayanan Sadagopan, Ronald Scrofano, Reetinder Sidhu, Mitali Singh, Dongjin Son,
Thrasyvoulos Spyropoulos (Akis), Avinash Sridharan, Rahul Urgaonkar, Kiran Yedavalli, Cong
Zhang, Ling Zhuo, Marco Zuniga. Of these, I want to give special thanks to Bo, who has been
my roommate for one year; Mitali and Akis, who have been sharing office with me for most of
the time; Gang and Nara, whom I have discussed lots of research problems with; and Jingzhao,
who is a very good and helpful friend in life.

I also want to take the opportunity to thank Prof. Siegel, Prof. Maciejewski, Prof. Ali, and

Jong-Kook Kim for their collaboration and help during the first two years of my Ph.D. study.

iii

I want to express my wholehearted gratitude to my parents and other family members.
They have supported me so much during all these five years, which is a long and rough journey
for both me and them. I own them too much!

Finally, I want to thank my close friends, including Fan Bai, Tao Ding, Xuhua Ding, Juan
Huang, Ji Lin, Qiang Ni, Yangbing Wu, Hongwei Wu, Ning Xu, Weiqing Xu, Junhao Yang,
Sheng Yang, Yan Zhou, and Mingrui Zhu for their cherished friendship and all the happiness
they have brought to me. I really appreciate Fan, Xuhua, and Sheng for being my roommates

among these years and being so helpful in both my life and research.

iv

Contents

Dedication ii
Acknowledgements iii
List Of Tables viii
List Of Figures ix
Abstract xi
1 Introduction 1
1.1 Overview o e e 1
1.2 Data-Centric Paradigm 4
1.3 Collaborative Information Processing and Routing 6
1.4 Cross-Layer Optimization for Energy-Efficiency 10
1.4.1 Motivation e 10
1.4.2 Consideration for Collaborative Information Processing and Routing . . 13

1.5 A Brief Survey of Cross-Layer Optimization for Energy-Efficiency Collaborative
Information Processing and Routing 15
1.5.1 Hardware Layer. 15
1.5.2 Physical Layer 17
1.5.3 MAC Layer o e 18
1.5.4 Routing Layer o 20
1.5.5 Application Layer 23
1.5.6 Putting It All Together 23
1.6 Research Contributions of this Thesis 25
1.6.1 Two Classes of Target Applications 28
1.6.1.1 Real-time Information Gathering Applications 28
1.6.1.2 Computation-Intensive Data Streaming Applications 29
1.6.2 In-Cluster Information Processing 30
1.6.3 Information Transportation over a Given Tree 30
1.6.4 Information Routing with Tunable Compression 31
1.6.5 Summarizeo e 32
1.7 Thesis Organization 33
2 Energy Models 34
2.1 Definitions and Notations oo 34
2.1.1 Mathematics and Graphs oL 34
2.1.2 Network Topology Graph 35

2.1.3 Application Graph oL

2.1.4 Performance Measurement
2.2 Energy Models
2.2.1 Voltage Scaling L
2.2.2 Rate Adaptation L
2.2.3 Tunable Compression o
Information Processing within a Collocated Cluster
3.1 Overview L e e e e
3.1.1 Our Contributions
3.1.2 Chapter Organization
3.2 Related Work
3.3 Problem Definition
3.3.1 System Model
3.3.2 Application Model
3.3.3 Task Allocation
3.4 Integer Linear Programming Formulation
3.5 Heuristic Approach
3.6 Experimental Results
3.6.1 Synthetic Application Graphs oL oL
3.6.2 Application Graphs from Real World Problems
3.7 Concluding Remarks
Information Transportation on a Tree Substrate
4.1 Overview e e e
4.1.1 Our Contributions
4.1.2 Chapter Organization
4.2 Related Work
4.3 Models and Assumptionso o
4.3.1 Data Gathering Tree
4.3.2 Data Aggregation Paradigm L.
4.4 Problem Definitiono
4.5 Off-line Algorithms for PTP
4.5.1 A Numerical Optimization Algorithm
4.5.2 A Dynamic Programming Based Approximation Algorithm
4.6 Distributed On-line Protocol
4.7 Simulation Resultso
4.7.1 Simulation Setup
4.7.2 Performance of the Off-Line Algorithms
4.7.3 Performance of the On-Line Protocol
4.8 Concluding Remarks
Information Routing with Tunable Compression
5.1 Overview e e e e
5.1.1 Our Contributions
5.1.2 Chapter Organization
5.2 Related Work
5.3 Models and Assumptions
5.3.1 Table of Notations
5.3.2 Network Model
5.3.3 Flow-Based Data Gathering

101
106
109

110
110
112
113
113
116
116
117
118

vi

5.3.4 Discussion e e e e 119

5.3.5 An Example 120

5.4 Problem Definitiono 121

5.5 Analytical Study of SPT and MST 122

5.5.1 Optimal Flow on A Given Tree 123

5.5.1.1 Example Revisited 00 123

5.5.1.2 Determining the Optimal Flow 124

5.5.2 The Performance Bound in A Grid Deployment 128

5.5.3 Tradeoffs Between SPT and MST 132

5.6 A Randomized O(log® v) Approximation 134

5.7 Simulation Results o 137

5.7.1 Simulation Setup 137

5.7.2 Results 138
5.7.2.1 Impact of the number of sensor nodes n and the relative com-

putation cost y Lo 138

5.7.2.2 Impact of the number of source nodes |R| and v 139

5.7.2.3 Impact of the communication range rand vy 140

5.8 Concluding Remarks 140

6 Concluding Remarks and Future Directions 142

6.1 Concluding Remarks 142

6.2 Future Directions 144

6.2.1 Adaptive Fidelity Algorithms 145

6.2.2 Directions from a Broad View 147

6.2.2.1 Consideration for Mobile Sensor nodes 147

6.2.2.2 Cooperation with Routing Diversity 148

6.2.2.3 Integration with Sleep Scheduling 148

Bibliography 150

Appendix A
Correctness of EMR-ALgo 159

vii

List Of Tables

1.1

1.2

3.1

3.2

4.1

4.2

5.1

9.2

Examples of cross-layer optimization techniques for energy-efficient collaborative

information processing and routing oL Lo 14
Examples of cross-layer optimization techniques and the associated tradeoffs . . 24
Table of notations for ILP formulation 58
Trace of clustering steps in Figure 3.9 66
Table of notations 86
The miss rate of MS (based on simulated instances for Figure 4.4(a)) 103
Table of notations e 117
Optimal flow for the example path 124

viii

List Of Figures

1.1

1.2

21
2.2
2.3

24

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

3.10

3.11

3.12

An example network scheme for collaborative information processing and routing
Tradeoffs explored by three system knobs: voltage scaling, rate adaptation, and
tunable compressionol
Fast Fourier Transformation (FFT) algorithm
Application graph for information transportation over a given tree
Energy-latency tradeoffs for transmitting one bit L.

Energy tradeoffs by tunable compression oL L oL

Constraint sets 1 for the ILP formulation
Constraint sets 2 and 3 for the ILP formulation
ILP formulation for the energy-balanced task allocation problem
Pseudo code for Phase 1 L
Pseudo code for function Traverse()
Pseudo code for Phase 2 o
Pseudo code for Phase 3 o
An application example
Clustering steps for the application in Figure 3.8

Lifetime improvement of our approaches for small scale problems (3 sensor nodes,
3 voltage levels, 2 channels, CCR=1)

Lifetime improvement of the 3-phase heuristic for large scale problems (10 sensor
nodes, 8 voltage levels, 4 channels, 60-100 tasks)

Miss rate of the 3-phase heuristic (10 sensor nodes, 8 voltage levels, 4 channels,
60 tasks, CCR=0) i

8

26

39
40
45
46

29
60
60
61
62
63
64
66
67

71

72

ix

3.13 Impact of variation in number of voltage levels (10 sensor nodes, 4 channels, 60
tasks, COR =2) i e 74

3.14 Energy-latency tradeoffs for transmitting one bit of data 75

3.15 Lifetime improvement of the 3-phase heuristic incorporated with modulation
scaling (10 sensor nodes, 8 voltage levels, 4 channels, 3 modulation levels, 60 tasks) 76

3.16 Matrix factorization algorithm 7
3.17 Lifetime improvement for the matrix factorization algorithm (10 sensor nodes, 8

voltage levels, 4 channels, 3 modulation levels) 78
3.18 Fast Fourier Transformation (FFT) algorithm 79
3.19 Lifetime improvement for the FFT algorithm (10 sensor nodes, 8 voltage levels,

4 channels, 3 modulation levels) Lo oL 80
4.1 Pseudo code for EMR-Algo 91
4.2 The g(-) table computed by DP-Algo 94

4.3 Two example data gathering trees generated by the random sources and event
radius models, respectively (connectivity parameter p =0.15) 100

4.4 Performance of our off-line algorithms (c: correlation parameter, p: connectivity
parameter, N: number of sources, S: sensing range) 102

4.5 TImpact of radio parameters (correlation parameter ¢ = 0.5, connectivity param-

eter p = 0.15, number of sources N = 30, sensing range S =0.2) 105
4.6 Performance of the on-line protocol (correlation parameter ¢ = 0.5, connectivity

parameter p = 0.15, number of sources N = 30, sensing range S =0.2) 106
4.7 Adaptability of the on-line protocol (correlation parameter ¢ = 0.5, connectivity

parameter p =0.13) 107
5.1 An example data gathering tree and a path withinit 121
5.2 SPT and MST routing schemes 129
5.3 Performance of SPT and MST for grid deployment 132
5.4 Impact of the number of sensor nodes n and the relative computation cost ~y

(IR =30, 7 =0.2) 138
5.5 Impact of the number of source nodes |R| and the relative computation cost ~y

(n=200,r=0.2) e 140
5.6 Impact of the communication range r and the relative computation cost v (n =

200, [R| =30) . . .« o 141
A.1 A problem instance of 2-Lev-OPTP, 161

Abstract

Wireless sensor networks have become an important technology to realize many applications,
including both simple event/phenomena monitoring applications and heavy-duty data stream-
ing applications. While many systems are being developed, we focus on two fundamental
operations: information processing and information routing. These two operations are tightly
related and must be performed in a collaborative fashion.

A major concern in designing and operating sensor networks is their energy-efficiency. Cross-
layer optimization is widely accepted as an effective technique to ameliorate this concern. The
basic idea is to share information across different system layers and to enable tradeoffs involving
multiple layers, which provides a larger optimization space for system design. It is natural to
apply cross-layer optimization techniques in the context of collaborative information processing
and routing. In this thesis, we investigate three specific problems in this emerging and important
research area.

The first research effort addresses collaborative data processing in a single hop cluster
that behaves as a basic operating unit across the network. We investigate the assignment and
scheduling of a set of real-time communicating tasks onto the cluster under a novel performance
metric — to balance the energy cost of all nodes within the cluster. We focus on exploring
the energy-latency tradeoffs with adjustable computation and communication speed, enabled
by techniques such as voltage scaling and rate adaptation. We have developed integer linear
programming formulations for optimal solutions as well as a 3-phase heuristic. We have achieved
up to 10x lifetime improvements in simulated scenarios.

The second research effort considers the transportation of information to the base
station over an existing routing substrate (i.e., a data gathering tree) within a user-specified

latency constraint. We again explore the energy-latency tradeoffs through rate adaptation. By

xi

exploiting the dependency between communication links over the tree, we have developed both
off-line and on-line techniques to adjust the communication speed for energy minimization.
Energy conservation up to 90% is achieved by our techniques.

The third research effort investigates the construction of a routing tree that mini-
mizes the total energy costs of data compression and communication. Such an objective is
novel compared with traditional maximum compression philosophy and is crucial for advanced
computation-intensive applications where a balance between computation and communication
energy is necessary. We utilize the concept of tunable compression with a suitable model to
capture the tradeoffs between the compressing time and the output size. By revealing the inher-
ent tradeoffs between two simple tree constructions — shortest path tree and minimal steiner
tree — via both analysis and simulation, we show that the minimal steiner tree is a practical
solution with acceptable performance for systems with both grid and arbitrary deployment.

The three research thrusts were chosen to cover various operating stages of information
processing and routing in sensor networks. They provide a framework above which various
extensions can be overlaid.

While our work has made significant contributions to the field, we also discuss advancements
to our work that will further increase the capabilities of collaborative information processing
and routing in sensor networks. Specifically, we identify a set of future research consideration for
adaptive fidelity algorithms, node mobility, unreliable wireless communication, and integration

with existing technologies.

xii

Chapter 1

Introduction

In this chapter, we provide an introduction of this thesis by giving the general background, our

research motivation and goal, and a brief description of our approaches and contributions.

1.1 Overview

With the advancements in Micro-Electro-Mechanical Systems (MEMS) and miniaturization
techniques, wireless sensor networks (WSNs) emerged as a new technology and research topic
around six years ago [40, 54, 88, 82]. Such systems usually consist of a large number of tiny
and cheap sensor nodes that are capable of autonomous sensing, computing, communication,
or even actuation. After the initial deployment (typically in an ad hoc manner), these sensor
nodes are responsible for self-organizing an appropriate network infrastructure over which in-
formation sensing, processing, and transportation can be performed. In typical scenarios, users
can retrieve information of interest from the network by injecting queries and gathering results
from the so-called base stations (or sink nodes) which behave as an interface between users and

the network.

WSNs are envisioned to be used in various contexts of applications, including environment
monitoring, habitat study, battlefield surveillance, infrastructure monitoring. Some of the ap-
plications have been previously studied using more complex, more powerful, and also more
expensive sensing equipments, such as remote battlefield surveillance. The development of
WSNs enables a new solution domain for such applications that has several unique advantages,
including easier and faster deployment, cheaper cost, closer sensing distance and hence po-
tentially higher signal to noise ratio (SNR), information fusion based on much more sensing
samples, and fault tolerance through high redundancy of sensor nodes. The philosophy is that
while the capability of each individual sensor node is quite limited, the aggregated power of the
entire network is sufficient for the required mission.

The development of WSNs is accompanied by a series of research challenges. In the following,
we list a few that are of particular interest to the work in this thesis.

First of all, the operating paradigm of WSNs is centered around information retrieval from
the underlying network, usually referred to as a data-centric paradigm. Compared to the
address-centric paradigm exhibited by traditional networks, data-centric paradigm is unique in
several ways, including a new communication pattern that resembles a reverse multicast tree
(usually referred to as a data gathering tree), in-network processing to extract information from
raw data and remove redundancy among data from multiple sources, and cooperative strategies
among sensor nodes instead of Internet-based non-cooperative strategies. The development of
appropriate routing strategies that take the above factors into consideration is challenging. We
will discuss in detail about data-centric paradigm in Section 1.2.

Second, the above data-centric paradigm involves two fundamental operations in WSNs,
namely information processing and information routing. A large portion of work in this thesis
is motivated by the fact that information processing and routing are mutually beneficial in the

sense that while information processing helps reduce data volume to be routed, information

routing facilitates joint information compression (or data aggregation) by bringing together
data from multiple sources. However, it is often non-trivial to model and analyze the inter-
relationship between information processing and routing. In many situations, the problem of
finding a routing scheme cooperated with joint compression for energy minimization turns out
to be NP-hard. We will further elaborate this issue in Section 1.3.

Third, since once deployed it is often infeasible or undesired to re-charge sensor nodes or
replace their batteries, energy conservation becomes crucial for sustaining a sufficiently long
network lifetime. Among the various techniques that have been proposed for improving energy-
efficiency of the system, cross-layer optimization has been realized as an effective approach.
Application specific design of WSNs makes it unnecessary to develop strictly layered structure
to support application generality, compared to the layering overhead. More importantly, due to
the nature of wireless communication, one performance metric of the network can be affected
by various factors across layers. Also, one optimization technique applied at a specific layer
often affects the behavior or performance metrics at other layers. Hence, a holistic approach
that simultaneously considers the optimization at multiple layers enables a larger design space
within which cross-layer tradeoffs can be effectively explored. We discuss issues related to
cross-layer optimization in Section 1.4.

It is natural to applied cross-layer optimization techniques in the context of information
processing and routing, which is the main theme of this thesis. We summarize a list of tech-
niques, referred to as system knobs, that can be applied for this purpose in Section 1.5. Out
of these techniques, we are particularly interested in three of them, namely voltage scaling,
rate adaptation, and tunable compression. These techniques address the issue of energy con-

servation from computation, communication, and joint compression perspectives, respectively.

Specifically, voltage scaling and rate adaptation achieve energy savings by trading computa-
tion/communication delay for energy, while tunable compression explores the tradeoffs between
computation and communication energy costs.

Based on the above cross-layer optimization techniques, we study three specific topics in the
context of information processing and routing in WSNs. These three topics are information pro-
cessing within a cluster, information transportation over a tree substrate, and joint information
routing with tunable compression. These topics are originated from either simple environment
monitoring applications with small data volume, or advanced computation-intensive applica-
tions such as video surveillance. While voltage scaling and rate adaptation have been widely
studied in literature, their application in the context of information processing and routing in
WSNs has not been previously addressed. To the best of our knowledge, this is also the first
work to formally consider tunable compression with routing in WSNs. Detailed description

about the three topics and the contributions of this thesis are presented in Section 1.6.

1.2 Data-Centric Paradigm

The set of applications that are envisioned for WSNs include environment monitoring, habitat
study, battlefield surveillance, infrastructure monitoring. All of these applications require the
sensing, processing, and gathering of information from the physical environments where the
network operates. The end users are interested in the content of the information, including
related spatial and temporal specification. Hence, the computation and communication are
centered around the information itself, instead of the sensor nodes that sense or hold the
information. This feature is called data-centric computation and communication paradigm [68],
as opposite to the address-centric or node-centric paradigm, which is exhibited in traditional

Internet networks, mobile ad hoc networks, or parallel and distributed systems.

The difference between data-centric paradigm and address-centric paradigm can be effec-
tively reflected by the user queries. For example, typical user queries or service requests in
address-centric paradigm are “Load the web page at address ...”, “Transfer file A from host B
to host C”, etc. However, in data-centric paradigm systems, typical queries are “What is the
average temperature at region A within time T?”, “Are there any vehicles currently in region
A?”. For these queries, the users are interested purely in the information itself, but not the
sensor nodes that generate or hold the information, neither the way how the information is
transmitted to the end users.

From a more formal perspective, data-centric paradigm differs from address-centric
paradigm in the following aspects. First, the typical goal of WSNs with data-centric paradigm
is to gather specific information from multiples source nodes to a small number of sink nodes.
Hence, the communication pattern normally resembles a reverse multicast tree, instead of a
more randomized peer-to-peer-based communication pattern in address-centric systems. The
works in this thesis are largely based on this tree structure.

Second, most of data gathered from a physical environment are not of direct interest to
the end users and they often show strong correlation. Therefore, it is necessary to process the
data before they are transported to the end users. Such in-network processing includes signal
and image processing to extract useful information out of the raw data, data compression to
reduce communication load, and joint compression of data from multiple sources to eliminate
redundancy among the data. These three forms of in-network processing are addressed by this
thesis via the aforementioned three specific topics, which will also be detailed later.

Third, the routing schemes that were originally developed for address-centric systems is

based on fulfilling each individual data routing request. Hence, they become unsuitable for

data-centric systems, where the communication request of the whole system is application-
specific which may be as simple as to route data from all source nodes to a sink node. To
investigate new routing schemes that are customized for WSN applications becomes important.

Fourth, since applications of a WSN are usually more specific and more well-defined, the
sensor nodes within the system are more likely to work in a collaborative fashion, instead of a
competing fashion. In this way, the aggregated resource of the system can be more efficiently
utilized.

With the above features, data-centric paradigm is the main motivation of the work presented
in this thesis. It justifies the use of a tree structure for transporting gathered data. It also
raises the necessity of in-network processing, including the processing of raw data into useful
information as well as joint data compression integrated with routing along the tree structure.
Our work is based on these two important facts.

We note that data-centric paradigm does not mean that address of nodes is not necessary
any more. Instead, we will assume the availability of local address in many cases, including
both the routing over a tree and in-network processing within a local cluster. Such a local
address is necessary for applications that perform peer-to-peer communication beyond simple
flooding. Also, our work is not limited to data-centric paradigm only. The techniques presented
in this thesis can be adopted for energy-efficient computation and communication in general

wireless networks as well.

1.3 Collaborative Information Processing and Routing

In data-centric paradigm, the system operations are centered around the fundamental func-
tionality: to deliver the required information to the end users. Apparently, this involves two

operations:

1. information processing that includes sensing the environment and extracting useful infor-

mation out of the raw data, and

2. information routing that includes combining the information from difference sources across

the network and routing the final set of information to the end users.

Note that in some sense these two operations are actually applicable to address-centric
paradigm. For example, users may want to extract information from a file on machine A
and then transmit the result to machine B. However, in data-centric paradigm, these two
operations are not sequentially and independently performed as they usually are in address-
centric paradigm. On the contrary, these two operations are performed in a parallel fashion
and are tightly related to each other.

On one hand, information processing can help reduce the data volume to route by extracting
useful information from the raw data, or compressing the data, or removing redundancy among
data through joint source compression. On the other hand, since source data are distributed
across the network, many information processing techniques (especially joint source compres-
sion) rely on the data availability at sensor nodes that heavily depends on the routing scheme.
Such a mutually beneficial relationship leads to tightly coupled design and implementation
of information processing and routing, referred to as collaborative information processing and
routing.

For example, consider the simple network scheme in Figure 1.1, where vertices A through
D denote sensor nodes and edges denote valid communication links. In this example, there are
two source nodes, A and B, and one sink node, S. Our mission requires to gather and transport
information from both A and B to the sink node. While the route from node B to S has exactly
one option which is BC'S, there are two alternative routes from node A to S: ACS and ADS.
If the two pieces of source information at nodes A and B are relatively independent, the routing

selection for A is not crucial in terms of the total communication cost. However, if the source

)

Figure 1.1: An example network scheme for collaborative information processing and routing

information is highly correlated, we can take advantage of joint compression to reduce the data
volume to be routed. Hence, the route ACS will be preferred to enable joint compression
at node C, given that the gain of reduced data volume to communicate over C'S dominates
the extra communication cost of choosing AC'S instead of ADS, if any. This example clearly
indicates the importance of coupling the selection of routing schemes with data compression
techniques.

Since sensor readings from the physical world are usually highly correlated, the above joint
compression technique is particularly useful to reduce data volume by removing redundancy
among data from multiple sources. Such a joint compression is also referred to as data ag-
gregation [68]. We will use the terms data aggregation and joint compression exchangeably
hereafter.

Choosing an appropriate routing scheme with joint compression in general networks is much
more challenging, since it is affected by many factors, including network topology, communica-
tion cost and reliability, computation cost, and the correlation among data. In many general

settings, to choose the optimal routing scheme is NP-hard and hence heuristic solutions are

preferred. For example, consider the problem with a simplified assumption that a perfect data
aggregation can be achieved. This means the output of jointly compressing data from an arbi-
trary number of sources is exactly one unit data. To form a routing scheme from a given set of
source nodes to a sink node under this assumption to minimize the total communication cost in
terms of bit times hops is the Minimal Steiner Tree problem, which is known to be NP-hard®.

In many real-life cases without perfect data aggregation, to choose an appropriate model for
abstracting the data aggregation operation is even more difficult, since it heavily depends on
the data correlation from multiple sources. Such a data correlation is determined by the nature
of the observed phenomena as well as the physical situation of the operating field which affects
the propagation of the phenomena. While several papers have proposed models to abstract the
correlation among data from the physical world [97, 78, 87], a unified and widely accepted model
is still lacking. Hence, several research efforts have been trying to study the inter-relationship
between information processing and routing under certain simplifications. For example, the
work by Cristescu et al. [32] assumes a fixed reduction in data volume for any source data
which is jointly compressed by data from other sources. Some other models are discussed in
Section 1.5.4.

Another important research direction in order to cope with the above challenge is to perform
joint data compression from information coding perspective. For example, the Slepian-Wolf
coding [111] can be used to code two correlated sources with a total data volume equal to
the joint entropy of the two sources without explicit communication between the two sources.
Indeed, the Slepian-Wolf coding is studied in [32], which shows that the routing selection and
joint data compression can be perfectly de-coupled with such a coding scheme. However, such
a theoretical limit has not been achieved by any practical distributed source coding schemes

yet. Hence, we focus on joint data compression with explicit communication.

IPlease note that the routing scheme does not necessarily need to be a tree in general cases. However, such
a tree structure is the focus of many studies due to its simplicity.

Most of the existing works on information processing and routing are intended for a single
sink node. When multiple sink nodes are considered, the concept of network information flow [2]
can be used to design a joint routing and coding scheme that transports required information to
all sources under a given network capacity. However, joint data compression is not considered
in the original definition of network information flow. How to integrate these two concepts in
the context of WSN applications is an open challenge.

Moreover, most research efforts in literature assume a static system model in terms of
communication reliability, network topology, and data correlation. The problem becomes even
more challenging if we consider the possibly high dynamics in the above system parameters in

real-life scenarios.

1.4 Cross-Layer Optimization for Energy-Efficiency

1.4.1 Motivation

A major concern for WSNs is energy-efficiency, which has been addressed by various techniques
targeting hardware components [54, 90], media access layer (MAC) scheduling policies [128,
75], network organization [52, 106], routing protocols [61, 45], signal processing techniques [5,
13], and application level algorithms [109, 107]. It has also been realized that cross-layer
optimization is of particular importance for saving energy in WSNs, since it enables a large
space for tradeoffs and optimization of performance metrics across different layers [93, 103, 134].

Network layers (or stacks) are designed for traditional networks with the goal to decompose
a complex system into several layers with well-defined interface among them so that the mod-
ification within each layer only needs to respect the pre-defined interfaces with other layers.
Hence, each layer behaves like a black box from the perspective of other layers. However, such

a clean abstract is useful for designing complex systems with emphasis on functional generality

10

at the expense of decreased efficiency. When system complexity or functional generality is not
a crucial concern, awareness of the implementation within each layer enables more efficient de-
signs. The comparison between general purpose CPU and application-specific integrated circuit
(ASIC) is a good example.

The above notion of cross-layer optimization is the main focus of this thesis. Although
cross-layer optimization has been widely studied in many contexts, there are unfortunately
no formal definitions for cross-layer optimization. From a broad perspective, we present our
definition as follows:

any hardware/software techniques applied at a specific system layer can be regarded as cross-
layer optimization if they explicitly interact with the functionalities or optimization techniques
at other system layers and in most cases, explicitly affect the system properties or performance
at those layers.

The motivation for cross-layer optimization for energy-efficiency is multi-fold. First, sys-
tem performance metrics in WSNs are often determined by multiple factors across several
layers. For example, the performance of wireless communication (either throughput or en-
ergy) is jointly determined by several factors across physical, MAC, and routing layers, which
is significantly different from wired communication. Also, an efficient routing scheme should
take wireless communication conditions, network topology and connectivity, possibility of joint
data compression, and application-level quality-of-service requirements into consideration. The
optimization within each individual layer often leads to inefficient solutions. Hence, a holistic
approach that simultaneously considers different layers with cross-layer information sharing and
coordinated optimization enables a much larger design and optimization space. Many research
efforts on cross-layer optimization are based on this important hypothesis.

Second, optimization techniques applied at one particular layer often affect the behavior and

performance metrics at other layers. For example, sleep scheduling can affect signal interference

11

at physical layer, channel access at MAC layer, routing selection at routing layer, and sensing
coverage at application layer. Isolating optimization techniques at each individual layer may
cause conflicts in optimization goals or even counteracting solutions. It is therefor crucial
to share information across the system stack and expose the effects of various optimization
techniques to all layers so that coordinated optimization can be performed. This factor is
however ignored by many research efforts, due to the inherent complexity to cope with multiple
performance metrics at multiple layers.

Third, WSNs are usually application specific in terms of the required functionality. The
generality of functionalities supported by strictly layered network/system structure becomes
unnecessary compared with the layering overhead. Hence, a blurred boundary between layers
or even the removal of unused layers helps build a lightweight and more efficient system.

Of course, the advantage of cross-layer optimization is not free. The large design and
optimization space also leads to more challenging algorithm and system design and more com-
plicated interactions across various layers. However, given the application specific property of
WSNs and fairly limited functionality and capability of sensor nodes, these challenges are ex-
pected by most researchers to be tractable and worthwhile. Also, cross-layer optimization does
not mean that layering is completely unnecessary. Instead, we still need a layered structure so
that a clean abstract is presented at each layer which abstracts unnecessary implementation
details from other layers. The key point in cross-layer optimization is the information sharing
and coordinated optimization across the stack.

A common way to realize cross-layer optimization is to adjust the system performance by
exposing system knobs across layers as well as their impact on the system performance. System
knobs are actually tunable parameters that have a significant impact on the performance of
the system. One well-known example is the shutdown or sleeping policy that tunes the awake

time of the sensor nodes to adjust various upper-layer functionalities, including MAC layer

12

scheduling [128, 75], topology control [26, 125], routing selection [124], and coverage for event
detection [115, 1]. Besides the motivation to reduce channel contention and to alleviate the
scalability issue by keeping as a small number of awake sensor nodes as possible, the major
principle in this case is to deliver “just enough” performance as required with a minimized
resource usage, including energy. Other commonly used system knobs include voltage scaling
that adjusts CPU computation speed [127], power control that adjusts radio transmission ra-
dius [95], and rate adaptation that adjusts radio transmission speed [89]. We will discuss these

system knobs in detail in Section 1.5.

1.4.2 Consideration for Collaborative Information Processing and

Routing

It is quite natural to apply cross-layer optimization techniques into the context of collaborative
information processing and routing. From one perspective, such techniques can be applied

based on the following three operating stages:
1. data sensing at source nodes,
2. signal processing at source nodes, and
3. joint information routing and compression across the network.

We note that besides the last stage, the first two stages also require distributed and coordinated
operations among sensor nodes in many cases. Although data sensing seems to be a localized
operation that involves each sensor node as a basic function unit, the challenge lies in the
fact that the aggregated sensing behavior of all sensor nodes usually needs to satisfy certain
coverage requirement [115, 1]. Since the sensing and computation capability of each sensor node
is limited, signal processing usually requires the coordination a small group of sensor nodes in

proximity to extract useful information from the raw data gathered by the sensor nodes, e.g,

13

the beamforming algorithm [13]. Hence, for all the three operating stages, the cross-layer
optimization is expected to be performed in a distributed fashion.

From another perspective, cross-layer optimization techniques can be classified based on the
layer where the techniques are applied. For our purpose, we divide the system into 5 layers:
hardware layer, physical layer, multiple access control (MAC) layer, routing layer, application
layer. Many cross-layer optimization techniques have been proposed at each of these layers
with the general goal of improving the system energy-efficiency. In Table 1.1, we re-interpret
them in the context of the above three operating stages of collaborative information processing

and routing.

Table 1.1: Examples of cross-layer optimization techniques for energy-efficient collaborative
information processing and routing

System layer || Data sensing Signal processing Joint information
routing and compression
Application Energy-efficient Joint routing and coding,
signal processing, tunable compression
adaptive fidelity algorithms
Routing Energy-aware routing,
entropy-aware routing
MAC Radio sleep scheduling
Physical Power control, rate adaptation,
adaptive coding
Hardware Low-power CPU, node sleep scheduling, Low-power radio
voltage scaling

In the next section, we give a brief survey of the system knobs listed in Table 1.1.

14

1.5 A Brief Survey of Cross-Layer Optimization for
Energy-Efficiency Collaborative Information Processing

and Routing

We present this brief survey based on the system layers where the techniques are applied,
including hardware layer, physical layer, MAC layer, networking layer, and application layer.
Note that although we have narrowed down our attention to only optimization techniques for
energy-efficiency, this survey is by no means a complete list. Instead, we focus on the techniques

that are listed in Table 1.1.

1.5.1 Hardware Layer

The most important hardware layer technique is low-power circuit design for both CPU and
radio modules, which has been addressed by a large body of literature [82, 90]. Such low-power
design gains energy-efficiency by (1) developing dedicated low-power, low cost hardware mod-
ules for the expected low performance of sensor nodes, and (2) exploring tradeoffs between
power consumption of the system and other performance metrics. The performance criteria
for typical sensor nodes are around tens of MIPS for CPUs (e.g., 16 MIPS for the ATMEL
ATmegal28L processor [8] used in Berkeley Motes) and tens of Kbps for the radio modules,
which are fairly low compared to the performance of usual PCs with commercial wireless LAN
cards. This application-level requirement provides opportunities to design simple digital cir-
cuits, including digital signal processors (DSPs) and radio frequency (RF) circuits, with less
power consumption.

We now discuss two important tradeoffs that have been explored at the hardware layer —
the energy vs response time tradeoff and the energy wvs delay tradeoff. The energy wvs response

time tradeoff is realized via shutting down the node in idle state [112, 108], which is motivated

15

by the well-known ACPI (Advanced Configuration and Power Interface) industry specification.
Note that here we discuss the shutdown of the whole node; MAC layer radio sleep scheduling
will be discussed in Section 1.5.3. The key points of the tradeoff lie in two aspects: (1) to select
the appropriate shutdown mode based on the tradeoffs between shutdown duration and waking-
up time/energy cost, and (2) to determine the shutdown duration by exploring the tradeoffs
between energy efficiency and possible event miss rate at application level. By converting
the temporal event miss rate to the spatial percentage of coverage, the second tradeoff is also
studied as the energy wvs sensing coverage tradeoff [115, 1].

Instead of reducing the operating duration of CPU by the shutdown technique, voltage
scaling explores the energy vs delay tradeoff by running CPU at a lowered speed and hence
longer operating duration with reduced supply voltage and operating frequency [127]. The key
rationale is that the CPU power consumption is quadratically proportional to the supply voltage
with delay being linearly inverse-proportional to the supply voltage, implying that the power-
delay product increases with the supply voltage. Apparently, the energy wvs delay tradeoff is
meaningful for tasks with application-level real-time constraints, which are usually captured by
setting a hard or soft deadline for each task. Various research efforts have proposed scheduling
techniques for voltage scaling in uni-processor systems [127, 57, 104, 10] or multi-processor
systems [49, 138, 76, 135, 132].

A key question regarding the usefulness of the above CPU related techniques is the relative
energy cost spent by CPUs compared to that of radio modules. One fact is that the energy
cost to transmit one bit is typically around 500 - 1000 times greater than a single 32-bit
computation [105, 12]. Hence, for applications with simple functionality, striving for CPU
energy-efficiency might not be worthwhile. However, we also envision the development of more
advanced, computation-intensive applications within the near future. Moreover, it has been

noted that for many high-end sensor nodes, the power consumption of CPU is around 30-50%

16

of the total power consumption of the system [93], which also motivates energy minimization

for CPUs with complex applications.

1.5.2 Physical Layer

At the physical layer, energy-efficiency is often optimized using techniques such as power control,
rate adaptation, and adaptive coding that have a direct impact on the signal strength and
interference at receivers?. Such an impact eventually affects the network connectivity, topology,
data transmission rate, and energy costs at various layers, including MAC, networking, and
application layers. These complicated cross-layer effects make it difficult to isolate the tradeoffs
involved with these techniques. Nevertheless, we can make a first-order classification that power
control explores the tradeoff of energy vs connectivity and reliability, while rate adaptation and
adaptive coding explore the tradeoff between energy and communication speed, or equivalently
transmission delay.

The rationale behind these two tradeoffs can be explained using Shannon’s law in wireless
communication [31]. Consider an Additive White Gaussian Noise channel. This law states that
the achievable communication rate is logarithmically proportional to the power at the receiver,
which in turn is proportional to the transmission power at the receiver and decays with the
transmission distance at a rate of d®, where d is the radius and « is a the pass loss exponent
between 2 to 6. Hence, increment of either the communication radius or rate leads to increased
transmission power. Following the principle of delivering just enough performance, we would
like to decrease power while maintaining just enough communication radius and data rate.

Power control was originally proposed for single-hop multi-user systems like the cellular
system to maintain a given level of signal-to-noise quality to compensate for fading effects,

thermal noise, and more importantly, mutual interference in the shared radio spectrum [60, 51].

2Power control is sometimes treated as a MAC layer technique since it affects the MAC layer topology

17

In the context of WSNs where multi-hop communication prevails, power control has been mainly
used for determining an appropriate communication radius, which can be either common for
all sensor nodes [85] or not [95]. Many research efforts have proposed power control schemes
to reduce the communication radius and hence the power consumption while achieving global
network connectivity [95, 94, 16, 85, 121, 70]. Also, the tradeoff between energy and reliability
through power control is studied [69].

Rate adaptation (sometimes also referred to as modulation scaling [98]) and adaptive coding
were also originally proposed for cellular systems or local wireless networks with the goal of
throughput optimization [117, 55]. The use of these techniques for scheduling packet transmis-
sion over a given channel with the goal of minimizing energy cost subject to delay constraint
is studied in [89], with an optimal off-line algorithm similar to the one in [127]. The problem
is then extended to a star structure with multiple downstream links [43].

Recently, many research efforts are trying to analyze and utilize the joint impact of these two
techniques on energy-efficiency and throughput optimization, and many times together with
MAC layer transmission scheduling and networking layer routing selection [69, 33, 20, 37, 67].
As it has been realized that energy-efficiency depends on factors spanning multiple layers, this

is becoming a promising and hot research direction.

1.5.3 MAC Layer

The way that MAC layer affects the energy-efficiency is mainly through the adjustment
of transmission scheduling and channel access. A common way to do that is via sleep
scheduling [91, 128, 118, 74] from long time scale perspective or time-division multiple ac-

cess (TDMA) [6, 75] from short time scale perspective. Similar to the shutdown technique of

18

CPUs, sleep scheduling also explores the energy vs response time tradeoffs in wireless commu-
nication. During many studies, the response time is translated to network or application layer
transmission delay or throughput.

The PAMAS (Power Aware Multi-Access Protocol with Signaling) protocol [91] is a simple
incremental over the MACA protocol [64] by turning off the radios of nodes that cannot either
transmit or receive given the current traffic in neighborhood. A more aggressive policy, S-MAC
is proposed by Ye et al. [128], in which nodes determine their own sleep scheduling based on
the sleep scheduling of neighboring nodes. To cope with the problem that the scheduling is
pre-determined in S-MAC, a more dynamic policy, T-MAC is proposed so that the scheduling
of a node can be adapted on-the-fly based on transmission requests from neighbors [118]. While
the above works are proposed for a general network topology, a scheduling policy dedicated to
routing tree structure in WSNs is proposed in D-MAC [74]. The main advantage of D-MAC is
that it facilitates a fully pipelined packet transmission over the routing tree by staggering the
sleep scheduling of nodes.

Compared to the above adaptive sleep scheduling, TDMA provides a more strict, pre-
specified sleep scheduling. Tradeoffs between energy and delay as well as buffering size are
studied in [6]. A novel performance metric of network diameter is studied by Lu et al. [75].

Another tradeoff explored by sleep scheduling is the energy vs topology tradeoffs, which in
turn impacts concurrent transmission scheduling and channel access at MAC layer and routing
selection at networking layer. Most of the research efforts along this line try to maintain
a backbone style topology of the network such that the network remains connected with a
minimum number of awake sensor nodes [26, 125, 100].

The Span protocol [26] uses a randomize method to elect so-called coordinator nodes to
maintain a backbone connectivity with certain redundancy. The concept of virtual grid is

proposed in GAF [125], the size of which is determined by the communication radius so that

19

any nodes in two adjacent virtual grids can communicate with each other directly. The key
point is then to ensure exactly one active node in every virtual grid. In the STEM protocol [100],
radios are proactivated by using either a paging channel with fixed duty cycle or a tone on a

secondary channel, which provides extra means to explore the energy wvs latency tradeoff.

1.5.4 Routing Layer

The first batch of routing protocols that were adopted for WSNs are mostly based on pro-
tocols that were originally proposed for ad hoc networks, including extensions of AODV and
DSR [125]. These routing protocols are still based on traditional address-centric peer-to-peer
communication patterns instead of data-centric paradigm of WSNs.

Directed diffusion [61] is almost the first well-known protocol customized for information
routing in data-centric paradigm. However, information processing is simply incorporated as
an opportunistic by-product of routing in directed diffusion. While this might be sufficient
for simple event monitoring applications where data volume is small, the lack of formal con-
sideration of integrating information processing with routing makes the protocol inappropriate
for applications with complex information processing. Some other geographic routing [65] and
rumor routing [22] protocols also fall into this category.

The LEACH protocol [53] adopts a two-tier clustering structure, where the information
processing is performed at each cluster head and routing is simply divided into two stages:
routing from sensor nodes to cluster heads and from cluster heads to the base station. This
is however, an empirical study that aims for energy-conservation by avoiding long distance
communication but not really integrating information processing with routing.

A formal and analytical study of the impact of data aggregation on routing in WSNs is first
presented by Krishnamachari et al. [68]. An intuitive theoretical bound is that if every k pieces

of information can be aggregated into a single piece of information, the routing load can be

20

reduced by a factor of at most k. Here, the value of k is usually referred to as the aggregation
factor or correlation factor among data.

Along this line, the impact of k& on two different routing schemes, the Shortest Path Tree
(SPT) and the Minimal Steiner Tree (MST) is investigated in [87]. It is further revealed that
the optimal tree structure for integrated information processing and routing is a hybrid of SPT
and MST. This can be explained by the intuition that SPT is optimal when k is one since the
routing of each piece of source information becomes independent and MST is optimal when &
is infinity since exactly one piece of information is transported on each edge of the tree.

The above conclusion on a hybrid routing scheme is also conformed by other results.
Cristescu et al. assumes a simplified compression model [32], where the aggregation factor
of a piece of information does not depend on the amount of side information, but only on its
availability. A hybrid scheme of SPT and Minimal Spanning Tree, the Shallow Light Tree (STL)
is proved to provide 2-approximation performance for minimizing the overall cost of the data
gathering tree. For a very similar problem, when the joint entropy being modeled as a concave,
but unknown function of the number of source nodes, a recursively clustering approximation
algorithm is given by Goel et al. [47]. It is also noticed by the authors of [47] that the data
gathering problem is essentially a single-source buy-at-bulk problem [9]. The key point is that
the cost spent on each edge is a concave function of the number of source nodes that use this
edge to communicate to the sink. Another randomized algorithm for routing information on a
grid of sensors is proposed by [39] that achieves constant factor approximation (in expectation).

Moreover, some research efforts have investigated other routing substrates instead of a tree
structure. Bo et al. proposed a distributed in-network processing algorithm that achieves
maximal throughput under the assumption that the information processing is independent

for all sources [56]. His algorithm is essentially based on the optimization of a network flow

21

problem. A hierarchical data gathering scheme for a linear array of sensor nodes is studied by
ElBatt [36].

All the above papers [68, 47, 87, 32, 39, 56, 36] assume that certain coding mechanisms
are available to accomplish the data aggregation operation, hence the authors can focus on
a relatively high level algorithm design or performance analysis. Nevertheless, there are also
papers that try to understand the inter-relationship between information processing and routing
from information coding perspective.

Scaglione et al. considered tight coupling between routing and source coding for the problem
of broadcast communication in a WSN subject to a given distortion constraint [97]. It is proved
that while the whole network traffic for such a broadcast scales as O(N log N) (N being the
number of sensor nodes), a simple integrated routing and source coding scheme can be used to
reduce the traffic to O(\/N), and hence is supportable by the network capacity which is also
O(V/'N). Tt is also argued by Cristescu [32] that when Slepian-Wolf coding can be used without
explicit communication, the shortest path tree is the optimal in terms of minimizing network
traffic. However, to ease the task of a global Slepian-Wolf coding, the authors also proposed an
approximation algorithm by grouping nodes into clusters and performing Slepian-Wolf coding
in each cluster. In these works, the optimal clustering is conjectured to be NP-Hard.

Since the above works explicitly consider the collaboration between joint data compression
and routing, the joint entropy of gathered information becomes a key factor that determines
the problem settings and the consequent solutions. Hence, we refer to the routing techniques
discussed above as entropy-aware routing.

There are also some other works also have been proposed for energy-efficient routing from
a more general perspective. For example, the energy x delay metric is used to determine a
data gathering substrate [73]; the expected number of transmissions (ETX) is used as a path

metric for multi-hop transmission [34]; and the packet reception rate x distance metric is used

22

to choose a forwarding node during routing [101]. In this context, various tradeoffs including

energy vs transmission delay, number of hops, path length have been explored.

1.5.5 Application Layer

At the application layer, both energy-efficient signal processing algorithms [5, 13] and adaptive-
fidelity algorithms [110] have been studied for cross-layer optimization. The key idea is to trade
the application-level information precision or accuracy for energy.

Another useful technique at application layer is the so-called tunable compression which
tunes the compression ratio for balanced computation energy cost against communication en-
ergy cost. Consider the example of gzip. It provides up to ten levels of different compression
ratio, with larger compression ratio resulting in longer compression time and hence higher
energy cost [12, 17]. The use of tunable compression is focused on computation-intensive ap-
plications where traditional maximal compression becomes less energy efficient because of the
over-paid computation energy for data compression. Hence, carefully choosing the compression

ratio is necessary to explore the tradeoffs between computation and communication energy.

1.5.6 Putting It All Together

In Table 1.2, we illustrate the tradeoffs being explored by the aforementioned techniques. Note
that it is often difficult, if necessary, to clearly isolate different performance metrics involved
in the tradeoffs. For example, transmission delay and reliability are closely related at both
physical layer and routing layer, since transmission delay depends on both the time cost for each
transmission and the expected number of re-transmissions, which is determined by reliability.
Also, the radio sleep scheduling at MAC layer affects both transmission delay and throughput
simultaneously. Hence, in many cases, it is necessary and helpful to understand the tradeoffs

while taking multiple performance metrics into consideration.

23

Table 1.2: Examples of cross-layer optimization techniques and the associated tradeoffs

| System layer || Techniques | Tradeoffs |
Energy-efficient signal processing | Energy vs information precision/accuracy
Application Adaptive fidelity algorithms Energy vs information precision/accuracy
Joint routing and coding Traffic vs delay
Tunable compression Energy vs output size
Routing Energy-aware routing Energy vs delay/reliability /path length
Entropy-aware routing Energy vs delay/routing complexity
MAC Radio sleep scheduling Energy vs delay/throughput/topology
Power control Energy vs connectivity/topology /reliability
Physical Rate adaptation Energy vs delay
Adaptive coding Energy vs delay/reliability
Low-power circuit Energy vs performance
Hardware Node sleep scheduling Energy vs response time/sensing coverage
Voltage scaling Energy vs delay

Moreover, the concrete interpretation of a single performance metric may vary across differ-
ent levels. For example, delay at application layer often refers to the end-to-end time duration
for performing a specific task, e.g., gathering information across the network. At routing layer,
delay usually refers to the time duration of transporting a packet over a path between two
sensor nodes. At physical layer, delay may refer to the time duration for packet transmission
over a single link. However, link-wide delay at physical layer and path-wide delay at routing
layer also affect system-wide delay at application layer. Due to such an inherent relationship,
we do not rigorously distinguish between these different interpretations.

Based on the table, we summarize two important issues in cross-layer optimization, which
also reinforce our motivation stated in Section 1.4.1.

First, it is worth noting that these optimization techniques are not independent. In fact, the
behavior of certain techniques can change the optimization space and hence solution for other
techniques. For example, the radio sleep scheduling at MAC layer affects network topology,
which in turn impacts the routing decision at routing layer. Also, the sleep scheduling affects

channel access at MAC layer and hence signal interference at physical layer, which is referenced

24

while applying power control and rate adaptation techniques. Given such a complex inter-
relationship, it is important to understand the impact of certain techniques across various
stacks before applying it.

Second, one single performance metric observed by the users can be affected by techniques
across different layers. For example, network topology is affected by both physical layer power
control and MAC layer sleep scheduling. Also, application-level delay is co-determined by a
series of techniques, including application layer joint routing and coding scheduling, routing
layer decision, MAC layer sleep scheduling, physical layer packet transmission, and hardware
layer CPU processing. If an application-level delay constraint is imposed by the user, the up
front question to explore the energy wvs delay tradeoff at these different layers is how to break
the application-level delay constraint into sub-constraints for each individual layer. There is no
easy answer for this question unless a cross-layer optimization technique can be developed to

integrate the tradeoffs at different layers.

1.6 Research Contributions of this Thesis

The main theme of this thesis is on algorithm development and performance analysis for cross-
layer optimization for energy-efficient information processing and routing in WSNs.
While our research efforts are stemming from the general concept of information processing

and routing, this thesis covers the following three specific topics:

1. information processing within a cluster of sensor nodes (or in-cluster processing),

2. information transportation over a given multi-hop tree structure, and

3. information routing for computation-intensive applications over a general graph.

25

Besides that each of these three topics is important and challenging in itself, the composition
of them gives a complete operating flow of information processing and routing. This is the major
motivation to choose them as the research topics in this thesis.

In our research efforts towards the above topics, we are particularly interested in three
system knobs, including voltage scaling, rate adaptation, and tunable compression. While
voltage scaling and rate adaption trades the computation/communication speed against com-
putation/communication energy, tunable compression is a bridge that enables the tradeoffs
between computation and communication. We illustrate the tradeoffs that are explored by
these three system knobs in Figure 1.2. We will give detailed energy models for these three

system knobs in Chapter 2.

tunable
computation, COMPression communication
latency latency
voltage rate
scaling adaptation
computation communication
energy tunable energy

compression

Figure 1.2: Tradeoffs explored by three system knobs: voltage scaling, rate adaptation, and
tunable compression

These three system knobs are applied in the aforementioned research topics. In the first
research topic, we investigate the application of voltage scaling and rate adaptation to maximize

the system lifetime for in-cluster processing. In the second topic, we study rate adaptation for

26

minimizing the energy cost for information transporting over an existing tree. In the last topic,
we show that tunable compression can be incorporated with the construction of a routing tree
for minimizing the overall computation and communication energy in information routing.

One example of applying our research efforts is the cluster-based network scheme [30, 52,
106, 130, 129]. In this scheme, the whole network is partitioned into either static and dynamic
clusters, probably with one sensor node within each cluster designated as a cluster head. We
assume that each cluster behaves as a basic function unit where in-cluster processing is re-
sponsible for converting raw data into useful information. The processed information is then
transported back to the base station through either direct communication from cluster heads
to base station [52], or a multi-hop tree that consists of only cluster heads [106], or a general
multi-hop tree that may consist of any types of sensor nodes in the network [87, 130]. While the
construction of such an cluster-based infrastructure is beyond the scope of this thesis, we can
see that our three research topics fit well into this scheme. Moreover, the proposed techniques
are applicable for other scenarios as well.

Note that our research efforts by no means provide a complete solution for information
processing and routing. Our work is based on a relatively high model of the system. We are
not concerned about details of specific hardware to realize the system knobs, or protocols for
MAC layer scheduling and networking layer communication, or techniques for signal processing
and data compression. Our focus is to improve the energy-efficiency of the systems by assuming
that all such techniques are available. From the system stack perspective, based on where the
low level system knobs are located, our work sits between the hardware/MAC/routing layer
and application layer when voltage scaling, rate adaptation, or tunable compression are applied,
respectively.

Before proceeding to detailed description of our research efforts, we first describe the two

classes of targeting applications.

27

1.6.1 Two Classes of Target Applications

Our research is motivated by the following two classes of applications.

1.6.1.1 Real-time Information Gathering Applications

The first class of applications focuses on real-time environment monitoring. The very basic
functionality is to periodically gather certain information from the environment, such as tem-
perature and humidity. We note that many of such applications require timely delivery of the
gathered data. For example, a seismic detection system or a forest fire alarm system may re-
quire the gathered data on vibration and temperature to be processed and sent to the end user
within 1 second after the data is sensed. Hence, it is necessary to incorporate certain real-time
requirements into the design of such mission-critical applications. Specifically, we consider an
end-to-end latency constraint, which is imposed on the delay for processing and transporting
the data.

To model such a latency constraint in the above cluster-based infrastructure, we partition
the latency constraint into two pieces — one for the information processing within each cluster,
and the other for the transportation of information from clusters to the base station. For the
sake of our study, we assume that such a partition is given. Hence, we can focus on using
the voltage scaling and rate adaptation technique to explore the tradeoffs between latency
and energy cost during the course of in-cluster processing and the information transportation,
respectively. The key point is to deliver “just enough” performance in terms of latency so that
the energy cost can be minimized.

The above real-time scenario has been studied in several papers [77, 18, 21]. The epoch-based
data [77] gathering is one example in which one round of data gathering should be performed

within each epoch. In other words, the length of the epoch equals the end-to-end latency

28

constraint. Also, the realization of real-time constraint requires the use of time-synchronization

techniques, which have been studied by [38, 44, 113].

1.6.1.2 Computation-Intensive Data Streaming Applications

The second class of applications emphasizes on the processing and transportation of large vol-
ume of data, such as the monitoring of complicated manufacturing systems, video surveillance,
and video streaming. The processing of large volume of data is also possible when sensed data
are accumulated for a long time before it is transported to the base station. In these cases,
the computation cost becomes comparable to communication cost. Hence, the traditional max-
imum data compression for saving communication energy at the cost of computation energy
might be a bad choice due to overpaid computation energy. A balance between computation
energy and communication is thus desired.

One example of the above class of applications is the video monitoring of volcanos. Imagine
a set of camera-equipped sensor nodes that are placed around a volcano. The images taken by
the cameras are then needed to be transported to the base station. If the density of the camera-
equipped sensor nodes are sufficiently high, the images taken by the cameras will have large
correlation which effects joint data compression to remove the redundancy among the images
taken by multiple cameras. However, the processing of images often results high computation
energy cost. Hence, by exploiting the tradeoffs between computation energy and communica-
tion energy using tunable compression, we can find an appropriate routing scheme with joint

compression strategy for minimizing the total energy cost.

29

1.6.2 In-Cluster Information Processing

We consider the scheduling of an application graph for information processing in a collocated
cluster [46], where all sensor nodes are connected through one-hop communication. This in-
cludes the assignment of tasks onto sensor nodes, the scheduling of computation and communi-
cation tasks, and the setting of computation or communication speed of each task. We consider
a real-time scenario where a latency constraint is imposed for the whole process. The problem
is NP-hard in general.

In this problem, we are mainly dealing with in-cluster information processing, while the

routing decision is not concerned. Our contributions include:

1. A novel objective function of balancing the energy cost of all sensor nodes within the

cluster to avoid “hot spot” of the cluster and hence maximize the lifetime of the cluster.

2. The formulation of the problem using Integer Linear Programming (ILP) that provides

useful performance benchmark for small scale problems.

3. A 3-phase heuristic that achieves considerable energy conservation — up to 10x lifetime
improvement for synthesized task graphs, and up to 8x lifetime improvement for the LU

factorization algorithm and up to 9x improvement for Fast Fourier Transformation (FFT).

1.6.3 Information Transportation over a Given Tree

We incorporate rate adaptation into information transportation over a given routing substrate,
e.g., a data gathering tree, subject to a latency constraint. We assume that the data correla-
tion model among multiple source nodes is given so that the flow on each edge in the tree is

determined by certain data aggregation mechanism a priori.

30

In this problem, we assume the time and energy cost for data aggregation is negligible and
hence we focus on the adjustment of the transmission rate over the tree substrate so that the

total energy cost is minimized. Our contributions include:

1. First work to apply rate adaptation on a tree-structure network substrate.

2. Off-line optimization algorithms based on iterative numerical optimization and dynamic

programming.
3. A greedy policy based on-line protocol that relies on local information only.

4. Up to 90% energy savings achievable by using the proposed techniques in simulations,
compared to the baseline where all transmissions are performed using the highest trans-

mission rate.

1.6.4 Information Routing with Tunable Compression

Our third research effort considers the problem of constructing a tree for information processing
and routing of computation-intensive data streaming applications. We use tunable compression
to avoid over-compression of data so that a balanced computation energy vs communication
energy can be achieved.

In this problem, information processing is captured by the adjustment of compression ratio
while the information routing is determined by the constructed tree. Due to the coupling of

these two factors, the problem is NP-hard in general. Our contributions include:

1. First work to formally consider computation cost for information processing and routing.
2. A data streaming model that facilitates the application of tunable compression.

3. Optimal flow over a given path with lower bounds of flow specified for each edge on the

path.

31

4. Performance study for shortest path tree (SPT) and the minimal steiner tree (MST) in

grid deployment that indicates the important tradeoffs between these two tree structures.

5. An approximation algorithm for general graph settings based on metric approximation.

1.6.5 Summarize

Our research efforts are based on a relatively high level system models such that details about
low-level hardware knobs, MAC scheduling, networking protocols, and signal processing tech-
niques are effectively abstracted away. Specifically, our effort on in-cluster information pro-
cessing (Section 1.6.2) assumes that an application graph for information processing within a
single-hop cluster is given. Such an application graph can be used to capture various distributed
signal/image processing algorithms. Our second research effort (Section 1.6.3) assumes that a
routing tree has been set-up by, for example, any of the techniques mentioned in Section 1.5.4
and that the joint data compression techniques on all sensor nodes are given as well. We further
assume that the aggregation factor at all nodes are known a priori, implying that we know the
flow size on all edges in the tree. Our third effort (Section 1.6.4) relaxed the assumptions in
the second research effort about a given tree and compression technique. Instead, we assume
that (1) the routing tree needs to be structured from an arbitrary graph and (2) the data
compression techniques are tunable in terms of compression time and ratio. In this context, we
try to understand the inter-relationship between tunable compression and routing decision.
Regarding cross-layer optimization, we have investigated three important system knobs
in our research. Our first research effort studies the application of voltage scaling and rate
adaptation in a distributed wireless system. We address several novel challenges originated from
WSNs such as task placement constraint and packet scheduling for collision-free communication.
Our second research effort demonstrates the application of rate adaptation over a routing tree,

where the challenge is to corporate communication dependency into packet scheduling. Both of

32

these two research efforts focus on exploring the tradeoffs between energy cost and application-
level latency. Finally, our third research effort shows the integration of tunable compression
with the construction of a routing tree. This is a novel research topic that targets the tradeoff

between computation energy and communication energy.

1.7 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, we we give a list of common notations that are used throughout this thesis and
then describe the energy models for three system knobs: voltage scaling, rate adaptation, and
tunable compression. We will also demonstrate the tradeoffs that are involved in these system
knobs. In Chapters 3 to 5, we describe our three research efforts in detail. In Chapter 6, we

give concluding remarks and a summary of future directions.

33

Chapter 2

Energy Models

In this chapter, we describe the energy models for voltage scaling, rate adaptation, and

tunable compression.

2.1 Definitions and Notations

Before we describe the energy models, we first give a list of basic definitions and notations that

will be used throughout the thesis.

2.1.1 Mathematics and Graphs

Let N* denote the set of positive natural numbers, i.e., N* = {1,2,...}. We usually use i, j, k
to denote the indices of a set or an array. Given ¢ € NT | let [i] denote the set {1,2,... ,i} C NT.

Let G =< V, E > denote a graph with vertex set V' and edge set E. If G is undirected, we
use (V;,V}), or simply (4, j) to denote an edge that connects vertices V; and Vj. If G is directed,
let (V;,Vj), or simply (¢,j) denote an edge that points from V; to Vj. In this thesis, we will
often use u € V' to denote a node, and e € F to denote an edge, if the indices of nodes or edges

can be ignored from the context.

34

In the following, we define the predecessor and successor relationship for nodes and edges

in a directed graph.

Definition 1 Given two nodes Vy and Vz in a directed graph G =< V,L >, V} is a predecessor
node (or simply predecessor) of Va if there is a path from Vi to Vs, denoted as Vi < Va. We

also refer to Vy as a successor node (or simply successor) of V.

Definition 2 Given two edges Ly and Lo in a directed graph G =< V,L >, Ly is a predecessor
edge (or simply predecessor) of Ly if the ending point of Ly is a predecessor of the starting point
of Lo, denoted as L1 < Lo. We also refer to Lo as a successor edge (or simply successor) of

L.

Since general network topology is usually modeled as an undirected graph, the above pre-
decessor /successor relationship is usually applied in a specific routing substrate such as a data
gathering tree represented as a directed graph. For such a data gathering tree, the predeces-
sor /successor relationship defines the order of edges that a packet may traverse within the tree
towards the root. We will also use directed graph to model the inner-structure of an applica-
tion. In this case, the predecessor/successor relationship specifies the order of execution for the

involved tasks in the application. We will explain this in Section 2.1.3.

2.1.2 Network Topology Graph

Consider a network of sensor nodes. Given v € N*, we use V to denote the set of v sensor
nodes, i.e., V.= {V; : i € [v]}. Given ! € N", we use L to denote the set of I communication

links, i.e., L ={L; :i € [I]}.

Definition 3 An network topology graph (or simply network graph) NG =<V, L > is a graph
with vertex set V' representing the set of v sensor nodes and edge set L representing the set of

| communication links.

35

NG is undirected if the communication links are symmetric and directed if the communi-
cation links are asymmetric. Throughout this thesis, we consider symmetric communication
links only. We use (i,j) € L to denote a communication link that connects sensor nodes V;
and Vj. For the ease of presentation, the terms “sensor node”, “node”, and “vertex” are often
used exchangeably. Also, the terms “communication link”, “link”, and “edge” are often used

exchangeably. In the following, we define several special network graphs.

Definition 4 A collocated network of sensor nodes consists of a set of sensor nodes that are

connected to each other via one-hop communication.

In other words, the network graph for a collocated network is a complete graph.

Definition 5 A grid network of sensor nodes consists of a set of sensor nodes that are placed
on a grid structure, where each node can communicate to its eight neighbors (ignoring boundary

effects) through one-hop communication.

Definition 6 An arbitrary network of sensor nodes consists of a set of sensor nodes that are
randomly placed on a planar. Each node can communicate to another node within distance d

through one-hop communication, where d is given as the communication radius.

To model the energy cost for communication between any pair of sensor nodes in V', we also
associate a weight with each link in L, which reflects the energy cost for transmitting a packet
of unit size over the link. In this thesis, we will have different assumptions about the weights
according to the specific problem scenarios.

For example, in Chapters 3 and 4, we will model the weight as a function of the transmission
speed and radius, and the communication environment. In Chapter 5, we will assume that the
transmission speed is fixed so that the weight simply becomes a scalar value for each edge,
which is determined by the transmission radius and communication environment. Moreover,
in the special case of grid network in Chapter 5, we assume that the cost for transmitting a

36

packet of unit size over any communication link (either horizontal, vertical, or diagonal) is the
same.
Since the above different network topologies are used in Chapters 3, 4, and 5, we will give

detailed description of the link weights in these chapters accordingly.

2.1.3 Application Graph

Given ¢ € N, we use C to denote a set of ¢ computation tasks, i.e., C = {C; : i € [c]}. Given
q € N we use @ to denote a set of ¢ communication tasks, i.e., @ = {Q; : i € [¢]}. Since a WSN
application usually consists of a set of computation tasks and a set of communication tasks,
we often use a graph representation to abstract the dependency and inter-relationship between
the computation and communication tasks. Such a graph is referred to as an application graph,

which is defined as follow:

Definition 7 An application graph AG =< C,Q > is a directed acyclic graph (DAG) with
vertex set C' representing the set of ¢ computation tasks and edge set () representing the set of

q communication tasks.

We often use tasks to refer to both computation and communication tasks. Also, for a

" are used interchangeably. So are

communication task, the terms “sending node” and “sender’
the terms “receiving node” and “receiver”.
In the following, we slightly abuse the predecessor/successor relationship to define the de-

pendency relationship between a pair of computation/communication tasks or between a com-

putation task and a communication task.

Definition 8 Any edge Qi = (C;, C;) in an application graph defines a dependency relationship
between tasks C;, Qr, and C;, which specifies that (1) the execution of Qi cannot start until C;
is finished, denoted as C; < Qi and (2) the execution of C; cannot start until Qy is finished,
denoted as Qy < Cj.

37

Since the dependency relationship is essentially a predecessor/successor relationship, the
dependency relationship is also transitive, i.e., C; < @} and @ < C; imply C; < C;. We
refer to C; as a predecessor of C; and Cj, a successor of C;. Similarly, consider a task Cj,
with incoming edge @); and outgoing edge Q;, we have @); < Cy and C} < Qj, which imply
Q; < @;. Extending the above data dependency, the execution of a task can only be started

after it receives output from all of its predecessors, if any.

Definition 9 A computation task without any predecessors is referred to as a source task. A

computation task without any successors is referred to as a sink task.

The above definition of dependency is mainly a data dependency — the output of C; acts
as an input of C;. If C; and C; are hosted on two different sensor nodes, then it is necessary to
transmit the output of C; to the sensor node where C; is hosted before the execution of C;. If
C; and C are hosted on the same sensor nodes, data exchange is performed through memory
exchange, which has a negligible cost compared with packet transmission.

Note that we do not model control dependency with the above application graph. This is
reasonable if we abstract computation tasks at a reasonably coarse granularity and consider
the worst case execution time only. To model control dependency cause the application model
to be unnecessarily complex from a high level abstraction. In fact, application graph with data
dependency only is widely used in parallel and distributed computing [126, 48, 23] and real-time
computing [63, 42, 57, 76].

Similar to the weights in network graph, we also annotate the computation and communi-
cation loads of tasks by giving weights to tasks in the application graph. For a computation
task, the associated weight is the worst case number of CPU cycles that are needed to execute
the task. For a communication task, the associated weight is the size of the packet needed
to be transmitted. We will give more detailed description and notations of task weights in
Chapters 3, 4, and 5 respectively based on specific problem scenarios.

38

The above application graph can be used to represent both signal processing algorithm and

information processing and routing procedure. For example, the recursive, one-dimensional

Fast Fourier Transformation (FFT) algorithm is given in Figure 2.1(a) with an example task

graph of 4 points demonstrated in Figure 2.1(b).

FFT(A, w)

1. Set I = length(A)

2. If Il =1, return A

3. YO = FFT((A[0], A[2],..., A[l — 2]),w?)
4. Y = FFT((A[1], A[3],..., All —1]),w?)
5. Fori=0to!/2—-1Do

6. Vil = YO[i] + w? x YD [4]

7. Y[i+1/2] = YO[i] —w! x Y[4]

8. Return Y

(a) sequential algorithm (b) example application graph with 4 points

Figure 2.1: Fast Fourier Transformation (FFT) algorithm

Another example is the information transportation over a given routing tree substrate.

Intuitively, the structure of the application graph is identical to the structure of the routing

tree. For the illustrating task graph shown in Figure 2.2, each task executes a data aggregation

operation. Note that in general, an application graph for information transportation does not

need to have a tree structure.

The task graph for the operation of information routing without a given routing structure

is however tricky. Basically, the structure of the task graph cannot be pre-determined until

the structure of the routing tree is determined. In this case, the aforementioned task graph is

insufficient to describe the application.

39

Figure 2.2: Application graph for information transportation over a given tree

2.1.4 Performance Measurement

We are interested in several performance measurements. First of all, energy is a basic concern.
We usually use €; to denote the energy cost of either a computation task or communication
task, where i is the corresponding index of the computation or communication task in the
application graph. Since we will consider the scenario for real-time processing, we use 7; to
denote the time cost of a computation or communication task ¢. This time cost is sometimes
referred to as delay, or latency. Also, the subscription i is often ignored if it is not important
in the context.

In real-time scenarios, the accumulated time cost of tasks is often limited by certain con-
straint at application level. We refer to such a constraint as the latency constraint, denoted as
I'. Such a latency constraint is common in literature of real-time task scheduling [63, 42, 57, 76].

The notion of latency constraint is usually used together with the notion of periodicity in
real-time task scheduling. An application (may consists of exactly one task) is periodic if it
needs to be repeatedly executed every k time units, where k is defined as the period of the

application. On the other hand, an application is transient if it is executed only once. The

40

latency constraint can be applied for both periodic or transient applications. For transient
application, the latency constraint is easy to understand. For period applications, the latency
constraint is considered to be less than the application period in our case. When the latency
constraint is larger than the period, certain pipeline techniques need to be developed so that
the execution of two or more rounds of information processing and routing is overlapped with
each other, which is beyond the scope of our research.

A similar concept with periodic application in WSNs is the epoch-based system [77]. Within
each epoch, the desired system functionality (e.g., a query) need to be performed. From this
perspective, the length of the epoch can be understood as the latency constraint. Moreover, to
measure the system delay, we assume the availability of time-synchronization schemes within
the network (e.g., [38, 44, 113]).

Some other performance measurements, such as throughput, have also been studied in
literature [56]. Our research are focused on applications that require low-duty cycle, for which

throughput optimization is not a concern.

2.2 Energy Models

In this section, we will describe the energy models for the three system knobs under considera-
tion. For voltage scaling, the model is developed at the circuit switch level. For rate adaptation,
the model is developed at the physical level. For tunable compression, the model is developed
at the application level.

Please note that from the perspective of optimization at a relatively high abstract level,
we are more interested in the high-level tradeoffs enabled by the system knobs rather than the
details of low level implementation that will be presented in this section. Such tradeoffs are

often abstracted as a convex function. For example, the energy cost is usually a convex function

41

of either the computation time or the communication time. However, for practical reason, we

shall still carefully understand the details of these knobs in this section.

2.2.1 Voltage Scaling

There are three major components of power consumption for executing a task by a CMOS
integrated circuit: switching power, short-circuit power, and leakage power [25]. We focus on
the switching power that dominates the power consumption for state-of-the-art techniques.
Let V4 denote the supply voltage, feocr denote the clock frequency, Cr, denote the load-
ing capacitance, and P; denote the probability that a power-consuming transition occurs (the

activity factor). The switching power P, can be modeled as:

Py = py X Cr x Vd2d X fclock . (21)

The product of p; x Cp, is also referred to as the effective switched capacitance.

From (2.1), we observe that the power consumption increases quadratically with supply
voltage. Hence, the power consumption can be reduced by decreasing the supply voltage.
However, this comes at the expense of reduced processing speed, and hence, increased processing

time 7 which is given by:

Vaa
r=k , 2.2
“(Vaa — Vr)? 22)
where k. is a constant and V7 is the threshold voltage [25].
Based on the above models, we can see that Py, o V7, and 7 ﬁ Hence, the energy

cost € = Py, X T increases linearly with V4. In other words, the energy cost for executing a
task can be reduced at the expense of increased execution delay. In fact, the energy cost can

be modeled as a monotonically decreasing and strictly convex function of the delay.

42

Since delay is also understood as the reciprocal of the processing speed, we can also model
the energy cost of processing a task as an increasing function of processing speed [24], which is
detailed in Chapter 3.

Note that switching voltage is not free — it takes both time and energy. While most of the
techniques proposed for voltage scaling ignore this fact or assume that such time and energy
cost are absorbed in the execution cost of tasks, there are few papers that explicitly address

this cost [57].

2.2.2 Rate Adaptation

We model the transmission energy using the example of modulation scaling [98] based on the
Quadrature Ampitude Modulation (QAM) scheme [117]. Consider a communication task that
transmits a packet of s bits between two sensor nodes. Assuming that the symbol rate, Ry, is

fixed, the transmission time, 7, can be calculated as [98]:

- (2.3)

where b is the modulation level of the sender in terms of the constellation size (number of bits
per symbol).

The corresponding transmission energy can be modeled as the sum of output energy and
electronics energy, which is also determined by b. To illustrate the key energy-latency tradeoffs,

we abstract the energy cost as a function of 7 [98], denoted as w(r):

w(T) = [Cﬂ" ' (2ﬁ - 1) + Cele] -7 Ry, (2.4)

where Cy, is determined by the quality of transmission (in terms of Bit Error Rate) and the

noise power, and Cy. is a device-dependent parameter that determines the power consumption

43

of the electronic circuitry of the sender. Further, the output power, P,, and the electronic

power, P., can be modeled as follows [98]:

P, = Cy-Rs-(2°—1)and (2.5)

P. = Cue-R,. (2.6)

Note that different assumptions about the radio characteristics, including power consump-
tion and data rate, may significantly affect the analysis of various energy-saving mechanisms.
In this work, we consider the radio modules described in [93, 120]. Typically, for short-range
communication with R; = 1 Mbaud, the electronic power of the radio is approximately 10 mW,
while the output power is approximately 1 mW at 4-QAM (which is translated into 2 Mbps).
Note that the above data rate and power consumption are better than currently available ra-
dios for commercial sensor nodes that typically support data rate up to 100 Kbps with slightly
higher power characteristics, such as Berkeley motes. However, radio devices with the above
specifications are anticipated in the near future.

From the calculation of P, and P,, it can be derived that Cy, ~ 3 x 10710 and C,j. = 1078.
Further, we consider a d? path loss model for signal propagation, where d is the communication
radius. Assuming that it takes 10 pJ/bit/m? by the amplifier to transmit one bit at an accept-
able quality [52], we infer that the corresponding communication radius for 1 mW output power
is v/50 ~ 7 m (from % = 10 pJ/bit/m* x d2). In our study, we also consider one
more case of communication in WSNs with longer radius. Specifically, we set the communica-
tion range to 30 m, implying an output power of 10 pJ/bit/m” x 302 m2 x 2 x 10° bit/sec = 18
mW at 4-QAM, and consequently Ci, = 6 x 10~°. We refer to this communication scenario as

long-range communication. Note that these numbers for communication radii are for illustra-

tive purpose only — to show the different weights of C, against C,;. with respect to variations

44

in communication radius. They may vary according to different radio devices and operating

environments.
-7 -8
22< 10 1 5x 10
‘f‘b:B
|
\
150 |
= 4 >
51 \ <
] \ [}
c \ c
] \]
Y b=6 05
\
0.5t .
\ b=4
\\%} B b=2
~ 5
o1 2 3 4 5 o 2 3 4 5
transmission time duration (Sec) X107 transmission time duration (Sec) x 107

(a) Long-range communication (b) Short-range communication

Figure 2.3: Energy-latency tradeoffs for transmitting one bit

Figure 2.3 plots the energy functions with b € [2, 8] for the long and short range communi-
cation scenarios. In practice, b is typically set to positive even integers, as indicated by circles
in the figure. We can observe a 10-time energy reduction for long-range communication by
varying b from 8 to 2 and a 3-time energy reduction for short-range communication by varying
b from 8 to 4. Intuitively, it is more beneficial to explore the energy-latency tradeoffs for the
long-range communication.

Though QAM is used as an example for abstracting the energy model, the algorithms
presented in our research are extendible to other modulation schemes and techniques that can

be used to trade latency against energy, such as code scaling [7].

2.2.3 Tunable Compression

The concept of tunable compression is not new. For example, the well-known gzip program for
lossless data compression supports up to ten levels of different compression ratio, with larger

compression ratio resulting in longer compression time and hence higher energy cost [12, 17].

45

Since it is quite difficult to define a general form for characterizing the energy costs of var-
ious compressing schemes, we use a simple model that captures the principle rationale, which
states that the computation time complexity of compressing one unit data is inversely propor-
tional to the output size. Further, the energy cost is proportional to the time complexity [12].
We illustrate the above rationale using the example of gzip to compress the benchmark file
“alice29.txt” from the Canterbury Corpus [17] at 5 different levels of compression ratio (by
properly parameterizing gzip). The curve of running time vs the normalized output size over
input size is shown in Figure 2.4(a) (averaged over 20 runs on a SUN SPARC II machine). In
fact, similar compression time vs normalized output size tradeoffs are observed for a collection

of various compression techniques [12].

— comp. energy
comm. energy

e(f)

gzip -9

[

o
w
T
o
)
T

N
IS
T

o
o
normalized energy costs
o
>

compression time (Sec)
o
N
[$))

I
N
T

0.15
0.35 0.4 0.45 0.2 0.4 0.6 0.8 1

normalized output size, f flow size, f
(a) Compression ratio vs compression time for (b) Computation energy vs communication
gzip energy tradeoffs on a single link (we = 1,
v =0.1)

Figure 2.4: Energy tradeoffs by tunable compression

We define a pre-specified system parameter, v > 0 that abstracts the relative energy cost of

compressing one unit data normalized by the cost of communicating one unit data. Following

46

the above rationale and for the purpose of illustration, the energy cost of compressing a data

packet of size s to an output of size f is modeled as function

9(f) =sv(3) - (2.7)

While the term s indicates that the energy cost is proportional to input size, the term % signifies
that the energy cost is also inversely proportional to the compression ratio. We will consider
input of unit size in this thesis. Hence, (2.7) can be simplified to g(f) = %

We now illustrate the tradeoffs between computation and communication energy using the
example of a one-hop link. Let e = (u, v) denote the link, where u generates one unit data that
needs to be transmitted to v after appropriate compression by u. Let f denote the output data
size, i.e., the flow over e, which is lower bounded by the entropy of the unit of data, denoted as
p. Let w, denote the cost of transmitting a unit data packet over e. The overall energy costs,

denoted as €(f) can be modeled as a function of f:

e(f) = } +fwe . (2.8)

We plot €(f) in Figure 2.4(b) with w, = 1, v = 0.1 and varying f from 0.1 to 1 (we omit
the boundary effect of p as for now). Intuitively, w. = 1 means that to transmit one unit data
costs one unit energy. Since the energy of transmitting one bit is typically around the energy
of executing 1000 instructions for contemporary hardwares [93], the realistic meaning behind
v = 0.1 is that around 100 instructions need to be executed for generating each bit in the
output.

Clearly, €(f) is convex and the minimum is achieved when €'(f) = 0, where €'(f) is the

first derivative of e(f). Let fo denote the desired flow with €'(fo) = 0. By simple algebra

47

manipulation, we have fy = \/g . Considering the boundary effects of p, the optimal value of

f equals foif € (p) <0and €(1) >0, or pife'(p) >0,0r 1if €(1) <O0.

48

Chapter 3

Information Processing within a Collocated Cluster

In this chapter, we investigate the application of voltage scaling and rate adaptation for

information processing in a collocated cluster with latency constraint.

3.1 Overview

While information processing in wireless sensor networks is typically distributed throughout the
network, a practical strategy is to organize sensor nodes that are geographically close to each
other into small groups with each group behaving as a basic unit for collaborative processing of
gathered information. For instance, in a target tracking application, up to thousands of sensor
nodes are dispersed over a specific area of interest. The sensor nodes are usually organized
into clusters [52, 130] with each cluster consisting of tens of sensor nodes. Distributed signal
detection and collaborative data processing are performed within each cluster for detecting,
identifying, and tracking vehicles. Some of the operations involved in such data processing

include the LU factorization [28] and the Fast Fourier Transformation (FFT) [29].

49

In this chapter, we consider clusters that each consists of a collocated network of sensor
nodes. We assume that all sensor nodes are equipped with both voltage scaling and rate
adaptation. Also, multiple channels are available for communication within the cluster.

The information processing within the cluster is abstracted as a periodic application graph
with delay constraint. We use four components to specify the resulting execution of the applica-
tion, including (1) the assignment of computation tasks onto sensor nodes and communication
tasks onto channels, (2) the voltage settings of computation tasks, (3) the rate setting of com-
munication tasks, and (4) the scheduling of computation and communication tasks. We refer
to the combination of instantiations of the above four components as a task allocation.

Besides the latency constraint, we consider two more constraints. The first one is the
exclusive access constraint, which specifies that a non-preemptive scheduling policy is employed
by each sensor node and each wireless channel. Also, at any time, a sensor node can receive
or send data by using at most one channel. The underlying network protocol is assumed to be
capable of scheduling a communication task over a specified channel according to the start and
finish time of the task. Such a scheduling policy requires coarse-level bandwidth reservation
mechanisms, which can be provided by, for example, a TDMA protocol. Moreover, we consider
the task placement constraint, which is typically required when certain tasks for sensing the
raw data must be allocated onto different sensor nodes.

Our general goal is to find a task allocation such that the lifetime of the cluster is maximized.
To realize such a goal, we propose an energy-balanced execution scenario such that the maximal
energy cost among all sensor nodes is minimized, subject to the above latency constraint,

exclusive access, and task placement constraints.

30

3.1.1 Our Contributions

The idea of energy-balanced task allocation for information processing with a cluster of collo-
cated network in WSNs is proposed. As we shall see in Section 3.2, most of the previous efforts
in energy-aware task allocation or resource management try to minimize the overall energy cost
of the system. This strategy may not be suitable in the context of WSNs, since each sensor
node is equipped with its own energy source. Moreover, for event-driven systems, applications
often need to be executed after the system has been working for sometime. In such a case,
an energy-balanced task allocation should also consider the fact that the remaining energy can
vary among sensor nodes.

To the best of the authors’ knowledge, this is the first work for task allocation in WSNs that
considers the time and energy costs of both the computation and communication tasks. We first
present an integer linear programming (ILP) formulation of our problem. The optimal solution
of the problem can be obtained by using a commercial software package such as LINDO [72],
though the running time of such a software can be large. Hence, we propose a polynomial time
3-phase heuristic.

We first present simulation results that only consider voltage scaling. Our simulation results
show that for small scale problems, up to 5x lifetime improvement is achieved by the ILP-
based approach, compared with the case where no voltage scaling is used. Also, the 3-phase
heuristic achieves up to 63% of the system lifetime obtained by the ILP-based approach. For
large scale problems, the 3-phase heuristic achieves up to 3.5x lifetime improvement when only
voltage scaling is used. By incorporating rate adaptation, up to 10x lifetime improvement
was observed. Simulations were also conducted for application graphs from two real world
problems — LU factorization and FFT. We observed a lifetime improvement of up to 8x for the

LU factorization algorithm and up to 9x for FFT.

51

3.1.2 Chapter Organization

We discuss the related work in Section 3.2. The energy-balanced task allocation problem is
defined in Section 3.3. The ILP formulation of the problem is given in Section 3.4. The 3-
phase heuristic is described in Section 3.5. Simulation results are demonstrated in Section 3.6.

Finally, we give concluding remarks in Section 3.7.

3.2 Related Work

Extensive research efforts have studied the problem of energy-efficient task allocation and
scheduling with voltage scaling in uni-processor real-time systems, including [10, 57, 104, 127].
Recently, research interests have been shifted to multi-processor systems. A list-scheduling
based heuristic is proposed in [49], to dynamically recalculate the priority of communicating
tasks. In [76], static and dynamic variable voltage scheduling heuristics for real-time heteroge-
neous embedded systems are proposed. An approach based on critical-path is used for selecting
the voltage settings of tasks. However, both [49] and [76] assume that the task assignment is
given. A similar problem to the one studied in this paper is investigated in [135]. A two-phase
framework is presented to first determine the allocation of tasks onto processors and then the
voltage settings of tasks using convex programming. In [138], a dynamic processor voltage
adjustment mechanism for a homogeneous multi-processor environment is discussed. However,
the time and energy costs for communication tasks are not addressed in any of [49], [135],
and [138].

The goal of all the above works is to minimize the overall energy cost of the system. While
such a goal is reasonable for tightly coupled systems, it does not capture the nature of WSNs.
The reason is that to minimize the overall energy cost can lead to heavy use of energy-effective

sensor nodes, regardless of their remaining energy. The consequent short lifetime of such sensor

92

nodes will very likely hinder the system from delivering required performance. This weakness
is a major motivation of the proposed energy-balanced task allocation.

Our work considers the energy and time costs of both computation and communication
tasks. As indicated by several researches, wireless communication is a major source of energy
dissipation in WSNs. By incorporating techniques such as rate adaptation, we can greatly
improve the energy-efficiency of the system.

Energy-balanced task allocation bears some resemblance to load-balance in distributed com-
puting. However, the communication tasks over the same wireless channel need to be serialized
such that run-time contentions can be avoided. The serialization imposes new challenges that
distinguish our problem from most of the existing works for load-balance or real-time scheduling

in distributed systems.

3.3 Problem Definition

3.3.1 System Model

Let v denote the number of sensor nodes. Let NG =< V,L > denote the network graph
for the cluster, where V"= {V; : i € [v]}. Since we are considering collocated network, NG
is a complete graph. We assume that all sensor nodes in V have the same processing and
communication capabilities. Let K denote the number of communication channels that are of
the same bandwidth. Let R; denote the remaining energy of V;, which can vary from each
other.

We consider discrete voltage settings for sensor nodes. This is realistic as most commercial
processors do not provide continuous voltage scaling. Specifically, each sensor node is equipped
with d discrete voltage levels, denoted as {D; : i € [d]} in decreasing order. As discussed in

Section 2.2.1, for processing a specific task, each voltage level corresponds to a processing speed

33

in terms of the number of cycles per unit time. This processing speed in turn determines the
processing delay and energy cost. More importantly, the energy cost is a convex and mono-
tonically decreasing function of processing delay. Depending on the task size and instruction
composition, such a function may vary for different tasks

We also consider discrete transmission rate for wireless communication. This is practical
since the modulation setting in (2.4) is usually set to positive even integers in real systems.
Specifically, the radio on each sensor node can transmit by choosing one level from a list of f
modulation levels {F; : i € [f]} in decreasing order. Based on our discussion in Section 2.2.2, for
a given packet of fixed size, each rate level corresponds to a transmission delay and energy cost.
For ease of presentation, we ignore the non-monotonicity discussed in Section 2.2.2. In other
words, we assume that the output power always dominates the circuitry power. Hence, the
energy cost for sending the packet is a convex and monotonically decreasing function of trans-
mission delay, while the energy cost for receiving a packet is a linear function of transmission
delay. These functions may vary for different links depending on the packet size.

In the above discussion, we have emphasized high level models that abstract the tradeoffs
between energy and delay. Although technical details behind these model can be found in
Section 2.2, it suffices to understand the problem and approach in this chapter simply based
on the above high level models.

Regarding the exclusive access constraint, we assume that a non-preemptive scheduling
policy is employed by each sensor node and each wireless channel. In other words, the time
duration scheduled for different computation (communication) tasks over the same sensor node
(wireless channel) cannot overlap with each other. Moreover, the underlying communication
protocols are assumed to be capable of scheduling communication tasks according to the start

time of each task in order to avoid run-time contentions.

54

For ease of analysis, we assume that the processors and radios are completely shut down
in idle state. We note that to shut down the processor/radio whenever idle may not always
save energy, since the energy for shutting down and restarting the radio can be larger than the
energy cost for keeping the radio on during the idle state. Methods for determining the optimal
working mode during idle state for energy savings is beyond the scope of this thesis and can be
found in [109]. We also assume that ultra-low power paging or wakeup radios are available for
waking up communication peers if necessary. Such radios are available on commercial sensor
nodes, including Berkeley PicoRadio [136] and Sensoria products [102]. The time and energy

cost of such radios are usually negligible.

3.3.2 Application Model

We consider a periodic application with latency constraint I" for each execution of the applica-
tion. We use the application graph AG =< C, Q) > to represent the intra-relationship between
the computation and communication tasks, where C' = {C; : i € [c]} is the set of ¢ computation
tasks and @ = {Q; : i € [g]} is the set of ¢ communication tasks.

For most applications in WSNs, the source tasks are used for sensing or gathering raw data.
Hence, it does not make sense to place more than one source task onto the same sensor node.
We define a task placement constraint as that no two source tasks can be assigned to the same
sensor node. Our model and approach can also be extended to handle the general case that
any pair of tasks must be or must not be assigned to the same sensor node.

For each task C; € C, let W; denote its workload in terms of the worst-case number of
required computation cycles. Based on our discussion in Section 3.3.1, we can calculate the
processing delay and energy cost for C; at each voltage level. Let 7;; denote the processing

delay of C; at the j-th voltage level, with €;; denoting the corresponding energy cost.

35

We assume that all communication tasks are performed by transmitting exactly one data
packet with variable size. For each task @); € @, let weight s; denote the size of the packets to
be transmitted. Different edges incident from the same node may have different weights. For a
communication task @; = (j, k), if both C; and C} are assigned to the same sensor node, the
time and energy cost of @); is zero. Otherwise, let Ti’j denote the time cost of (); when the j-th
modulation level is chosen for the transmission, with €;; denoting the corresponding sending
energy and €;; denoting the corresponding receiving energy.

All the above values of 7, €;5, 7;;, €;; and €]; can be calculated based on the above system

and application models. Hence, we assume they are given a priori for our problem.

3.3.3 Task Allocation

Based on the above system and application models, a task allocation is defined as (1) the
assignment of computation tasks onto sensor nodes and communication tasks onto channels,
(2) the voltage settings of computation tasks, (3) the rate setting of communication tasks, and
(4) the scheduling of computation and communication tasks. Each task can be assigned to
exactly one sensor node with a fixed voltage setting. Also, each communication task can be
assigned to exactly one channel with a fixed rate level. An allocation is feasible if it satisfies
the latency, exclusive access, and task placement constraints.

The system lifetime is defined as the time duration from the time when the application
starts execution to the time when any sensor node in the cluster fails due to depleted energy.
A general solution to maximize the system lifetime is to allow variable task allocations in
different periods. Consequently, the energy cost for each sensor node may vary in different
periods. However, due to the high complexity raised by such a solution, we assume that the
task allocation remains the same for all application periods. That is, the behavior of the system

repeats for each period and every sensor node spends the same energy duration each period.

96

Let &; denote the energy cost of V; € V during each application period. Given an allocation, the
system lifetime (in number of periods) can be calculated as mini{L?—jJ}. A feasible allocation
is optimal if the corresponding system lifetime is maximized among all the feasible allocations.

Note that a more complex definition of the system lifetime would be the time period from
the beginning of the application execution to the time when not enough sensor nodes are alive
to deliver required performance. For example, it is shown that to perform the LOB algorithm at
an acceptable accuracy requires at least three sensor nodes. However, such a definition is quite
application-specific. Thus, a simple but general definition of the system lifetime is adopted in
this thesis. Intuitively, to optimize the system lifetime with the above more complex definition,
we may recursively apply the proposed optimization approaches to the resulting systems after
sensor nodes die out. Now, our task allocation problem can be informally stated as:

Find an allocation of a set of communicating tasks onto a single-hop cluster that minimizes
the mazimal energy cost among all sensor nodes during each application period, normalized by

their remaining energy.

3.4 Integer Linear Programming Formulation

In this section, we present an ILP formulation of our task allocation problem that captures the
behavior of the system during one application period. We first list the notations used in the
formulation in Table 3.1.

To capture the relative order imposed by the precedence constraints among tasks, we define
the Constraint set 1 shown in Figure 3.1. It is easy to verify that the exclusive access constraint
for tasks with precedence constraints is also enforced by Constraint set 1. However, for tasks
that do not have precedence constraints between them, an extra set of constraints are needed
(Constraint set 2 in Figure 3.2) to enforce the exclusive access constraint. In addition, the task

placement constraint is captured by the Constraint set 3 in Figure 3.2.

57

Table 3.1: Table of notations for ILP formulation

r latency constraint for each execution of the application
Tij, €ij time and energy costs of executing task C; using voltage level V;
T.;»€;, | time and energy costs of communication task @; = (j, k), if C; and C}, are not

€1 assigned to the same sensor node and the j-th modulation level is used for

the transmission

allb no dependency relationship exists for tasks a and b
{zi;} a set of 0-1 variables such that x;; equals one iff C; is assigned to V;
{yi;} a set of 0-1 variables such that y;; equals one iff the voltage of Cj is set to V;
{zi;} a set of 0-1 variables such that z;; equals one iff @); is assigned to the j-th

channel

{ui;} a set of 0-1 variables such that u;; equals one iff Q); is transmitted at the j-th
modulation level
{rij } a set of 0-1 variables such that r;; equals one iff C; and C; are assigned to the
same sensor node
{sij} | aset of 0-1 variables such that s;; equals one iff (; and @); are assigned to the
same channel

(i)} a set of real variables indicating the time when C; starts execution
{6()} a set of real variables indicating the time when C; completes execution

(1)}

)}

a set of real variables indicating the time when @); starts transmission
a set of real variables indicating the time when (); completes transmission
{pij} a set of 0-1 variables such that p;; equals one iff the execution of C; finishes
before C; starts
{tij} | a set of 0-1 variables such that ¢;; equals one iff the transmission of (); finishes
before (); starts

The complete ILP formulation is given in Figure 3.3, where £ is an auxiliary variable. In
the figure, the term » . - {zi >_;(vij€i;)} gives the energy cost for computation tasks on Vj.

The term EQ,—:(mb)eQ{xak(l —Tpk) Zj(uijefj) +(1—Zak)Tok Ej (u,-je{j)} gives the energy costs

for all the communication tasks that involve V.
Clearly, the presented formulation is non-linear. It can be transformed into an ILP formu-

lation by standard linearization techniques [122]. We omit the details of linearization in this

thesis.

3.5 Heuristic Approach

In this section, we describe an efficient 3-phase heuristic for solving the task allocation problem.

Initially, we set the voltage and rate levels for all tasks to the highest option. In the first phase,

98

Constraint set 1:

VC; € C
> Tij =1 // every task can be assigned to exactly one
// sensor node
> v =1 // every task can be executed using exactly one
// voltage level
a(i) > maxg,—(jHeqid(l)} // C; starts execution after receiving all inputs
B(i) = ali) + 32, (i;Tij) // execution time of C; depends on the voltage
// level
vC;, Cj eC
rij =1iffVE=1,... v, x5 = x5 [/ rij equals one if C; and C; are assigned to
// the same sensor node
VQ; = (a,b) € Q
iz =1 // Qi can be assigned to exactly one channel
dojui =1 // Qi can be transmitted at exactly one rate
(i) > B(a) // Q; starts transmission after C,, finishes

6(¢) = y(4) + 322, (uij7i;)(1 —rap) // the transmission time of @; depends on the
// locations of C, and Cj and its rate
for any source tasks C;

a(i) >0 // all source tasks can start execution at time 0
for any sink task C;
B(i) LT // all sink tasks must complete within the

// latency constraint

Figure 3.1: Constraint sets 1 for the ILP formulation

the tasks are grouped into clusters with the goal to minimize the overall execution time of
the application. In the second phase, task clusters are assigned to sensor nodes such that the
highest energy cost among all sensor nodes, normalized by their remaining energy, is minimized.
In the last phase, the system lifetime is maximized by lowering the voltage levels of tasks. The
details of the heuristic are as follows.

Phase 1: A task cluster is defined as a set of tasks assigned to the same sensor node with
a specific execution order. Communication between tasks within a cluster costs zero time
and energy. In this phase, we assume an unlimited number of sensor nodes, implying that
the number of clusters is also unlimited. The main purpose of this phase is to eliminate

communication tasks in order to reduce the overall execution time of the application.

39

Constraint set 2:
VC;, C; € C, such that ¢ # j and C4|C}

pij = 1 —pjs // pij is the inverse of pj;
a(j) > pijrii B(0) // if C; and C; are assigned to the same node,
// C; completes before C; starts execution
[/ i pij =1
VQi, Qj € @, such that Q; = (a,b), // Communiation tasks from or to the same
Q; = (a b'), either a = a’ or b =10 // computation task
tij =1—tj // ti; is the inverse of ¢;;
Y(J) > tii (1 = 7ap) (1 — /b)6(4) // @Q; completes before @); starts transmission
/] ifft; =1
VQi,Q; € E, such that Q; = (a,b), // Communication tasks between two different
Qj=(a',b),a#a,b#V, and Q;]|Q; // pair of computation tasks
tij =1—tj5 // ti; is the inverse of ¢;;

sij =1t Vk=1,... | K, 2z = zjr, [/ sij equals one if Q; and @), are assigned to
// the same channel
Y(J) > tij(1 = rap)(1 — rarpr)s450(3) // if Q; and @ are assigned to the same channel,
// Qi completes before @); starts transmission
/] it =1
Constraint set 3:
VC;, C; € C, such that C; and C; are source tasks and ¢ # j
rij =0 // any two source tasks cannot be assigned to the same sensor node

Figure 3.2: Constraint sets 2 and 3 for the ILP formulation

The idea of Phase 1 is similar to the algorithm proposed in [96] (pp. 123 - 131). However,
traditional approaches for task clustering usually assume a full connection among processors
such that communication tasks can be parallelized, whereas in our problem, communication
tasks over the same channel must be serialized. Thus, a new challenge is to select a policy
for the serialization that facilitates the reduction of the execution time of the application. We

use a simple first-come-first-serve policy to order the communication tasks ready at different

Minimize £
Subject to WV, €V Zcieclritx Wi}

Ry
20;=(amyee tTak(I—aer) 3o (wijei;)+(1—zar)zor 20; (wijei;)}
i i S ((:

and Constraint sets 1, 2, and 3

Figure 3.3: ILP formulation for the energy-balanced task allocation problem

60

times. Communication tasks ready at the same time (such as those initiated by the same
task) are executed in a non-decreasing order of their communication loads. Nevertheless, more

sophisticated policies are also applicable.

1. Each task is assumed to constitute a cluster by itself

2. Set @ as the list of communication tasks in a non-decreasing order of their weights

3. & + Travese()

4. While @ is not empty Do

5 Remove the first edge from @, denoted as (7, j)

6 ®' « Traverse() as if CL(i) and CL(j) are merged

7 If & < ® and to merge CL(7) and CL(j) does not violate the
task placement constraint

8. Merge C'L(i) and CL(j)

9. b +— P

10.If & > T', Return failure

Figure 3.4: Pseudo code for Phase 1

The pseudo code for Phase 1 is shown in Figure 3.4. In the code, ® denotes the overall
execution time of the application and C'L(7) denotes the cluster that contains task C;. Initially,
every task is assumed to constitute a cluster by itself. We then examine all the edges in a non-
increasing order of their weights. For each edge, (i, 7), if the execution time of the application
can be reduced by merging C'L(i) with CL(j) without violating the task placement constraint,
we perform the merge. Otherwise, C; and Cj remain in two different clusters. In lines 3 and 6,
the function Traverse() is called to traverse the DAG in order to determine the schedule of the
tasks and hence ®.

The pseudo code for Traverse() is shown in Figure 3.5. In the code, we maintain a queue
of tasks, A, that stores all the ready computation or communication tasks in their expected
execution order. We also maintain a timestamp for each task cluster that indicates the finish
time for all scheduled tasks within the cluster. Similarly, we maintain a timestamp for each
channel that indicates its nearest available time. The timestamps are used to schedule the

computation and communication tasks in lines 7, 13, and 14. In lines 9 and 14, the timestamps

61

are updated based on the execution time of the scheduled tasks. The actions in lines 17 and

18 are to ensure that the radio can be tuned to at most one channel at any time.

1. Initialize A

2. Set the timestamps for all task clusters and channels to zero
3. Append all source tasks to A with ready time set to zero

4. While A is not empty Do

5. Remove the first task from A

6. If the removed task is a computation task, denoted as C;

7. Set a(i) < max{ready time of C;, timestamp of C'L(i)}

8. Set ((i) to the expected completion time of C;, i.e., 5(i) < a(i) + 7

9. Set the timestamp of C'L(7) to 3(i)

10. Insert all communication tasks initiated by C; into A with ready time set to 8(i),
in a non-decreasing order of their communication loads

11. Else

12. Let Q; = (a,b) denote the removed communication task

13. Find the channel with the smallest timestamp, say the j-th channel

14. Set (i) + max{ready time of @);, timestamp of the j-th channel}

15. Set §(i) to the expected completion time of @, i.e., §(i) + (i) + 7/,

16. Set the timestamp of the j-th channel to 6(3)

17. Set the ready time of any unscheduled communication tasks from C, to d()

18. Set the ready time of any unscheduled communication tasks to Cy to §(i)

19. If all the communication tasks to Cj have been scheduled

20. Insert Cj into A with ready time set to (i)

21.Return the largest timestamp among all clusters

Figure 3.5: Pseudo code for function Traverse()

Phase 2: In this phase, we assign the task clusters from Phase 1 onto the actual sensor nodes in
V. Note that multiple clusters can be assigned to the same sensor node. Based on the contained
tasks and the corresponding communication tasks, we first calculate the energy cost of each
cluster. Let m denote the number of task clusters obtained from Phase 1. Let 7 = {m; : i € [m]}
denote the list of all tasks clusters and &; denote the energy cost of m;. The normalized energy
cost (norm-energy for short) of a sensor node is given as the sum of the energy cost of the
clusters assigned to the sensor node, normalized by the remaining energy of the sensor node.
The pseudo code of Phase 2 is shown in Figure 3.6. Initially, 7 is sorted into a non-increasing

order of energy cost of clusters. Then, for each cluster in 7, we calculated the norm-energy of

62

every sensor node as if the cluster is assigned to the sensor node (called ezpected norm-energy).
We then assign the cluster to the sensor node that gives the minimal expected norm-energy. In
the code, function TraverseAssigned() is used to find the execution time of the application based
on the resulting assignment. Compared with Traverse(), the modification in TraverseAssigned()
is that in line 7 of Figure 3.5, each computation task is scheduled on the sensor node that it is

assigned to. Thus, timestamps are maintained for all sensor nodes, instead of task clusters.

1. Sort 7 in a non-increasing order of the energy cost of clusters

2. While 7 is not empty Do

3. Choose the first element, my, in 7

4 Calculate the expected norm-energy for each sensor node (set to infinity if two
source tasks are assigned to the same sensor node)

Assign 7; to the sensor node that gives the minimal expected norm-energy
Update the norm-energy of the sensor node

. Remove 7 from 7

. ® < TraverseAssigned()

. If ® > T', Return failure

Figure 3.6: Pseudo code for Phase 2

Phase 3: The voltage levels of computation tasks and the rate level of communication tasks
are adjusted in this phase with the goal to maximize the system lifetime. An iterative greedy
heuristic is used (shown in Figure 3.7). Let £ denote the maximum of the norm-energy among all
sensor nodes. The sensor node that determines & is called the critical node. In each iteration,
we find the task such that by lowering its current voltage level to the next level, £ can be
decreased the most. The increased latency caused by lowering the voltage or rate level is added
to ®. Since the schedule of tasks can be changed by the latency increment, ® is re-computed
by traversing the DAG every time it reaches I' (in line 15).

To do so, for each V; € V, we create a list of computation and communication tasks that
involve V;, denoted as T;. For each task in ¢; € T;, we also associate two quantities to ¢; that

indicate the reduction in energy cost and increment in latency if the voltage or transmission

63

rate of ¢; is lowered to the next level. Let ed; denote the reduction in energy and td; denote

the increment in latency. Also, let ED; denote the list of ed;’s for all tasks in Tj.

1. For each V;, sort ED; in a non-increasing order

2. Do

3. 11

4 Let V,. denote the critical sensor node

5. While i < |ED,| Do

6. Select the i-th component in ED,.; let a denote the corresponding task in 7;.

7 If®+td, >, i=0+1

8. Else

9. b +— D +td,

10. If a is a computatin task

11. Lower the voltage level of a to the next available option

12. Else

13. If to lower the modulation level of a to the next available option
does not increase £

14. Lower the modulation level of a to the next available option

15. Elset+i+1

16. If any voltage or modulation scaling is performed

17. Update ed, and td,; resort ED,. if necessary

18. Find the new critical sensor node, V,.; update £

19. Ifr #£0/

20. rerii+1

21. ® + TraverseAssigned()

22.Until £ can not be reduced any more

Figure 3.7: Pseudo code for Phase 3

One concern is that to decrease the transmission energy at the sender, we actually increase
the receiving energy at the receiver. Thus, in lines 13 and 14 of Figure 3.7, we ensure that the
modulation scaling is performed only when the increase in the reception energy does not cause
the value of € to increase. By doing so, our heuristic can handle the situation in highly dense
WSNs, where the receiving energy is comparable with the sending energy.

Time Complexity Analysis: In Phase 1 (Figure 3.4), the While iteration is executed ¢
times (recall that ¢ is the number of communication tasks). Function Traverse() in line 6 takes
O(c+q) time (recall that ¢ is the number of computation tasks). Thus, Phase 1 needs O(g(c+q))

time. In Phase 2 (Figure 3.6), the ordering in line 1 takes O(mlogm) time (recall that m is

64

the number of clusters obtained after Phase 1). The outer iteration is executed m times. The
results of v possible assignments are compared in line 5 (recall that v is the number of sensor
nodes). The traverse in line 8 takes O(c+q) time. Hence, Phase 2 takes O(m logm+vm+c+q)
time. In Phase 3 (Figure 3.7), the sorting in line 1 takes O((c+ ¢) log(c+ ¢)) time. The number
of voltage switching in line 11 is bounded by dc (recall that d is the number of voltage options).
The number of rate switching in line 14 is bounded by fgq (recall that f is the number of
available rate options). To update ED, in line 10 needs O(log(c + q)) time. Let ¢ denote the
number of times for calling TraverseAssigned() in line 15. The time complexity of Phase 3 is
O((c+q)log(c+q) + (de+ fg)log(c+q) + ¢(c+q)) = O(de+ fq) log(c+q) + ¢(c+q). Although
¢ equals dc+ fq in the worst case, it was observed in our simulations that ¢ is usually less than
3.

Thus, the overall time complexity of the heuristic is O(g(c + ¢q) + (mlogm +vm +c+q) +
(de+ fq)log(c+ q) + p(c + q). Since m < ¢ and ¢ < dc+ fq, the worst case time complexity
can be simplified as O((dc+ fq)(c+ ¢ +log(c+q)) + (¢ +v)c) in the worst case. Assuming that
the number of voltage and rate options are fixed for given sensor node hardware, the running
time scales quadratically with number of tasks and linear with number of sensor nodes.

An Illustrative Example: We illustrate the execution of the above heuristic through a simple
example. We assume a cluster of 3 sensor nodes connected by 2 channels. Each sensor node
have two voltage levels, Dy, and D;, with the speed for D} equal to 1 and the speed for D; equal
to 0.3. We assume that rate adaptation is not available and it costs one time and energy unit for
transmitting one data unit over any channel. The application graph is shown in Figure 3.8(a),
with each circle representing a task. The number close to each circle is the required workload,
while the number on each edge is the weight of the edge. The time and energy costs for
executing tasks at the two voltage levels are given in Figure 3.8(b). We assume that ' = 250

time units.

65

task | time cost || energy cost
Dy | D Dy, D
Cy | 10| 33 20 6
Cy | 60 | 199 || 120 | 36
Cs | 10 | 33 20 6
Cy | 10 | 33 20 6
Cs | 20 | 66 40 12
Ce | 10 | 33 20 6
Cy | 10 | 33 20 6

(a) application graph

(b) time and energy costs for executing

tasks at voltage levels Dy and Dy

Figure 3.8: An application example

The clustering steps in Phase 1 is shown in Figure 3.9.

In this phase, the volt-

age levels of all tasks are set to Dj. The sorted edge list with respect to edge weights

is {(Cy,Cs), (C1,Cs),(C3,C6), (Cs,Cr), (Cz,C), (Cs,Cs), (C1,C3)}. The table in Table 3.2

traces the execution of the algorithm, where ®; is the execution time of the application at the

completion of step i. The sub-figures (a) through (e) in Figure 3.9 correspond to the application

graph at the completion of steps 0, 1, 2, 3, and 5, respectively. The clusters are marked with

polygons in dash line. Note that in steps 6 and 7, the clustering is not performed due to the

task placement constraint.

Table 3.2: Trace of clustering steps in Figure 3.9

step i | edge examined | L if clustering | clustering? | ®;
0 145
1 (Cy,Cp) 135 yes 135
2 (C1,C2) 120 yes 120
3 (03, 06) 100 yes 100
4 (Cs,C7) 100 no 100
5 (Cs,C7) 80 yes 80
6 (05, 06) no 80
7 (Cl, 03) no 80

During Phase 2, we first calculate the energy costs for each cluster — 190 energy units for

cluster m; = {C4,C5,C7}, 100 for the cluster my = {Cs5, Cy, Cs}, and 50 for cluster 73 = {C5}.

66

30

&

Figure 3.9: Clustering steps for the application in Figure 3.8

Since the remaining energy for the three sensor nodes are the same, we simply assign 7; to Vp,
ms to Vo, and w3 to V3.

Finally, we adjust the voltage levels of tasks. Since V; is the critical node, we first set the
voltage level of Cs to V;, which reduces £; to 106 and increases ® from 80 to 219. Next, we set
the voltage level of Cy to V;, which further decreases & to 92 and increases ® to 242. After
this step, the critical node becomes V5 with & = 0.1. Since the latency constraint is 250, our
heuristic terminates.

In the above example, we decreases the norm-energy of the critical sensor node from 0.19

to 0.1, implying a system lifetime improvement by a factor around 2.

67

3.6 Experimental Results

A simulator based on the system and application models presented in Section 3.3 was developed
to evaluate the performance of our approach using application graphs from both a synthetic ap-
proach and real world problems. The goals of our simulations are (1) to measure and compare
the performance of the 3-phase heuristic against the ILP-based approach; and (2) to evalu-
ate the impact of the variations in several key system parameters on the performance of the
heuristic, including the tightness of the latency constraint, the relative time and energy costs
of communication tasks compared with computation tasks, and the number of voltage levels.

The evaluation metrics are based on the system lifetime obtained by different approaches.
Let LT, p and LT}, denote the system lifetime obtained by the ILP-based approach and the
3-phase heuristic, respectively. In addition, let LT,,,, denote the system lifetime obtained by
assuming that no voltage or modulation scaling is available (i.e., every sensor node runs and
transmits data at the highest speed). Since we do not have a stand alone approach to obtain
LT,qw, LT,q was calculated based on the value of £ obtained after phase 2 of the 3-phase
heuristic.

Unless otherwise stated, all the data presented in this section is averaged over more than

100 instances so that a 95% confidence interval with a 10% (or better) precision is achieved.

3.6.1 Synthetic Application Graphs

We first show a set of results where only voltage scaling is considered. This is followed by
results that incorporate rate adaptation.

Experimental Procedure: The structure of the application graph was generated using a
method similar to the one described in [35]. The only difference is that we enforce multiple

source tasks in the generation of the DAG.

68

According to Rockwell’s WINS node [123], the power consumption of an Intel StrongARM
1100 processor with 150 MIPS is around 200 mW. This implies that the time and energy costs
per instruction are around 5 nSec and 1 nJ. Also, the power of the radio module used in WINS
is 100 mW at 100 Kbps, implying that the time and energy costs for transmitting a bit are
around 10 uSec and 1 pJ. In the following, we set the parameters for our simulator such that
the time and energy costs for computation and communication tasks roughly follow the above
numbers.

We set the maximum computation speed of each sensor node to 102> Mcps (million cycles
per second) and the minimum speed to 0.3 x 10®> Mcps. It is assumed that other levels of
computation speed are uniformly distributed between the maximum and minimum speeds.
The computation requirements of the tasks followed a gamma distribution with a mean value
of 2x10° and a standard deviation of 10°. From [24, 80], the power consumption of the processor
can be modeled as a polynomial function of processing speed, g(SP) of at least degree 2, where
SP is the speed of the processor. Hence, we set the power function of task C; to be a; - (%)bi,
where a; and b; were random variables with uniform distribution between 2 and 10, and 2 and
3 [80], respectively. For example, suppose a; = b; = 2. Then, to execute a task of 2 x 10°
instructions costs 2 mSec and 4 mJ in the highest speed, and 6.7 mSec and 1.2 mJ in the lowest
speed.

The time and energy costs of communication tasks are determined by the number of data
units to transmit and the values of 7 and €. Based on the radio characteristics for WINS, we
assume that the time for transmitting one bit is 10 uSec and the corresponding energy cost is 1
1J. To focus on the main issues, we set the startup energy cost of the radio to be zero. To study
the effect of different communication load with respect to the computation load, the number of

bits per communication task follows a uniform distribution between 200CCR(1 £ 0.2), where

CCR (communication to computation ratio) is a parameter indicating the ratio of the average

69

execution time of the communication tasks to that of the computation tasks. Intuitively,
a larger value of CCR implies a relatively heavier communication loads compared with the
computation loads. Note that by varying CCR, we abstract not only the variations in the
amount of transmitted data, but also the variations in the relative speed of computation and
communication devices. In our simulations, CCR was varied within [0,20]. In the above
distribution, the coefficient is set to 200 so that when C'C'R = 1.0, the average time for executing
either a task or a communication activity equals 2 mSec, which is also the average execution
time for a computation task at the highest processing speed.

The period of the application, I', was generated in the following way. We first define the
distance of a node in the application DAG as the number of edges in the longest path from
the source to the node. Nodes are then divided into layers, with nodes in each layer having
the same value of distance. Since the average time to execute a task in the highest speed is 2
mSec, we estimate the the computation time required for a layer with x computation tasks as
2[£] mSec, where v is the number of sensor nodes in the cluster. By doing so, we implicitly
assume full parallelism in executing the tasks at each layer. In addition, the expected number
of communication tasks initiated by a task is estimated as its out-degree subtracted by 1. Since
the average time cost for a communication task is 2CCR mSec, we estimate the communication
time required for a layer with totally 7 communication tasks as 2CC’R[?] mSec, where f is the
number of channels. T is then set to the sum of the computation and communication time cost
of all layers over u, where u € [0,1] is a parameter that approximates the overall utilization
of the system. The setting of u is important as it determines the latency laxity for trading
against energy. Intuitively, a larger value of w implies a tighter latency constraint and hence
less latency laxity.

The remaining energy of sensor nodes follows a uniform distribution between E,;;cqr(110.3),

where E,,cqn 18 a fairly large number.

70

5001

lifetime improvement (%)
N
o
o

=
o
o

N

o

o
T

w

o

o
T

| = u=0.5

u=0.6
—=— u=0.7
F—+ u=0.8

8 9
number of tasks (c)

(a) lifetime improvement achieved by the ILP-
based approach

10

50,
7

8 9
number of tasks (c)

(b) Performance comparison of the ILP-based
approach and the 3-phase heuristic

Figure 3.10: Lifetime improvement of our approaches for small scale problems (3 sensor nodes,
3 voltage levels, 2 channels, CCR = 1)

Small Scale Problems: We first conducted simulations for small scale problems, with 3
sensor nodes, 3 voltage levels, 2 channel, and 7 - 10 tasks. The number of source tasks in the
application graph is set to 2, while the maximal in-degree and out-degree for each node are set
to 3. A commercial software package, LINDO [72], was used to solve the ILP problems. Due to
the large running time for solving some problem instances, LINDO was interrupted after two
hours of execution if the optimal solution was not yet found. Then, the best solution obtained
so far was returned. We observed that in most cases, LINDO was able to find the optimal
solution within two hours.

The data shown in Figure 3.10 is averaged over more than 70 instances so that each data
point has a 95% confidence interval with a 10% precision. In Figure 3.10(a), we illustrate the

LTy

lifetime improvement achieved by the ILP-based approach, which is calculated as 7722 —1. We

can see an improvement around 3x - 5x. Figure 3.10(b) shows the performance ratio of the 3-

LTheqy

phase heuristic over the ILP-based approach, i.e., T

. We can see that the 3-phase heuristic

71

achieved up to 63% of the solution obtained by the ILP-based approach for the conducted
simulations.

While the running time of the heuristic is around zero, the average running time of the
ILP-based approach ranges from 550 Sec (¢ = 7, u = 0.5) to 5900 Sec (¢ = 10, v = 0.8) on a
Sun Bladel000 machine with a UltraSparc III 750 Mhz CPU.

Large Scale Problems: A set of simulations were conducted for evaluating the performance
of the 3-phase heuristic for problems with 10 sensor nodes, 8 voltage levels, 4 channels, 60
- 100 tasks, CCR € [0,20], and v € [0,1]. The number of source tasks in the application
graph is set to 6. The maximal in-degree and out-degree for each node are set to 5. Due to
the large size of the problems, it is impractical to obtain the optimal solutions by using the
ILP-based approach. Thus, we use the lifetime improvement achieved by the 3-phase heuristic

LThey

as the evaluation metric, which is calculated as £7

raw

— 1. The simulation results are shown in

Figure 3.11.
400 T T T 400
350t 1
s\i g3OOW
£ = v v
g & 250f - v ' T N
5]]
2 , \ >
S0t P :
£ Ly ~u=00 5~]
o150 7 f 4 ~u=0.2 G150 .]
E |1y = u=0.5 £ —— —~ M
@100} /-’,“ -+ u=0.8 B 100 - u:g.g
= u=1.0 | 7w
S0t sol = u=0.8
i —~+-u=1.0
o ‘ ‘ ‘ 0 ‘ ‘ ‘
0 5 10 15 20 60 65 70 75 80 8 90 95 100
communication to computation ratio (CCR) number of tasks (c)
(a) lifetime improvement vs. system utilization (b) lifetime improvement vs. number of tasks
(u) and communication to computation ratio (CCR =14)
(CCR)

Figure 3.11: Lifetime improvement of the 3-phase heuristic for large scale problems (10 sensor
nodes, 8 voltage levels, 4 channels, 60-100 tasks)

72

An improvement up to 3.5x in the system lifetime can be observed from Figure 3.11(a). We
can see that the improvement increases when u decreases, as the latency laxity increases ac-
cordingly. The lifetime improvement saturates when u approaches 0, i.e., the latency constraint
approaches co. Hence, the curve with u = 0.0 gives the upper bound of the improvement that
can be achieved by our heuristic with respect to variations in CCR.

The effect of CC'R is more complicated. For example, when u = 0.5, the lifetime improve-
ment increases when CCR < 6 and decreases when C'CR is beyond 6. This is because when
CCR is small, the computation tasks dominate the overall energy costs of the application. By
increasing CCR, we actually increase the latency constraint without increasing the computa-
tion load, which in turn can be traded for lifetime improvement. However, when C'C R reaches
some threshold value, the communication energy cost becomes more significant than that of the
computation tasks. Thus, the lifetime improvement achieved by reducing computation energy
becomes limited. We shall see later that this shortcoming can be overcome by incorporating
rate adaptation into our heuristic.

Figure 3.11(b) shows the lifetime improvement with number of tasks, ¢ varying from 60
to 100. We can see that the performance of our approach is quite stable with respect to the
variation in c.

The miss rate (defined as the ratio of the number of instances that an approach fails to find
a feasible solution to the total number of instances) of a heuristic is another key issue. Note
that in our simulations, not all instances are guaranteed to have feasible solutions. We observed
that the miss rate of the 3-phase heuristic is significant only when C'CR is close to zero. Thus,
we show the miss rate with CCR = 0 in Figure 3.12. Also, the running time of the heuristic is
around 0.5 mSec on a Sun Bladel000 machine with a UltraSparc IIT 750 Mhz CPU.

Impact of the Number of Voltage Levels: We also studied the impact of the variations

in the number of voltage levels. Simulations were conducted with 10 sensor nodes, 60 tasks,

73

1 ‘ ‘ ‘ ‘
0.8 /
/
/
/
/
%0.6’ //
/
2 /
Eo0.4t !
/
/
/
0.2F //
G * 4 * — /'/// L
0 0.2 0.4 0.6 0.8 1

Figure 3.12: Miss rate of the 3-phase heuristic (10 sensor nodes, 8 voltage levels, 4 channels,
60 tasks, CCR = 0)

4 channels, CCR = 2, u € {0.2,0.5,0.8,1.0} and 1 to 10 voltage levels. The results are

demonstrated in Figure 3.13.

400

w

a1

o
T

Sa00t -+ u=0.2

€ u=0.5

& 250t - u=0.8

o <+ u=1.0

S 200+

o

E

o 150F]
I e = I
ElOO ———————————3

al
o
T
AN
-

4 6 8 10
number of voltage levels (d)

Figure 3.13: Impact of variation in number of voltage levels (10 sensor nodes, 4 channels, 60
tasks, CCR = 2)

The plots show that when u > 0.2, the performance of the heuristic can be significantly
improved by increasing the number of voltage levels from 1 to 4. Further increase in the number
of voltage levels does not improve the performance much. This is understandable since the
energy behaves as a monotonically increasing and strictly convex function of the computation

speed. The first derivative of the energy function tends to co when the speed tends to co. Thus,

74

the most portion of energy saving is obtained by changing the speed from the highest option
to some lower options, which can be efficiently achieved with 4 voltage levels per sensor node.
When u = 0.2, the latency laxity is so large that the voltage level of most tasks can be
set to the lowest option. Thus, there is almost no improvement by increasing the number of
voltage levels beyond 2.
Incorporating Rate Adaptation: We used the energy model of modulation scaling in Sec-
tion 2.2.2 to illustrate the incorporation of rate adaptation. Due to the underlying single-hop
connection, we assume that all sensor nodes have the identical settings for parameters Cy,, Cee,
and Rs. From [98], we set C,;. = 10~7. To investigate the impact of different energy/time ratio
for data transmission, we set Cy to 10~7 and 1079 for different instances. The modulation
level, b, was set to even numbers between 2 and 6. We set Ry = 1.7 x 10* so that when b = 6,

it roughly takes 10 uSec and 1 pJ to transmit a bit (as shown in Figure 3.14).

energy (J)

2 3
transmission time duration (Sec) 4 197®

Figure 3.14: Energy-latency tradeoffs for transmitting one bit of data

The simulations were conducted with 10 sensor nodes, 8 voltage levels, 3 modulation levels
({2,4,6}), 60 tasks, u € {0.0,0.2,0.5,0.8,1.0}, and CCR € [0, 20]. Compared with Figure 3.11,
we can observe a significant amount of performance improvement in Figure 3.15. For example,
when u = 0.5, the highest lifetime improvement increases from 3x in Figure 3.11(a) to 6x in
Figure 3.15(a) and even 10x in Figure 3.15(b). The difference in performance improvement

75

12001 —— u=0.0] 12001/ + U=0.0]
v u=0.2 Y
= —=— u=0.5 =
10001 , =08 & 1000
I IS
Q Q
£ £ 800t
() ()
> >
<4 <4
s S 600f
E E
£ £ WL
B B o o’ M g]
= £ d o™
2000 7 7 JW]
% 5 10 15 20 % 5 10 15
communication to computation ratio (CCR) communication to computation ratio (CCR)
(a) small energy/time ratio for communication (b) large energy/time ratio for communication
tasks (Cir = 10*7) tasks (Cir = 10*6)

Figure 3.15: Lifetime improvement of the 3-phase heuristic incorporated with modulation scal-
ing (10 sensor nodes, 8 voltage levels, 4 channels, 3 modulation levels, 60 tasks)

of Figures 3.15(a) and 3.15(b) is because that a larger C, leads to larger energy/time ratio
of communication tasks, which in turn gives more advantage in reducing the communication
energy by utilizing modulation scaling.

Similar to Figure 3.11, larger improvement is observed when u becomes smaller. In addition,

the miss rate of the heuristic exhibits a similar trend as the cases with voltage scaling only.

3.6.2 Application Graphs from Real World Problems

In addition to synthetic application graphs, we also considered application graphs of two real
world problems: LU factorization algorithm [28] and Fast Fourier Transformation [29]. These
two algorithms are widely used as kernel operations for various signal processing, such as
beamforming [84].

LU Factorization: Figure 3.16(a) gives the sequential program for the LU factorization with-
out pivoting, where s denotes the dimension of the matrix. The application graph of the
algorithm for the special case of s =5 is given in Figure 3.16(b). Each C} j represents a pivot

column operation and each C} ; represents an update operation. The total number of tasks

76

in the application graph equals 32+TS_2 Also, we assume the input matrix is available at the

sensor node where task C ; is assigned.

LU-Factorization(a)
1. For k=1tos—1Do
2. Fori=k+1tos Do /] Tr.x
Qi = aik/aklc
For j =k+1 tos Do
Fori=k+1to s Do /] Th;
Ajj = Ajj — aik/akj

S G w

(a) sequential algorithm (b) example application graph with a 4x4 matrix

Figure 3.16: Matrix factorization algorithm

We performed simulations with 10 sensor nodes, 8 voltage levels, 4 channels, 3 modulation
levels, and the matrix dimension, s, varying from 5 to 20. Regarding the energy/time ratio for
data transmission, we set Cy,. = 1076, It is easy to verify that the computation requirement of
any task, Ct,j, is s —k ALU operations. Further, for any task, C};, the size of data transmitted
by any communication task to the task is s — k units in the matrix. We examined two cases
with u set to 0.5 and 0.8. In both cases, CCR was selected from {1.0,3.0,5.0,8.0,10.0}.

The lifetime improvement achieved by our 3-phase heuristic for the LU factorization al-
gorithm is shown in Figure 3.17. It can be observed that the performance of the heuristic
improves when C'C'R increases or u decreases. The lifetime improvement approaches 8x when
CCR = 10.0. Also, very few improvement was observed during our simulations by setting
CCR beyond 10.0. The least amount of lifetime improvement is around 15% when u = 0.8,
CCR =1.0, and s = 20.

Fast Fourier Transformation (FFT): The recursive, one-dimensional FFT Algorithm is
given in Figure 3.18(a). In the figure, A is an array of length ! which holds the coefficients

7

—— CCR=1.0

1000 T CCR=3.0 [1000
900} —+ CCR=5.0 900}
) —+ CCR=8.0
g 800g CCR=10.0 g 800f
= 700f g T00R ‘\\‘ —— CCR=1.0
7] —o PN 7] * =
§_ 500+ §_ 500F \ . —+ CCR=8.0
R=10.
E 400} . 1 E 400\/’ \ v CCR=100] |
) - R) N e
£ 300 - {1 £ 300t M SER S
K} K}
= 200f {1 = 200f A 1
100 , 1oom -
|
L L L T T T
% 10 15 20 % 10 15 20
input matrix dimension input matrix dimension
(a) u=0.5 (b) u=10.8

Figure 3.17: Lifetime improvement for the matrix factorization algorithm (10 sensor nodes, 8
voltage levels, 4 channels, 3 modulation levels)

of the polynomial and array Y is the output of the algorithm. The algorithm consists of two
parts: recursive calls (lines 3-4) and the butterfly operation (lines 6-7). For an input vector of
size [, there are 2 x [— 1 recursive call tasks and [x log! butterfly operation tasks (we shall be
assuming | = 2¥ for some integer k). For example, the application graph with four data points
is given in Figure 3.18(b) . The 7 tasks above the dashed line are the recursive call tasks, while
the 8 tasks below the line are butterfly operation tasks.

We performed simulations used 10 sensor nodes, 8 voltage levels, 4 channels, 3 modulation
levels. Regarding the energy/time ratio for data transmission, we set Cj. = 1075. The vector
size was varied from 4 to 64 incrementing by the power of 2. We also examined two cases with
u set to 0.5 and 0.8. In both cases, CCR was selected from {1.0, 3.0,5.0,8.0}.

The lifetime improvement achieved by our 3-phase heuristic for the FFT algorithm is shown
in Figure 3.19. Again, the performance of the heuristic improves when CC'R increases or u
decreases. The lifetime improvement is close to 10x when CCR = 8.0 and | = 64. The least

amount of lifetime improvement is around 75% when u = 0.8, CCR = 1.0, and [= 4.

78

FFT(4, w)
1. Set I = length(A)
2. If I =1, return A
3. YO = FFT((A[0], A[2], ..., Al —2]),w?)
4. YD = FFT((A[1], A[3],..., Al —1]),w?)
5. Fori=0to!/2—1Do
6. Vil = YO[i] + w? x Y [4]
7. Y[i+1/2] = Y O[] —w x Y]
8. Return Y
(a) sequential algorithm (b) example application graph with 4 points

Figure 3.18: Fast Fourier Transformation (FFT) algorithm

Note that the above two example applications have exactly one source task that initially
holds the entire data set, implying that data dissemination within the cluster is required.
However, our technique is also applicable to applications where data are locally sensed or
gathered at each individual sensor node. For example, in Figure 3.18(b), input data can be
generated by tasks T4 to T7 through local sensing. Thus, the recursive calls above the dashed

line to disseminate the data become unnecessary.

3.7 Concluding Remarks

In this chapter, we have investigated the problem of allocating a real-time application with
latency constraint to a single-hop collocated cluster of homogeneous sensor nodes with mul-
tiple wireless channels. A new performance metric has been proposed to balance the energy
cost among all the sensor nodes by using both voltage scaling and rate adaptation. We have
presented both an ILP formulation and a polynomial time heuristic.

We have demonstrated through simulations that for small scale problems with voltage scaling

only, a lifetime improvement up to 5x is achieved by the ILP-based approach, compared with the

79

CCR=1.0 Z
1000 5 CCR=3.0T T T T 1000 5 ggg:ég T T T T
900f| (] CCR=5.0 _ M 1 9001 [] CCR=5.0
|| Il CCR=8.0 ||l CCR=8.0

~

o

o
T

fo2}

o

o
T

a

o

o
T

N

o

o
T

w

o

o
T

lifetime improvement (%)

lifetime improvement (%)

N

o

o
T

=

o

o
T

o

8 6 32 64 4 8 6 32 64
input vector size input vector size

(a) u=10.5 (b) u=0.8

Figure 3.19: Lifetime improvement for the FFT algorithm (10 sensor nodes, 8 voltage levels, 4
channels, 3 modulation levels)

case where no voltage scaling is used. Also, the performance of the 3-phase heuristic achieves
up to 63% of the system lifetime obtained by the ILP-based approach. For large scale problems,
a lifetime improvements up to 10x was observed when both voltage and modulation scaling are
used. Simulations were also conducted for application graphs from LU factorization and FFT.
Our 3-phase heuristic achieves a lifetime improvement of up to 8x for the LU factorization

algorithm and an improvement of up to 9x for the FFT algorithm.

80

Chapter 4

Information Transportation on a Tree Substrate

In this chapter, we study the application of rate adaptation for information routing over a

given tree substrate.

4.1 Overview

In last chapter, we have shown the application of voltage scaling and rate adaptation for
information processing within a collocated cluster of sensor nodes. In many scenarios, users
can access the results of information processing (in general, not necessarily from cluster-based
processing) only after they are routed to the base station. Typical communication patterns
for such information routing involve multiple source nodes and one sink node. Thus, the
corresponding packet flow resembles a reverse-multicast structure, which is often referred to
as a data gathering tree. It is also well-known that data aggregation by each internal node
over the tree is crucial for eliminating redundancy among source data and hence reduce the
communication load [68].

For applications with small volume data and simple aggregation operation, communication

is a significant source of energy dissipation in the process of information routing. Hence, it is

81

important to design energy-efficient communication strategies. As we pointed out in Chapter 1,
rate adaptation is an important technique for improving the energy efficiency of communication.
Foreseeing the integration of such a technique into commercial radio modules for sensor nodes,
we believe that it is important to analyze the technique in the context of information routing
in WSNs.

This chapter studies the problem of scheduling packet transmissions over a data gathering
tree using rate adaptation. The main purpose is to explore the energy-latency tradeoffs at
the physical layer with respect to the system performance at the application layer. We again
consider a real time scenario where the raw data gathered from source nodes must be aggregated
and transmitted to the sink within a specified latency constraint. Our technique is applicable
to any given aggregation functions. The objective function is to minimize the overall energy

dissipation of the sensor nodes in the gathering tree subject to the latency constraint.

4.1.1 Our Contributions

We solve the considered problem using two different but related approaches. In the first ap-
proach, we assume a continuously tunable transmission time. A numerical optimization al-
gorithm is developed for solving the off-line version of our problem, where the structure of
the data gathering tree and the energy characteristics of all sensor nodes are known a priori.
While this numerical optimization provides the optimal off-line solution to our problem, it is
theoretically difficult to give an upper bound on its running time.

In the second approach, we approximate the continuous transmission time using a set of
discrete values. We then derive a recursive presentation of the considered problem, which
naturally leads to a dynamic programming based algorithm (DP-Algo) for solving the off-line
problem. For a given number of discrete values for the transmission time, DP-Algo solves the

off-line problem in polynomial time.

82

Furthermore, a simple, localized on-line protocol is developed based on discretized trans-
mission time. The key idea is to iteratively identify the sensor node with the highest energy
gradient (to be defined later) in the gathering tree and reduce its energy cost when allowed
by the latency constraint. In this protocol, each sensor node only needs to perform simple
operation based on its local information and the piggybacked information from data messages.
The protocol is designed with the aim of self-adaptation to various dynamics in the system,
including changes of packet size and latency constraint.

Finally, we evaluate the performance of our algorithms and protocol through extensive
simulations. The simulations were conducted for both long and short-range communications.
We considered two models of source placement, namely the random source and the event radius
source placements [68]. We used the baseline where all sensor nodes transmit the packets at
the highest speed (8 bits/symbol) and shut down the radio afterwards. Our simulation results
from the scenarios we studied show that compared with this baseline, up to 90% energy savings
can be achieved by our off-line algorithms and the on-line protocol. We also investigate the
impact of several key network and radio parameters. The adaptability of the protocol is also

demonstrated through two run-time scenarios.

4.1.2 Chapter Organization

We briefly discuss the related work in Section 4.2. We describe our underlying network model in
Section 4.3. The packet transmission problem is then defined in Section 4.4. Off-line algorithms
for the problem are presented in Section 4.5. In Section 4.6, a distributed on-line protocol is
described. Simulation results are shown in Section 4.7. Finally, concluding remarks are made

in Section 4.8.

83

4.2 Related Work

Data gathering tree is common to data-centric information routing in WSNs [61, 68]. The
construction of the data gathering tree has been studied under various circumstances as pre-
viously summarized in Section 1.5.4. For example, several localized tree topology generation
mechanisms are compared by Zhou et. al. using metrics including node degree, robustness, and
latency [137]. When the joint entropy of multiple information sources is modeled as a concave
function of the number of sources, a randomized logarithmic approximation algorithm is devel-
oped by Goel et. al. [47]. By considering a simplified compression model, where the entropy
conditioning at nodes only depends on the availability of side information, a hybrid scheme of
Shortest Path Tree and Traveling Salesman Path is proved to provide 2-approximation perfor-
mance for minimizing the overall cost of the data gathering tree [32]. A nice analysis of the
impact of spatial correlation on several practical schemes for tree construction [87] indicates that
a simple cluster-based routing scheme performs well regardless the correlation among sources.
All these works provide the underlying communication substrate above which our algorithms
and protocols can be applied for energy minimization.

From wireless communication perspective, rate adaptation have been widely studied to
optimize spectral efficiency (e.g., network throughput) subject to the channel conditions in
cellular networks [3, 11, 117] or local-area wireless networks [4, 55, 133]. Several recent works [98,
99, 92, 43, 89, 131] have studied the application of rate adaptation for energy conservation, which
is closely related to our work.

For a single-hop link, the problem of minimizing the energy cost of transmitting a set of
packets subject to a specified latency constraint is studied by Prabhakar et. al. [89]. An
extension of the problem [43] investigates the packet transmission from one single transmitter
to multiple receivers. In both [89] and [43], optimal off-line algorithms and near-optimal on-

line solutions are provided. The concept of modulation scaling was first proposed by Schurgers

84

et. al. [98]. For a single-hop link, policies for adjusting the modulation level are developed for
cases where no real-time requirements are imposed [98] or each packet delivery has a deadline to
meet [99], Also, modulation adaptation is integrated into multi-packet scheduling with deadline
for each packet [99] and the Weighted Fair Queuing (WFQ) scheduling policy [92]. For a multi-
hop communication path, modulation scaling is used for balancing the energy cost for all nodes
along the path [131].

The real-time latency constraint considered in this paper requires the use of global time-
synchronization schemes [38]. Our scenario is similar to the epoch-based data gathering
scheme [77], where the length of each epoch actually plays the role of latency constraint. How-
ever, prior work has not considered the possibility of using packet-scheduling techniques that
trade latency for energy in such a scenario.

To the best of our knowledge, our work is the first to address packet scheduling in a general
tree structure. The challenges of our problem are multi-fold. Firstly, the energy functions
can vary for different links. It is therefore required to develop general optimization techniques
instead of explicit solutions. Secondly, the latency constraint for data gathering in real applica-
tions is typically given by considering the aggregation tree as a whole. It is difficult to directly
apply the techniques in [43] and [89], as they require explicit latency constraints over each link.
Lastly, as described by (2.4) in Section 2.2.2, we consider the non-monotonic energy function
of rate adaptation, which is unique to short distance communications in WSNs. This point has
not been addressed in previous work. Albeit the above challenges, the tree structure leads us
to an extension of the numerical optimization algorithm proposed in [43] as well as a recursive

representation of the problem for applying dynamic programming.

85

4.3 Models and Assumptions

In this section, we first describe the underlying network model, the data gathering tree. We
then explain our scheme of computing data aggregation along the tree. For the sake of clarity,

we list a summary of notations used in this paper in Table 4.1.

Table 4.1: Table of notations

T =< V,L > | the data gathering tree composed by the set of v sensor nodes V' and
the set of communication links L
W,...,Viu} the set of the M leaf nodes in T’
Vi the sink node of T'
T; the subtree rooted at V;
r the latency constraint for data gathering over T’
S; the size of packet transmitted by V; to its parent
Ti the transmission time of s;
Di the path from a leaf node V; to the sink
d,; the length of p;, in the metric of transmission time
w; (1) the energy function for packet transmission by V;
m; the value of ; over (0,T] that minimizes w;(7;)
T a schedule of packet transmission, 7 = {71, 72, ... ,Tn_1}
D the approximation accuracy of DP-Algo
x; the latency laxity of V;
p,c the connectivity and correlation parameters used by our simulation
N the number of source nodes used by the random source model
S the sensing range used by the event radius model

4.3.1 Data Gathering Tree

We abstract the underlying structure of the network as a data gathering tree. This is essentially
a tree that gathers and aggregates information from multiple sources enroute to a single sink.
While there may be transients during the route creation phase, we assume that this tree, once
formed, lasts for a reasonable period of time and provides the routing substrate over which
aggregation can take place during data gathering.

Since the information flow over the tree is from leaves to the sink, we use a directed graph
representation. Let T = (V, L) denote the data gathering tree, where V' denotes the set of v

sensor nodes, {V; : i € [v]}, and L denotes the set of directed communication links between

86

the sensor nodes L = {L; : i € [v—1]}. Let M denote the number of leaf nodes in the tree.
Without loss of generality, we assume that the sensor nodes are indexed in the topological order
with Vi,...,Var denoting the M leaf nodes and V,, denoting the sink node. For each directed
link (,7), we refer to i as a child of j and j as the parent of i.

Let T; denote the subtree rooted at any node, V;, with T, = T'. A path in T is defined as
a series of alternate nodes and edges from any leaf node, V;,i € {1,... , M}, to V,,, denoted as
p;i. We use the notation V; € p; to signify that node V; is an intermediate node of path p;.

Raw data is generated by a set of source nodes from V' (not necessarily leaf nodes). Data
aggregation is performed by all non-sink and non-leaf nodes (referred to as internal nodes
hereafter). We assume that aggregation at an internal node is performed only after all input
information is available at the node — either received from its children, or generated by local
sensing if the node is a source node. The aggregated data is then transmitted to the parent
node. Let s; denote the size of the packet transmitted by V; to its parent. We discuss the
computation of data aggregation to determine s; in the next section.

We assume a simplified communication model with a medium access control (MAC) layer
that ensures no collision or interference at a node. Such an assumption can be realized by
multi-packet reception (MPR) techniques through frequency or code diversity [119, 116].

For ease of analysis, it is assumed that raw data is available at all source nodes at time
0. Let I' denote the latency constraint, within which data from all source nodes needs to be
aggregated and transmitted to the sink node.

Similar to our assumptions in Chapter 3, we assume that sensor nodes are completely shut
down when there is no packet to transmit or receive. We assume that ultra-low power paging
or wakeup radios are available for waking up sensor nodes with almost no latency and energy
penalties [136, 102]. Also, the computation time and energy costs for generating raw data at

source nodes or aggregating data at internal nodes are considered to be negligible.

87

4.3.2 Data Aggregation Paradigm

Various techniques have been previously proposed for computing aggregates, or joint informa-
tion entropy, from multiple source nodes. In our study, we adopt the model proposed by Pattern
et. al. [87] where the joint entropy (or total compressed information) from multiple information
sources is modeled as a function of the inter-source distance d, and a pre-specified correlation
parameter ¢, that characterizes the extent of spatial correlation between data. Specifically, let
H, denote the data size generated from any single source. The compressed information of two

sources is calculated as [87]:

d
Hy=H, +—H 4.1
R I (4.1

We assume that the correlation parameter ¢ is the same for any set of sources. Based on
(4.1), a recursive calculation of the total compressed information of multiple sources can be
developed [87]. We omit the details here.

Although we use the expression in (4.1) as a typical aggregation function, please note that
our technique is not limited to this function alone. The only requirement is that we can derive
the value of s;’s based on the functions. Thus, even different functions can be used to specify

the aggregation at different sensor nodes.

4.4 Problem Definition

A schedule of packet transmission is defined as a vector 7= {r; : i =1,...,v — 1}, where 7; is
the time duration for packet transmission from sensor node ¢ to its parent. Since a sensor node
can transmit its packet only after receiving all input packets from its children, the start time

of each transmission is implicitly determined by 7. The transmission latency of a path, p;, is

88

denoted as ®; and calculated as ®; = > 7j. A schedule is feasible if for any p; € T, we

J:Vi€p:
have ®; <T.

While our goal is to improve the energy-efficiency of the system, various objective functions
can be developed for interpreting energy-efficiency. For ease of analysis, our objective function
is to minimize the overall energy cost for packet transmission of all the sensor nodes in the data
gathering tree.

We use the energy model described in Section 2.2.2. Let w;(7;) denote the energy function of
V; in form of (2.4) with potentially various values of parameters Cy,., Cee, and Ry for different
links. Let m; denoting the value of 7, € (0,I'l when w;(-) is minimized. Note that w;(-)
may vary for different nodes due to variations in packet size and transmission radius (in other
words, such information is implicitly embedded into w;(-)). We now formally state the packet
transmission problem (PTP) as follows:

Given:

a. a data gathering tree T consisting of n sensor nodes,
b. energy functions for each link (i,7) € E, w;(r;), and
c. the latency constraint, T';

find a schedule of packet transmission, 7 = {r; : i € [n — 1]}, so as to minimize
n—1
f(7) = Zwi(Ti) (4.2)
i=1
subject to

VpiinT,® = Y 7 <T. (4.3)
J:Vi€Epi

The above formulation differs from the problem defined in [43] in two key aspects. (1) We

employ a tree structure packet flow where the latency constraint is imposed on each path of

89

the tree. (2) The non-monotonic energy model in Section 2.2.2 indicates the presence of an
upper-bound on the transmission time of each packet, i.e., to optimize PTP, we should have
7; < my, for each i € [n—1]. The consequences of such differences are discussed in Section 4.5.1.

We consider two versions of PTP, an off-line version and an on-line version. In the off-line
version, the structure of the data gathering tree and the energy functions for all sensor nodes
are known a priori. Centralized algorithms can be developed for solving the off-line version.
In the on-line version, each sensor node only has local knowledge about its own radio status
and can communication with its parent and children. Hence, distributed on-line protocols are
needed to locally adapt the transmission time of each sensor node to achieve global energy

minimization.

4.5 Off-line Algorithms for PTP

In this section, we consider an off-line version of PTP (called OPTP) by assuming that the
structure of the aggregation tree and the energy functions for all sensor nodes are known a
priori. We first describe an extension of the MoveRight algorithm [43] to get optimal solutions

for OPTP. A faster dynamic programming based approximation algorithm is then presented.

4.5.1 A Numerical Optimization Algorithm

Since we must have 7; < m; in an optimal solution to OPTP, the latency of a path does not
necessarily equal I'. Moreover, let V; denote an internal node. For any optimal solution to
OPTP, we show that the first derivative of the energy function of V; equals the sum of the first

derivatives of the energy functions of all children of V;.

Lemma 1 A schedule, 7, is optimal for OPTP iff

90

1. for any node V; with 77 < my;, the length of at least one path that contains V; is equal to

I'; and

2. for any internal node, V;, we have

wi(rf) = Y () (4.4)

(j0)EE

The proof of the lemma is presented in Appendix A.

The problem proposed in [43] is to schedule multiple packet transmission over a single

transmitter multiple receiver connection, where the ready time of packets can differ from each

other. A special case of the problem is to assume all packets are of equal size and ready at

time 0. This special case can also be regarded as a special case of the OPTP problem where

(1) the aggregation tree degenerates into a pipeline of sensor nodes — the latency constraint is

imposed over exactly one path; and (2) all energy functions are monotonically decreasing. The

MoveRight algorithm proposed in [43] can be directly applied to solve such a special case.

Begin

1. Set k + 0 // initialize iteration counter

2. For (i,v) € E, set ¥ + min{T',m;} // initialize transmission time for links to
// the sink

3. For (i,j) € E such that j # n, set 7F < 0 // initialize transmission time for other
// links

4. Set flag < 0 // flag to keep track of convergence in the
// iterations

5. While flag =0

6. k<+Ek+1 // increment the iteration counter by 1

7. For each V; with ¢ from v — 1 downto M+1 // perform local optimization for each
// internal node

8. {mY.er,) best({rffl},) // move right the start time of
// transmission from V;

9. For (i,v) € E

10. Set 7F < min{m;,I" — (maxv;ep, {L;} — 7F)} //increase the transmission time for links
// to the sink

11. if 7% =77 flag + 1 // check convergence

End

Figure 4.1: Pseudo code for EMR-Algo

91

We now extend the MoveRight algorithm to solve OPTP in a general-structured aggrega-
tion tree with non-monotonic energy functions. The pseudo code for the extended MoveRight
algorithm (EMR-Algo) is shown in Figure 4.1. In the figure, 7% denotes the value of 7; in the
k-th iteration. Initially, we set the starting time for all packet transmission to zero — the trans-
mission time for all the links to the sink is set to min{I', m;}, while the transmission time for
the rest links is set to 0 (Steps 2 and 3). The main idea is to iteratively increase (move right)
the starting times of packet transmissions, so that each move locally optimizes our objective
function. Finally, this iterative local optimization leads to a globally optimal solution.

The best(-) function returns the transmission time for node V; and its children so that
Lemma 1 holds for the subtree formed by V; and its parent and children, with respect to the
invariant that 7'}c < mj for any node V; in the subtree. When best(-) is called upon the subtree
around V;, the transmission for all the links not within the subtree remain fixed, i.e., the
starting time of transmissions from the children of V; and the ending time of the transmission
from V; are fixed. We prove in Theorem 1 that the starting time of the transmission from V;
will never be decreased by calling best(-). Hence, in best(-), the locally optimal starting time
of the transmission from V; is obtained by a binary search between the original starting time
and the ending time of the transmission. Step 10 is important as it moves right the complete
time of transmissions on links to the sink. This movement stops when the latency constraint
is reached.

The proposed EMR-Algo is distinguished from the MoveRight algorithm in two key respects
(recall the difference discussed in Section 4.4 between our problem and the one defined in [43]).
(1) The best(-) function respects Lemma 1 regarding the optimality in a tree structure. (2)
The transmission time for any V; € V' is bounded by m;, enforced by lines 2, 8 and 10.

The correctness of EMR-Algo can be proved by exploring the convexity property of the

energy functions. Let 7% = {m,...,7_1} be the optimal schedule. Let 87 = 0, for i =

92

L,...,M; and 0 = max(j ep(0] + 77), for i = M,... ,v — 1. As previously stated, {rF
k=1,...,v— 1} indicate the transmission time of nodes Vi,...,V,_; after the k-th pass of

EMR-Algo. Let §¥ =0, fori=1,... ,M, and % = max(j’i)eE(Hf + Tf), fori=M,... , v—1.
Theorem 1 Let 6{? and 07,i=1,... ,n—1 be as defined before. Then

1. 6F <oFtt;

2. 0% <07; and

3. 6% = 0.

The proof of Theorem 1 is developed based on the proof of Theorem 1 in [43] and is detailed
in Appendix A.

The convergence speed of EMR-Algo depends on the structure of the aggregation tree and
the exact form of the energy functions. It is therefore difficult to give a theoretical bound on
the number of iterations. In Section 4.7, we show running time of EMR-Algo for simulated
problems. However, by approximating w;(7) with a set of interpolated discrete values, we
develop a much faster approximation algorithm based on dynamic programming. We present

the approximation algorithm in Section 4.5.2.

4.5.2 A Dynamic Programming Based Approximation Algorithm

For ease of analysis, we assume that for each sensor node, D discrete values are evenly dis-
tributed over [0,T] in the domain of 7. Let ¢ be the difference between two adjacent values.
That is € = %. Hereafter, D is called the approximation accuracy. A higher value of D leads
to a more accurate approximation of the energy function. By changing D, we can explore the
tradeoffs between the quality of the solution and the time cost of the algorithm.

Let g(Vi,t) denote the minimal overall energy dissipation of a subtree rooted at V; within
latency constraint ¢. The original OPTP problem can be expressed as g(V,,T'). It is clear that

93

for any sensor node V;, g(V;,t) can be computed as the sum of (a) the energy dissipation for
packet transmission by the children of V;, and (b) the energy dissipated by transmitting packets
within the subtrees rooted at each child of V;. Additionally, the packet transmission time from
any child of V; can take ﬁ values, namely ¢, 2¢, ... ,t. Therefore, we have the following recursive

representation of g(V;,t):

w;(t), for 1 <i< M (4.5a)
Vi,t) = < , , :
9V,) Z (mull{wk (je) + g(Vi,t — je)}), otherwise (4.5b)
]:
(k,i)EE

Jo (@ o)) wereemneeesseees

gV, 3¢ .
2¢ | gV, 29))
A I gV, &) | reeeees gV, o
v, v, v,

Figure 4.2: The g(-) table computed by DP-Algo
The above representation is suitable for a dynamic programming based algorithm (DP-Algo
for short). DP-Algo can be viewed as a procedure to build a table of size D x v (Figure 4.2).
The i-th column from the left side corresponds to sensor node V;, while the j-th row from
bottom-up corresponds to je. After the execution of DP-Algo, the cell crossed by the j-th row
and the i-th column shall contain the value of g(V;, je).
To build the table, we start from the bottom left cell that contains ¢g(Vi,e) = wy(e). The

table is then completed column by column, from left to right. To calculate the value of g(V;, je)

94

for i > M, we need to compare, for each child of V;, j different values by varying the packet
transmission time of the child. Therefore, the time cost for building up the table is O(D?(v+1)),
which is polynomial with respect to v and [for a fixed D.
A Special Case for Modulation Scaling:In practice, the modulation levels are typically set
to positive even integers. Based on equation 2.3, it can be verified that the 7;’s resulted from
different modulation levels are not evenly distributed among [0,I']. Thus, DP-Algo cannot be
directly applied. However, one practical method is to, for each i, set 7; obtained by EMR-Algo
or DP-Algo to the largest time duration smaller than 7; that can be achieved by an available
modulation level. We call the above method the rounding procedure. Such a rounding procedure
may affect the performance of DP-Algo. As shown in Section 4.7, the performance degradation
is around 10% for loose latency constraints and 50% for stringent latency constraints.
Another issue with modulation scaling is that the maximal or minimal transmission time can
be bounded, due to the lowest and highest settings for the modulation level. Such boundaries

can be captured by filling the corresponding cells in the table with infinity.

4.6 Distributed On-line Protocol

The algorithms presented in Section 4.5 all assume a complete knowledge of the data gathering
tree. However, the discrete approximation of the energy function motivates a simple on-line
distributed protocol that relies on local information of sensor nodes only. The key idea of the
protocol is to identify the sensor nodes with the largest energy gradient on each path of the
tree. Here, energy gradient is defined as the amount of energy that can be saved by increasing
the transmission time of the sensor node by €. We then increase their transmission time if the
latency constraint will not be violated. We repeat the above procedure until either the latency
constraint is reached for all paths or the energy cost of the gathering tree is minimized.

To facilitate the on-line scheduling, we make the following assumptions:

95

1. Some local unique neighbor identification mechanisms are available at each sensor node

for identifying the parent and children.

2. Every node V; can derive the time cost for data gathering within the subtree rooted V;.

3. Every sensor node can measure its current power consumption, and hence its energy

gradient.

4. Interference among sensor nodes is handled by MPR techniques.

The local identifier in assumption 1 is commonly implemented in protocols such as Directed
Diffusion [61]. Assumption 2 can be fulfilled by attaching a time stamp to each packet from the
leaf nodes (we shall be assuming that time synchronization schemes, such as [38], are available).
In assumption 3, the power consumption and energy gradient of a sensor node can be determined
using the system parameters provided by the hardware vendors and the operating configuration
of the system, such as the modulation level. Assumption 4 can be satisfied by intentionally
setting the latency constraint to be tighter than the actual constraint for accommodating the
incurred time cost for resolving collisions.

Moreover, we define the latency lazity of a node as the maximal amount of time that can be
used to increase the transmission time of the node without violating the latency constraint. Let
z; denote the latency laxity of V;. The latency laxity of each node is dynamically maintained
during the protocol to verify if the transmission time of the node can be safely increased.

In the following, we first describe the local data structure maintained at each sensor node.
A distributed adaptation policy for minimizing the energy cost is then presented.

Local Data Structure: Each sensor node, V;, maintains a simple local data structure (r, 7,
74). The flag r equals one if V; is the node with the highest positive energy gradient in subtree
T;, and zero otherwise. Field 7; is the time cost for transmitting the packet from V; to its

parent, while 7; records the time cost of the longest path, excluding 7;, in T;.

96

The local data structure is maintained as follows. Every leaf node piggybacks its energy
gradient to the outgoing packet. Once a sensor node, V;, receives packets from all its children,
the node compares the energy gradients piggybacked to each packet and the energy gradient of
its own. The value of r at V; is then set accordingly. If V; is not the sink, the largest energy
gradient from the above comparison is piggybacked to the packet sent to the parent of V;. The
above procedure continues till all the sensor nodes have the correct value of r. Fields 7; and 74
can be easily maintained based on the above assumptions.

Adaptation Policy: The sink node periodically disseminates a feedback packet to its children
that contains the value of its local 74, and the difference between I' and 74, denoted as 6.
Basically, ¢ is the latency laxity of nodes on the longest path of the data gathering tree.

Once a sensor node V; receives the feedback packet from its parent, it performs the following
adaptation. To distinguish from the field 75 in V;’s local data, let 7 denote the field 74 in the
feedback packet. First, the latency laxity of V; can be calculated as x; = § + 7, — (73 +74). This
is because 7; + 74 is the time cost of Tj; 7 is the time cost of the longest path in the subtree
rooted at V;’s parent (excluding the transmission time of V;’s parent); and 0 is actually the

latency laxity of nodes on this longest path. Then, V; takes one of the following actions.

1. If § < 0, the transmission time for packet from V; is decreased by a factor of 5, where 3 is

a user-specified parameter. The feedback packet is then forwarded to all of V;’s children.

2. If r = 1 and z; > ¢, the transmission time of V; is increased by €. The local data structure

at V; is updated accordingly; and the feedback packet is suppressed.

3. Otherwise, the feedback packet is updated by setting § = z; and 7 = 74. The updated

packet is then forwarded to all children of V;.

The rationale behind the above adaptation policy is that when the latency constraint is

violated, all the sensor nodes send out packets with an increased rate (action 1). If V; is

97

the node with the largest positive energy gradient in 7; and the latency laxity allows, the
transmission time of V; is increased (action 2). Otherwise, the latency laxity of V; is recorded
in the feedback packet and the sensor nodes in T; are recursively examined (action 3).
Discussion: During each dissemination of the feedback packet, the proposed on-line protocol
increases the transmission time for at most one sensor node per path. Such an increment is
guaranteed not to violate the latency constraint. Therefore, the on-line protocol converges after
the latency constraint is reached by all paths, or 7; = m;, for each V; € V. We assume that
each sensor node has ¢ discretized transmission time. Before the protocol converges, a feedback
packet would increase the transmission time for at least one sensor node when it traverses
the data gathering tree. Thus, the protocol converges after the dissemination of at most ng
feedback packets, where n is the number of sensor nodes in the tree.

Various tradeoffs can be explored in implementing the above protocol. Ideally, the adap-
tation should be performed under a stable system state. Thus, the period a for disseminating
the feedback packet should be large enough to accommodate oscillation in system performance.
However, a larger period means a longer convergence process with greater energy cost. There
is also a tradeoff involved in selecting the value of 5. A larger value of 8 leads to higher trans-
mission speed when the latency constraint is violated. However, extra energy cost is caused if
the violation is not dramatic. Intuitively, § should be related to the severity of the violation,
which is indicated by the value of §.

Another option to handle latency violations is to repeatedly reduce the transmission time
of the sensor nodes with the smallest energy gradient till the latency constraint is satisfied.
Compared with the proposed technique that simultaneously reduces the transmission time
of all sensor nodes, such an option is more aggressive in the sense of reducing the incurred
increment in energy cost. However, it requires more sophisticate control protocol and more

importantly, increases the response time in handling latency violations.

98

The above protocol actually does not require the discretized transmission time to be evenly
distributed with distance . In the example of modulation scaling, the set of transmission times
are generated based on ;% by varying b within [2,4,6,...] . The distance between adjacent
transmission times decreases with b. This can be handled by the following slight modification
to the protocol. First, in action 1, after decreased by a factor of 3, the transmission time is
lower-rounded to the closest transmission duration . Second, in action 2, the latency increment
is determined by the current value of b, instead of being a fixed . We will use this modified

protocol for our on-line simulation.

4.7 Simulation Results

To conduct the simulations, a simulator was developed using the PARSEC [86] software, which
is a discrete-event simulation language. The purposes of the simulations are (1) to demonstrate
the energy gain achieved by our algorithms compared with the baseline; (2) to evaluate the
impact of several key system parameters to the performance of our algorithms; and (3) to show
the energy saving and the adaptation capability of our on-line protocol in various run-time

scenarios.

4.7.1 Simulation Setup

The transmission speed of sensor nodes is continuously tunable by setting modulation level
within (0, 00), except for the special case of modulation scaling where modulation level can
only be integer even values within [2,8]. Hence, when modulation scaling is used, the highest
data rate is 8 Mbps and the lowest data rate is 2 Mbps. The baseline in our simulations is to
transmit all packets at the highest speed (i.e., 8 Mbps), and shut down the radios afterward.

This policy is use, for example, in the PAMAS protocol [91] and the DMAC protocol [74].

99

sources

0.9+ sources 09l

08 08l
07 07

06 06

05F 05F

04r 04

event

03 03l

02 02}

01 01 ink

: sin

Sk e e
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
(a) Random sources model (number of sources (b) Event radius model (sensing range S = 0.2)
N = 30)

Figure 4.3: Two example data gathering trees generated by the random sources and event
radius models, respectively (connectivity parameter p = 0.15)

A sensor network was generated by randomly scattering 200 sensors in a unit square. The
sink node was put at the left-bottom corner of the square. The neighbors that a sensor node
can directly communicate is determined by a connectivity parameter, p € (0, 1]. Specifically,
two sensor nodes can communicate with each other only if the distance between them is within
p. We used two models for generating the location of the data sources, namely the random
sources (RS) model and the event radius (ER) model. In the RS model, N (the number of
sources) out of 200 sensor nodes are randomly selected to be the sources, whereas in the ER
model, all sources are located within a distance S (essentially the sensing range) of a randomly
chosen “event” location. For both models, the Greedy Incremental Tree (GIT) algorithm [68]
was used for constructing the data gathering tree. In Figure 4.3, we illustrate two example
data gathering trees generated based on the RS and ER models, respectively.

The energy function used in the simulation was in the form of (2.4). Unless otherwise stated,
we set Ry, = 10% and C,;. = 1078 for all the sensor nodes, while the value of C' of a sensor node

was determined by the distance from the node to its parent in the tree. Specifically, we assume

100

a d? power loss model, where d is the distance between a node and its parent. Then, for node
Vi, we have C; = Chyse (%)2. Based on our analysis in Section 2.2.2, Cpase Was set to 6 x 107?
for the long-range communication and 3 x 10710 for the short-range communication.

During our simulation, the latency constraints I' was determined as follows. We define the
shortest time cost, I';,;, of a gathering tree as the transmission latency of the longest path in
the tree when all sensor nodes transmit at the highest speed (8 Mbps). On the other hand,
the longest time cost, I';,q, Of the gathering tree is defined as the transmission latency of the
longest path in the tree when every sensor node V; sends its packet using time min{m,, 3 }. In

the above definition, the term m; comes from the fact that it is not energy beneficial for V; to

si

transmit its packet using time beyond m;; the term 3% is due to the lower bound of modulation

level in our simulation. Therefore, I' was adjusted between I'y,;, and gz

4.7.2 Performance of the Off-Line Algorithms

The performance metric is defined as the percentage of energy savings achieved by using our
techniques, compared with the baseline. In the simulation, the approximation accuracy for
DP-Algo, D was set to 100. The size of raw data generated by source nodes was set to 200 bits.
In Figure 4.4, we show the energy saving achieved by our off-line algorithms for both the RS
and ER models. For both models, we show the results for long and short range communication.
Each data point in the figures is averaged over more than 100 instances such that it has a 95%
confidence interval with a 5% (or better) precision. In the following, we focus on analyzing the
results for the RS model; similar analysis can be made for results of the ER model.
Performance Overview: In Figure 4.4(a), we investigate the performance of algorithms
including EMR-Algo, DP-Algo and the special case of DP-Algo for modulation scaling (denoted

as MS in the figure) when varying I’ from T',;, to Iyee. The first thing to notice is that

101

N
long-range

60 60

IN
o

short-range

energy conservation (%)
energy conservation (%)

< EMR-AIgo
N o — RS model * DP—A|QO — RS model = c=0.2
-- ER model || & MS - ER model| |+ ¢c=0.8
o . : . ; , o . ; - ,
1"min latency constraint, T Fmax Fmin latency constraint, T’ l"ma)<
(a) Performance overview (¢ = 0.5, p = 0.15, (b) Impact of the correlation parameter c
N =230,5=0.2,) (p=0.15, N =30, S =0.2)

601

N
[=)

aff | A short-range

short-range

< N=20
-+ N=40
— RS model| | s5=0.1
-- ER model| |+ S=0.3

energy conservation (%)
energy conservation (%)

N
Py -E)

— RS model| |+ p=0.1
-- ERmodel| |+ p=0.3

o

Fmin latency constraint, T’ Fmax Fmin latency constraint, T’ l"mX
(c) Impact of the number of sources N or (d) Impact of the connectivity parameter p
sensing range S (¢ = 0.5, p = 0.15,) (¢e=0.5, N=30,S5=0.2)

Figure 4.4: Performance of our off-line algorithms (c: correlation parameter, p: connectivity
parameter, N: number of sources, S: sensing range)

when T' approaches I';,4,, our algorithms achieve more than 90% energy saving for the long-
range communication, and around 50% for the short-range communication. Even when I' =
Lyin, EMR-Algo and DP-Algo can still save more than 30% of the energy for long-range
communication and 20% for short-range communication.

The reason for successful energy saving even when I' = T',,,;,, is two-fold. First, modulation
level in EMR-Algo is allowed to be varied between (0, 00) instead of [2,8]. Second, I' equals

the transmission time of the longest path in the data gathering tree. Thus, energy can still be

102

Table 4.2: The miss rate of MS (based on simulated instances for Figure 4.4(a))

source | communication || # of successful | # of failed | total number miss
model scenario instances instances of instances | rate (%)
RS long-distance 102 28 130 21
short-distance 104 16 120 13
ER long-distance 324 66 390 17
short-distance 352 38 390 10

reduced for nodes not on the longest path. On one hand, when there exists only one path in
the tree, no energy can be saved when I' = I'},;;,,. On the other hand, when the tree forms a
star-like structure, all links, except the longest ones, can be optimized for energy savings when
I' =T)in- This also explains the performance degradation of our algorithms in the ER model,
compared with the performance in the RS model. Specifically, as illustrated by Figure 4.3, the
gathering tree for the ER model forms a small cluster connected to the sink by a linear array
of sensor nodes, while the tree for the RS model is more close to a star-like structure.

The plot shows that the performance of DP-Algo is quite close to the performance of EMR-
Algo. However, the performance of MS quickly degrades when I' decreases. From Figure 2.3,
the first derivative of the energy function decreases fast as 7 tends to 0. Thus, when I is small,
the rounding procedure for solutions with high modulation levels leads to large performance
loss.

During our simulation, we also observed that when I' = T',,;,, MS fails to find feasible
solutions for some problem instances, due to the rounding procedure of the approximated
solutions from DP-Algo. The ratio of instances that MS fails over the total number of instances
is between 10 - 20% in our simulations. We define the miss rate of MS as the ratio of number of
instances that MS fails to find a feasible solution over the number of total problem instances.
The miss rate for the performed simulations is given in Table 4.2.

The simulation was performed on a SUN Bladel000 with a 750 MHz SUN UltraSPARC IIT
processor. The running time of EMR-Algo is between 0.5 to 3 second, whereas the running

time of DP-Algo is around 0.01 second.

103

Impact of Network Parameters: Figure 4.4(b) shows the energy conservation achieved by
DP-Algo with respect to variations in ¢ and I'. It was observed that for a fixed I", the energy
gain of DP-Algo slightly increases when c increases. This is because a smaller value of ¢ causes
a larger size of data packet after aggregation. Thus, the energy cost by links close to the sink
node dominates the overall energy cost of the tree. It is however difficult to reduce the energy
cost of these links since they have high a likelihood of lying on the longest path of the tree.

Figure 4.4(c) plots the performance of DP-Algo with respect to variations in N and I'. It
can be seen that when T is close to I, the energy gain of DP-Algo increases as the number
of sources increases. This is because a larger number of sources offers more opportunities for
the optimization of links on paths other than the longest one.

Figure 4.4(d) demonstrates the performance of DP-Algo with respect to variations in p and
. It can be observed that the energy saving of DP-Algo increases when p increase. This is
understandable since a large p reduces the height of the data gathering tree (the extreme case
is a star-like tree formed by setting p = 1).

Together, the above results suggest that DP-Algo is quite robust with respect to variations
in different system parameters, including ¢, p, N, and S.
Impact of the radio parameters: In Figure 4.5(a), we show the impact of radio parameter
Cpase on the performance of DP-Algo. In the figure, the x-axis represents the value of Cpgse
from 3 x 1071% to 6 x 10~ in logarithmic scale. As expected, the energy conservation achieved
by DP-Algo increases with Cpgse. Also, when I' = Ty, there is almost no difference in the
performance of DP-Algo under either RS or ER models; whereas when I' = I',,,;,,, a performance
degradation of 9-14% is observed for the ER model compared with the RS model.

To evaluate the impact of symbol rate R, we varied Ry from 10 KBaud to 1 MBaud.
Consider the modulation level within [2, 8], the above range of R, reflects a bit rate of 20 to 80

Kbps when R; = 10 KBaud and 2 to 8 Mbps when Ry =1 MBaud. We show the performance

104

100 ‘ 100 ‘
&%
P e < long range,T" = T'yax
s 801 - i S 80) 4 short range, " = Fmax
= < RS model, " = T’y z e long range,I" = Fmin
S +« RS model, T'=T S | shortrange, =T
T 60F max T 60} ~ max
2 & ERmodel, '=T . s * kR
3 ER model, T =T 3
j max g
8 aof S 40p
> > 5 5 5 5 oooooh
8 8
: W : e
O 20+ B/B’/’H-B_&BEEEE T pof
0 ‘ 0 ‘
107 10° 10° 10* 10° 10°
value of C____ symbol rate
(a) Impact of Cpgse (b) Impact of the symbol rate R

< long range,I” = Ty«
100 =
 shortrange, I' = l‘max 100

g long range,I' = i
+ shortrange, I' = l‘max o

60

@
o

long-range

@
o
T

short-range

N
o

energy conservation (%)

energy conservation (%)

< EMR-Algo
— RS model ||+ pp-Algo

-- ER model || & MS

5 6 7 8 T T nstraint, T r
highest modulation level (bits/symbol) min atency constraint, max

(c) Impact of the highest modulation level (d) Impact of the start-up energy (1 uJ)

Figure 4.5: Impact of radio parameters (correlation parameter ¢ = 0.5, connectivity parameter
p = 0.15, number of sources N = 30, sensing range S = 0.2)

of DP-Algo for RS model in Figure 4.5(b). It can be seen that the energy saving is almost
the same throughout the variation of R. This is quite understandable, since from (2.4), the
performance ratio of DP-Algo to the baseline is determined by b, but not R.

We further investigate the energy saving of DP-Algo under different settings of the highest
modulation level of the radio. In Figure 4.5(c), we show the energy saving achieved by DP-Algo

in RS model when the highest modulation level is varied from 4 to 8. As expected, lower highest

105

modulation level results in less energy saving. When the modulation level is restricted within
[2, 4], less than 20% energy saving is achieved for both long and short range communication.
We now show the impact of start-up energy of radios, which was estimated as 1 uJ [93].
In each epoch, the radio of each sensor node is started exactly once. Figure 4.5(d) shows the
performance of our algorithms with start-up energy. Though the impact of the start-up energy
to the long-range communication is almost negligible, we observe a decrease of 6-15% in energy
conservation for the short-range communication (compared with Figure 4.4(a)). This is because
the start-up energy is comparable to the transmission energy for short-range communication.

However, the energy conservation of our algorithms is still considerable in the studied scenario.

100p

®
=]
T

@
=]
T

N
o

N
N - B -

short-range

-7 RS model
— ER model
Lo latency constraint, T’ r

energy conservation (%)

o

max

Figure 4.6: Performance of the on-line protocol (correlation parameter ¢ = 0.5, connectivity
parameter p = 0.15, number of sources N = 30, sensing range S = 0.2)

4.7.3 Performance of the On-Line Protocol

Energy Conservation: We show the energy conservation achieved by the on-line protocol in
Figure 4.6. The simulated on-online protocol is based on modulation scaling where available
modulation levels are even integers within [2, 8]. The presented data is averaged over more than
150 problem instances and has a 95% confidence interval with a 10% (or better) precision. In
each instance, we generated a sensor network with 200 randomly dispersed sensor nodes. After

randomly selecting 20 source nodes, the data gathering tree was then generated using GIT.

106

When the latency constraint approaches I';,;,,, there is slight performance degradation com-
pared with DP-Algo from Figure 4.4(a). Specifically, for the RS model, we observe around 4%
less energy conservation for long-range communication and 3% for short-range communication.
This is reasonable considering the fact that only 4 options are available to set the transmission
time for each sensor in the on-line protocol, instead of the fine granularity adjustment of the
transmission time in DP-Algo. Moreover, the on-line protocol actually outperforms the modu-

lation scaling case (MS) shown in Figure 4.4(a), implying a large performance degradation of

the rounding technique used by MS.

%1072 - optimal © 107 :
15 ‘ 1— actual 2 - optimal f——————
= — baseline S5 — actual
2] = — baseline
= =3 — -
Eo 5 | E L]
[} 005

(=]
(=]

o
-
N
w
Sy
o
-
N
w
Sy

_ time (Sec _ time (Sec
x10~ (Sec) 4 x10° (Sec)
o I - constraint s * constraint
Q - [_
Q25 — gCtU?:Il] 31 — sggueellilne
> aseline - >
c 2] ol Y
g :
J1s5 <
0 2 3 4 0 1 2 3 4
time (Sec) time (Sec)
(a) Scenario A (b) Scenario B

Figure 4.7: Adaptability of the on-line protocol (correlation parameter ¢ = 0.5, connectivity
parameter p = 0.15)

Adaptability to System Variations: Our simulations were performed based on the tree
shown in Figures 4.3(a) that has 44 sensor nodes out of which 30 are source nodes. Again, we
assume that modulation scaling is used by all the nodes with the available modulation levels
being even numbers within [2,8]. The data gathering was requested every 2 milliseconds. For
the sake of illustration, we set & = 4 milliseconds, and 8 = 10. Two run-time scenarios, namely

A and B, were investigated to demonstrate the efficiency and adaptability of our protocol.

107

Scenario A: We fixed s at 200 bits. It can be calculated that I',,;, ~ 1.5 milliseconds and
Iae &~ 4.5 milliseconds. We set I' to 2.4, 3, 2.1, 1.8, 2.1, 2.7, 2.1 milliseconds at 0, 0.5, 1, 1.5,
2, 2.5, and 3.5 seconds, respectively. In real life, such variations can be caused by for example,
change of user requests.

We depict the energy cost and latency for data gathering over 4 seconds in Figure 4.7(a),
where the optimal solutions are obtained by using EMR-Algo. It can be observed that when
I' is fixed, the actual energy cost gradually decreases till it is close to the optimal, while
the latency approaches the constraint. At time 1 second, I' is varied from 3 milliseconds
to 2.1 milliseconds, which causes a violation of the latency constraint. Due to the feedback
mechanism, the transmission latency dramatically decreases as the modulation settings of all
the sensor nodes are restored to higher levels. Consequently, the energy cost is also increased.
After that, the energy cost drops again as time advances. Moreover, by setting 8 = 10, the
modulation levels of the sensor nodes were restored to the highest levels when a violation is
detected, reflected by the high peaks in the energy curve.

Scenario B: We set [' = 2.1 milliseconds, while setting s to 200, 250, 300, 200, 150, 200, and
250 at 0, 0.5, 1, 1.5, 2, 2.5, and 3.5 seconds, respectively. In real life, the change of packet size
may be caused by variations in gathered information, or the correlation parameter at sensor
nodes. The results is illustrated in Figure 4.7(b), where the optimal solutions are also obtained
by using EMR-Algo. An analysis similar to the one in scenario A can be performed.

In short, our on-line protocol is capable of saving significant energy in the studied scenarios.
The ability of the protocol to adapt the packet transmission time with respect to the changing

system parameters is also demonstrated.

108

4.8 Concluding Remarks

In this chapter, we have studied the problem of scheduling packet transmissions over a data ag-
gregation tree by exploring the energy-latency tradeoffs. For the off-line version of the problem,
we have provided (a) a numerical algorithm for optimal solutions, and (b) a faster approxima-
tion algorithm based on dynamic programming. Our simulation results show that between
20% up to 90% energy saving can be achieved by the algorithms. We have investigated the
performance of our algorithms with different settings of several key system parameters. Fur-
thermore, we have proposed a distributed on-line protocol that relies on local information only.
Our simulation results show that the energy saving achieved by the protocol is between 15% up
t0 90%. Also, the ability of the protocol to adapt the packet transmission time upon variations

in the system parameters were demonstrated through several run-time scenarios.

109

Chapter 5

Information Routing with Tunable Compression

In this chapter, we investigate the construction of a data gathering tree for joint information

routing and tunable compression.

5.1 Overview

In last chapter, we assume that maximal compression is used for data aggregation. In other
words, the data is compressed as much as possible for reducing communication load. This
method is reasonable for applications with small amount of data volume and simple compres-
sion operations (e.g., temperature sensing), indicating that communication cost dominates the
computation cost. However, in case of more advanced and computation-intensive applications
with heavy data flow (including streaming media, video surveillance, and image-based track-
ing), compression of complex data set is envisioned to have comparable amount of energy
cost as that of wireless communication. A similar situation arises when spatial compression
is applied to a large volume of data gathered over a long time period. In the above cases,
decreasing communication energy cost by compression is gained at the expense of computation

cost for compression. Thus, maximum compression might not always lead to minimal energy

110

cost. Alternative methods for performing data compression need to be exploited such that the
computation cost can be efficiently traded against the communication cost.

Towards the above purpose, we use the technique of tunable compression described in Sec-
tion 2.2.3 to achieve balanced computation and communication costs for information routing.
Specifically, we study the problem of constructing a data gathering tree spanning a set of source
nodes and determining the flow from each source node to the sink with the goal of minimizing
the sum of both computation and communication energy costs over all nodes in the tree. We
refer to our problem as the Tunable Data Gathering (TDG) problem. Consider one specific
case of our problem that has free computation and every node can always compress all of its
incoming data to one unit data. Since such a case is exactly the Minimal Steiner Tree problem,
the TDG problem is NP-Hard in general.

When lossy compression is considered, techniques such as the JPEG compression algorithm
typically involve three stages: sampling, scalar quantization, and lossless binary encoding. By
tuning parameters related to the effective sampling size and the quantization scaling, prior works
have studied the tradeoffs between the quality of the compressed image and the computation
and communication energy costs [114]. Hence, our work also complements these works by
further exploring tradeoffs between computation and communication energy at the stage of
lossless binary coding.

We consider the problem of constructing a data gathering tree spanning a set of source
nodes and rooted at a sink node. For this problem, two important data compression schemes
have been previously investigated in literature: distributed source coding [111] and compression
with explicit communication [32]. When distributed source coding such as Slepian-Wolf coding
is employed, the source data can be coded (compressed) without explicit communication among
sources. Indeed, the study in [32] shows that Shortest Path Tree (SPT) is the optimal routing

structure for such a coding scheme. However, such a theoretical limit has not been achieved by

111

any practical distributed source coding schemes yet. Hence, we focus on compression schemes
with explicit communication — to perform joint data compression requires the availability of
side information from other sources via explicit communication.

While most prior works on data gathering focus on minimizing the communication cost only,
our distinguishing goal is to minimize the sum of both computation and communication costs by
utilizing tunable compression. We refer to our problem as the Tunable Data Gathering (TDG)
problem. To facilitate the tuning of compression over the data gathering tree, we propose a
flow based model where data from each source is compressed and transmitted as a data flow
over the corresponding path from the source to the sink. Hence, the TDG problem involves
two related subproblems: to construct a data gathering tree and to determine the flow over
all paths in the tree. Consider the special case of our problem that has free computation and
every node can always compress all of its incoming data to one unit of data. Since such a case

is exactly the Minimal Steiner Tree (MST) problem, the TDG problem is NP-Hard in general.

5.1.1 Our Contributions

We handle the TDG problem by decoupling tree construction and flow determination. We first
show how the optimal flow can be determined for a given tree structure. By assuming a grid
deployment of sensor nodes, we then model and analyze and performance of two existing tree
construction methodologies, namely the Shortest Path Tree (SPT) and the Minimum Steiner
Tree (MST). The results indicate that while SPT performs well when the relative computation
cost compared with communication cost is high, MST is preferred when the relative computa-
tion cost is low. More importantly, MST provides a constant-factor approximation for the grid

deployment throughout variations of the relative computation cost.

112

We also examine the performance of approximated MST (A-MST)! and SPT for general
graphs through simulation. Our results further reveal the tradeoffs between A-MST and SPT
with respect to several key system parameters, including relative computation cost, number of
source nodes, and communication radius. Moreover, A-MST demonstrates acceptable average
performance in the studied scenarios, which leads to the conclusion that A-MST is suitable
as a practical solution due to its simplicity. For theoretical completeness, we also present a
randomized tree construction methodology that achieves poly-logarithmic approximation for

general graphs.

5.1.2 Chapter Organization

The related work is briefly discussed in Section 5.2. In Section 5.3, we give assumptions and
models of our problem, which is formally defined in Section 5.4. The performance of SPT
and MST on a grid deployment is analyzed in Section 5.5. The randomized approximation
algorithm is then described in Section 5.6. Simulation results are presented in Section 5.7.

Finally, concluding remarks are given in Section 5.8.

5.2 Related Work

The problem of constructing energy-efficient data gathering tree in wireless sensor networks
while considering data compression is gaining increasing research attention. A nice description
of several practical schemes for tree construction is presented in [87]. Using the terminologies
from [87], these schemes include routing-driven compression (RDC), compression-driven routing
(CDR), and cluster based routing. Essentially, RDC involves opportunistic data compression
over an SPT; CDR performs maximum possible compression using a MST-like routing among

source nodes before routing to the sink; and cluster based routing is a hybrid scheme of RDC

IThis is because MST is NP-Hard for general graphs.

113

and CDR. The performance metric is the accumulated number of bits transmitted over each
hop. Assuming that each source node generates one unit size of information, the study is
motivated by two extreme cases. In the case of zero data correlation, by selecting a shortest
path from each source node to route its data to the sink node, the optimal solution is the SPT.
In the case of perfect data aggregation, exactly one unit size of data shall be routed on each edge
of the tree, implying that the optimal solution is the MST. In between the above two extreme
cases, the optimal tree structure shall resemble a hybrid scheme of SPT and MST. Since data
correlation is usually high within a small area, a natural cluster-based scheme is to use a MST
structure within each cluster and a SPT to route compressed data from each cluster to the sink.
While the optimal cluster size depends on the correlation factor, a surprising result is that in
a grid-based scenario, a near-optimal cluster size can be analytically determined purely based
on the network topology and is insensitive to the correlation factor.

The idea of hybrid routing scheme in the previous section is conformed by several other
results, under various assumptions to model the data correlation. Cristescu et al. assumes a
simplified compression model [32], where the aggregation factor of a piece of information de-
pends only on the availability of side information. Assume that each sensor node in the network
generates one unit size of information. Whenever there is a side information transported to a
source node, no matter the sources and size of this side information, the output of the source
node after joint compression with the side information is a fixed value p € (0,1]. To minimize
the cost of a routing tree, we need to minimize the cost of routing information from all internal
nodes to the sink, which prefers a SPT structure. On the other hand, we also need to minimize
the cost of routing side information from a leaf node to the set of internal nodes that utilize this
side information and the sink, which favors a Minimal Spanning Tree. Hence, the optimal solu-

tion lies between a SPT and a Minimal Spanning Tree. In fact, the Shallow Light Tree (STL)

114

proposed by Bharat-Kumar et al. [19] can be used to provide a constant factor approximation
of the considered problem.

While STL provides an approximation for both SPT and Minimal Spanning Tree, the situ-
ation becomes different if the source nodes are a subset of the sensor nodes instead of all sensor
nodes. In this case, we need to construct a tree structure that simultaneously approximates
both SPT and MST. Under a more general objective function that minimizes the sum of total
cost of the tree and the accumulated length from each source node to the sink node where the
cost and length can be defined based on two independent metrics, an approximation algorithms
is proposed by Meyerson et al. [81] to achieve a log k performance bound, where k is the number
of source nodes.

A simplified version of the algorithm in [81] is used to solve the problem of transporting
information from a set of source nodes to the sink node when the joint entropy of a set of source
nodes is assumed to be a concave, but unknown function of the number of source nodes [47].
The network topology is assumed to be a complete graph with shortest path distance being the
edge cost, if necessary. The algorithm constructs a hierarchical matching tree using an iterative
method that provides a logk approximation to the optimal solution, where k is the number
of source nodes. It is noted that the assumption about concave data aggregation function
essentially leads to an identical abstraction of the information routing problem with that of the
single-source buy-at-bulk problem [9]. The key point is that the transmission cost spent on each
edge is a concave function of the number of source nodes that use this edge to communicate
to the sink. Another randomized algorithm for information routing on a grid of sensor nodes
is proposed by Enachescu et al. [39], which is proved to have a constant approximation of the
optimal performance.

While the problem studied in this chapter is motivated by the above work, it is distinguished

in modeling computation energy as well as communication energy costs. To the best of the

115

authors’ knowledge, this is the first piece of work that formally addresses such problems. This
problem is important to study as more advanced and complex applications are being designed
on sensor networks which would require increased computation complexity over large volume
of data.

Although we still model joint entropy to be a concave function of number of source nodes,
the results in [47] and [9] cannot be directly applied to our problem. This is because when
the computation energy is considered, the overall cost on each edge may not be a concave
function of the number of sources using this edge to communicate to the sink. Our work shows
that by using the notion of probabilistic metric approximation [14], a randomized algorithm
gives an expected O(log®v) approximation solution, where v is the number of sensor nodes
in the network. It is worth noting that the approximation bound can be further improved to
log v loglog v [15] or log v [41]. However, our major purpose is to illustrate the tradeoffs between
SPT and MST, hence the results in [14] suffices.

When lossy compression is considered, the so-called adaptive fidelity processing [40, 110,
114] can be used to trade energy consumption with quality of the compressed data. Lossless
compression does not present this luxury, as the data compression must respect the entropy
of the source information. However, our techniques is easily extendible to lossy compression,

provided that certain pre-specified distortion constraints need to be satisfied.

5.3 Models and Assumptions

5.3.1 Table of Notations

A list of notations used in this chapter is given in Table 5.1.

116

Table 5.1: Table of notations

NG =<V,L> the graph representing the underlying network
R set of source nodes, R CV
w; the weight of edge L; € L
sink the sink node in V'
0; number of source nodes in a subtree rooted at V; € V
Di the path from V; € R to sink
Zi the last edge on p;, i.e., edge on p; that connects to sink
a=<b a is a predecessor of b on a path
¥ relative computation energy cost
fre flow, or a specific flow from node u on edge e
g(s, f) the computation energy for compressing input data of size s
to an output of size f
H; joint entropy of ¢ > 1 unit data
p date entropy rate, i.e., p = H;
B; lower bound of compressing unit data with ¢ — 1 pieces of side
information, defined as B; = &
Bi lower bound of flow at node v;, i.e., 8; = Ls,
W; the length of a path from v; to sink
M,N metric spaces on node set V'
dpg(uy,us) distance between nodes u; and uy on metric space M
«@ approximation factor
P number of source nodes in our analytical grid deployment

5.3.2 Network Model

The underling network is modeled as an arbitrary network topology (Section 2.1.2): a graph
representation NG =< V, L > is used to abstract the underlying network with v sensor nodes
and [communication links between nodes. We assume a simplified communication mechanism
with a medium access control (MAC) protocol that ensures no packet collisions or interference
in the network (which is commonly assumed by, e.g., [87, 32, 47]). As described in Section 2.1.2,
the communication cost over each link is simply abstracted by a scalar valued weight associated
with the link that indicates the energy cost of sending a data packet of unit size over the link.
Let wg, or simply w; denote the weight of link L;. Let sink € V denote the sink node and
R C V denote the set of source nodes.

A data gathering tree is a subtree of NG rooted at sink that contains R, denoted as

T=<V',L' >, where RCV'CV and L' C L. Let ¢; denote the number of source nodes in

117

the subtree rooted at V;. Also, let p; denote the path from V; to sink, with u € p; (e € p;)
signifying that node u (edge e) is along the path. Recall our definition in Section 2.1.1, for two
nodes V1,V5 € V', V1 < V5 indicates that Vi is a predecessor of V5. Similarly, for two edges

Ly,L, € L', L; < L5 indicates that L; is a predecessor of Ls.

5.3.3 Flow-Based Data Gathering

Consider a data gathering tree over a sensor network. To clearly model the energy cost of
data compression at each node, we model data transmission over the tree as a composition
of different data flows from each source node to sink (i.e., each path from a source node to
sink over the tree corresponds to a data flow over the path). Hence, the number of incoming
packets (flows) to a given node equals the number of source nodes in its subtree. We assume
that the total computation energy spent by the node is the sum of energy for compressing each
individual incoming packet. Also, the output size for compressing each incoming packet is lower
bounded by the joint entropy of all incoming packets, which will be described later.

Now consider an arbitrary path p(u) in the tree from a source node u to sink. Let f
denote the flow over e € p(u) and z(u) denote the last edge in p(u), i.e, the edge incident to
sink in p(u). We assume that the total energy spent on data compression over the path p(u)
is determined by the flow on z(u), i.e., the total energy cost for data compression over p(u) is

calculated as

’Y .
T

Following the entropy model in [47] (which also effectively abstracts the entropy models
in [87, 32]), we assume that the joint entropy of any i source nodes, H; is a non-decreasing
and concave function of ¢ with Hy = p, where p € (0,1] is the entropy of one unit of data. We

assume that the compression of 7 incoming data flows at node v can be performed in such a

way that the lower bound for compressing each data flow equals B; = Ff , with By = H; = p.

118

In other words, we assume that when maximal compression is performed on i pieces of source
information, the fraction of compressible data of each piece is the same.

From the above flow-based data gathering and joint entropy model, for any e = (a, b) € p(u),

we have f > Bs, = I?“ (recall that 4, is the number of source nodes in the subtree rooted
at a). We also assume that H; has the property such that B; > B;;1 for ¢ > 1. Hence, when

a data packet is compressed and transmitted along p(u), the lower bound of flow decreases as

the packet approaches sink.

5.3.4 Discussion

First, our analysis is not restricted to the specific g(f) in (2.7). In fact, while the energy
characteristics of various compression algorithms have been studied in [12], to develop accurate
models for abstracting the energy cost of tunable compression is still an open problem. We note
that the tradeoffs between computation and communication energy costs essentially depend
on the convexity of the total energy cost function, for instance, shown in (2.8). Hence, the
requirement that energy cost is inversely proportional to compression ratio is in fact one nice
example that leads to such a convexity. We expect other models to be investigated in this
context.

Second, the above flow model naturally models the data (information) streaming from
sources to the sink and facilitates the computation of energy cost of compression. We consider
only energy cost under this flow model. Nevertheless, performance metrics such as delivery
latency can be defined by virtually combining different outgoing flows from a node as a whole
and assessing the resulting time cost accordingly.

Also, our problem is based on the simplified assumption that the joint entropy of any set
of i sources is H; and the flow from any of the i sources is lower bounded by B; after joint

compression. To incorporate other more sophisticate joint entropy models is part of our future

119

work. We have assumed H; as a convex function of i. In the special case of a stationary
Gaussian random field with independent sources, H; grows linearly with i. Since joint data
compression does not help reduce the data volume in such a case, SPT is the optimal tree
structure. The optimal flow on the SPT can be determined by the techniques presented in
Section 5.5.1.

Third, the assumption of determining the compression energy over a path solely based on the
flow on the last edge in the path ignores the costs of possible decompression or re-compression
at different nodes along the path. This assumption is justified by two reasons. First, based on
the study in [12], techniques such as gzip consumes very little time for decompression compared
to the cost of compression. Second, since the flow on a path decreases as it approaches the sink,
the total compression energy along the path can be approximated by calculating the energy
cost based on the flow on the last edge. Nevertheless, to model the computation cost more
accurately is part of our future work.

Fourth, Since our problem is to minimize the overall energy cost, the receiving energy of
sensor nodes can be easily incorporated into the TDG problem by adjusting the weight on

edges.

5.3.5 An Example

To illustrate the above flow model, consider the data gathering tree given in Figure 5.1, where
nodes V1, Vi, Vg, and V7 are source nodes, nodes V> and V3 are relaying nodes, and Vj is sink.
Counsider the path from V;, denoted as {V1, V5, V3,V }. Based on the structure of the tree, there
is 1 source node in the subtree rooted at Vi, which is V; itself, 2 source nodes (V; and V5) in the
subtree rooted at V2 and 3 source nodes (V1, Vs, and V5) in the subtree rooted at V5. Hence,
the lower bound of flow on the path can be calculated as B§V1 = By = H; on link (V4, V),

Bsy, = By = 22 on link (V2,V3), and By, = Bs = 2 on link (V3, V). The path together with

120

Routing tree example

v, ©

Peth fromV,toV,
2B, 2B, 2B, _
V,0—0—>0——0V,(sink)

Va Vs

Figure 5.1: An example data gathering tree and a path within it

the lower bounds of flow on each link are also illustrated in Figure 5.1 (the superscription for
fY is omitted in the figure). Similarly, the flow on the path from V; to sink is lower bounded
by By on link (V5,V2), B2 on link (V3,Vs), and Bs on link (V3, Vy), respectively; the flow on
the path from Vg to sink is lower bounded by B; on link (V5,V3) and Bs on link (V3,Vy),

respectively; the flow on the link from V7 to sink is lower bounded by Bj.

5.4 Problem Definition

Based on the models and notations in Section 5.3, our Tunable Data Gathering (TDG) problem
is formally defined as:

Given:

(i) a weighted graph NG =<V, E > with weight w; for each E; € E, sink eV, RCV,

(ii) an energy function for data compression characterized by parameter vy, and

H; .

(iii) the joint entropy of i sources, H; and hence B; = = ;

121

find a subtree T =< V', E' > that contains sink and all v € R, and flow from all v € R to

stnk, so as to minimize

>]ﬁ(2 fiw) (5.1)

VieER eEp;

subject to

YV € R,Ve = (a,b) €p; = f'> B; (5.2)

a ?

where d, is the number of source nodes in the subtree rooted at sensor node a.

5.5 Analytical Study of SPT and MST

We consider two interesting special cases of the TDG problem. In the first case, we assume
v = oo or B; = 1. Either condition leads to the obvious solution that no compression is
performed in the data gathering tree. We construct the Shortest Path Tree (SPT) of NG
by combining the shortest weighted path from every node in R to sink. Clearly, SPT is the
optimal tree construction in this case. In the second case, we assume v = 0 and B; = % In
other words, computation is free and the joint entropy of any arbitrary ¢ source nodes is always
one. Hence, the desired flow on all edges is equal to one. Apparently, MST gives the optimal
tree construction in this case.

Obviously, certain tradeoffs exist between SPT and MST, which is the main subject of this
section. The rationale behind our study is to decouple between the two ingredients of selecting
the tree construction and determining the flow from each source node to the sink. Therefore,

we first show the optimal tunable compression strategy for a given path.

122

5.5.1 Optimal Flow on A Given Tree

Given a data gathering tree and an arbitrary source node u € R, consider the path from the
source node to the sink. Without loss of generality, let p = {V1,V5,...,V,} denote the path,
where V7 is the source node, k is the number of links along the path, and Vi denotes the sink.
Let f denote a vector of flow along the path, i.e., f = {fe.,---, fi .} Since we are considering
the specific path from V;, we omit the superscription of elements in vector f as well as e in the
subscription. Hence, we use f: {fi,---, fre—1} to denote the flow vector.

To simplify the notation, let 3; to denote the lower bound of f;, where i € [n —1]. Since the
path is extracted from a given tree, we can calculate §; based on the structure of the tree (as
shown by the example in Section 5.3.5). That is, 3; = Bs,, , where dy; is the number of source
nodes in the subtree rooted at V;. Based on our model in Section 5.3.3, we have 3; < ;1.
Also, let w; denote the weight of e; = (V;,Viy1), where i € [n — 1]. Let W; denote the path
length from e; to egx—1, i.e., W; = Zf;zl w;. We slightly abuse the notation by letting 3y = 1

and W = 0.

5.5.1.1 Example Revisited

We consider the flow on path V; to Vy in Figure 5.1. Denote the flow as f = {f1, f2, f3}-
Intuitively, when the relative computation cost increases, the optimal solution shall perform
less amount of compression. In the trivial case when the computation cost is prohibitively high,
no compression is performed and we have the optimal flow as fi = f» = f3 = 1. Otherwise, the
optimal flow can be obtained by examining the following three cases, depending on the relative

cost of computation, which is reflected by ~.

1. The cost of compressing the input down to f; at node V; is more expensive than routing
data of volume ; along the path. In this case, the optimal solution is to let V; compress

the data to some z € [f1,1] and set f; = fo = f3 = z.

123

2. Otherwise, another compression at node V5 is necessary for reducing the total cost. If the
cost of compressing the input at V2 to 8> is more expensive than the communication cost

of routing /3 over e; and eg, the optimal solution is to set f1 = 81 and fo = f3 € [B2, 1]

3. The compression is so cheap that it is also beneficial to perform one more compression at

node V3. In this case, the optimal flow is f; = 1, fo = B2, and f3 € [f3, f2].

It can be understood that the optimal flow behaves as a piece-wise function of v and w;’s,
which abstracts the relative cost of computation. We assume that the weight of all edges The

optimal flow for the above example is summarized in Table 5.2.

Table 5.2: Optimal flow for the example path

case condition optimal flow
1 y>2W fi=fr=fz=1
2 y<Wiand & >BW, | fi=fo=f3€[B1,]]
3 7 <BiWzand £ > B W; f1 =P,
f2 = f3 € [B2, 1]
4 7 < B2Ws fi =P, f2 = B,
f3 € [B3, 5]

5.5.1.2 Determining the Optimal Flow

Based on the above intuition, we develop the following theorems for determining the optimal
f.

Lemma 2 For any optimal flow f over the path p as previously described, if fir1 < fi, we

have f; = B;.

Proof: Otherwise, decreasing f; to §; does not change the cost for compression over p, since
the compression energy is determined by the flow on the last link (Vi_1,V)). However, this
reduces the cost of communication over e; since the flow over e; is reduced to §;, contradicting

the optimality of the flow. []

124

Theorem 2 Given a path p(v) as previously described, if v > Wy, the optimal flow is of unit
size on all links. Otherwise, suppose that v € [W;182, WiB2_,] for some i € [k—1], the optimal
flow fis:

-

f(rY):{Bl;BZ;"'761'72761'717]0*7"'7]0*}7 (53)
H.—’

k—1

where f* = max{f;, \/WII}

Proof: If v > Wy, it means that any compression is more expensive than transmitting the
original data along the path. Hence the optimal solution is to simply transmit the data packet
without any compression. Otherwise, the proof is as follows.

First, since both W; and §; decreases with i, i.e., W; 11 < W; and §; < ;_1, the condition
for v is valid. Also, since Wy,82_, =0 and W, 3§ = W1, the range of v is within [0, Wi].

Suppose that vy € [W;182, W;3?] for some i € [k — 1]. Suppose that & = {z1,... ,zx_1}
is the vector of the optimal flow with cost €,. Let f* denote \/WI, Let fdenote the flow
constructed by setting f; = x; for 1 < j < ¢ and f; = f* for i <j <k —1. Let € denote the

cost of f We have

k-1 i1 k-1
i Y *
&—€¢ = (+ Y wjwy) = (4 + D> mjw+ [y w))
Tg—1 p f ” —
Jj=1 Jj=1 Jj=t
vy L& ¥
= + E zjwj — (= + f*W;
Th—1 I (f* fw)

Y Y *
(wki1 + xp_ 1 Wy) — (F + W) .

IN

We define an optimization problem, P(y), as to:

min €(y) = % +yW;

subject to y > 5.

125

It is easy to verify that P(y) is a convex function. We consider two cases for v €
(Wi1 87, Wil _,].
Case (i): When v € [W;82, W;3?_,], we have \/% > f3;, hence implying f* = \/% Also, we
have €'(3;) = —/;—? +W; <0and€(f;—1) = —/31;—71 +W; > 0, where €'(-) is the first derivative of
€(+). Therefore, the optimal y that leads to €'(-) = 0 lies within [3;, 8;—1]. By solving €'(:) =0,
we know that the optimal value of y actually equals f*. Thus we have ¢, — e > 0, implying
that fis actually optimal. From Lemma 2 and the fact f* € [8;, 8i—1], we have f; = j; for
1<j<i.
Case (ii): When v € [W;18?2, W;3?], we have \/WI < B;, implying f* = f3;. Also, we have
€(8;) = _Bl? + W; > 0. This means that P(y) is an increasing function when y > ;. Hence,
the value of y that minimizes P(y) is actually 8;. Again in this case, we have ¢, — ey > 0,
implying that f is also optimal.
Finally, we can combine the above two cases using a max function for f*.]
From Theorem 2, the optimal flow is trivial when v > W;. Hence, we assume v < W in
the following discussion. Theorem 2 reveals the fact that for a given value of v that is within
(Wir182,W;32] for some i € [k — 1], the optimal flow on the last k — i edges remains the
same. In fact, we can eliminating the max function in the theorem by setting f* to (3;, while

the ratio of the energy cost of the resulting flow over the optimal cost is bounded by a constant,

as shown by the following lemma.

Lemma 3 Given a path p from Vi to sink as previously described, suppose that where v €

(Wir1 82, WiB2] for some i < k — 1. Define a flow fas f= {81, B2, s Bi—1,Bir- -, Bi}
k—i

The cost off;, over the optimal is bounded by 61721764:61

126

Proof: We only need to consider the case when f differs from the optimal flow, which is Case

(i) in the proof of Theorem 2.

In this case, we have W;l? < v < W;l?_,. Let €, denote the

optimal cost and €; denote the cost of f. Let A= Z;;ll Bjwj. We have

Hence, the ratio of €5 over €,p;

€opt

Y [
0 A 1
€opt \/WT_'_ + W, Wi
= A+ 2,
. LA+
! B; w

can be bounded as:

B 5 tA+BW: W2

A+ 2AW T 280/

_ Al +3ivWi <1Bi—1+1
QBiVWi 2\/’7 -2 Bl 2

_ Bi1+ B

B 2B;

Hence, given a data gathering tree T' of NG, we can determine the optimal flow over T by

applying Theorem 2 to each path in 7', or get a constant factor approximation by applying

Lemma 3.

Moreover, let Diam(sink, R) denote the weighted diameter of NG with respect to R and

stnk, i.e., the maximum among the shortest weighted path from any node in R to sink. From

Theorem 2, we have:

Corollary 1 Given NG, if v > Diam(sink, R) x L?, the Shortest Path Tree is the optimal

tree for the TDG problem, with the flow specified by Theorem 2.

Proof: From Theorem 2, the optimal flow from any V; € R along its shortest path to sink

equals some fixed value within [1, L;] for all edges along the path. Thus, joint compression of

127

data from V; with side information from other sources only decreases the lower bound of the
feasible flow, but never reduces the optimal cost of the tree. [|

Let v* = Diam(sink, R)L?. We refer to v* as the critical point of the system.

5.5.2 The Performance Bound in A Grid Deployment

For analytical tractability, we assume a grid deployment of size r x 2r, where r source nodes at
the leftmost column needs to send information to the sink located at the bottom right corner
of the grid (similar network deployment has also been studied in [87, 97] for tractable analysis).
Each sensor node can communicate to its one hop neighbors (i.e., 8 neighbors when ignoring
boundary effects). We also assume w, =1 for all e € E.

The routing constructed by SPT and MST are illustrated in Figure 5.2. Note that although
to find an MST for a general graph is NP-Hard, the MST for the specific grid deployment in
Figure 5.2 is trivial. From Corollary 1, the SPT is optimal when v > v* = (2r — 1)L?. Hence,
we are only interested in the performance of the SPT and MST for v € [0,v*].

Let egpr denote the energy cost for SPT and ep; g7 for MST. Using Lemma 3, egpp can be

approximated as

2r—i—1

O il + Li2r =+ D)+ 3L+ 3 (7 +Lad),
v j=1 j=r

€spT = for (2r —i—1)LZ,, <y < (2r—4)Lj, i=1,...,r—1 (5.4a)
r—1
c+2—7+r2Lr+Zij, for 0 <y <rL?> (5.4b)
\ " j=1
where C' = w

128

Let ¢ = 3r — 1. Let i* be the smallest integer such that (¢ —i*)L% > v*. We can also

approximate €rg7 as follows:

4 qg—i—1 i
27 D i+ il +i(+ Lilg—i- 1)),
j=2r—1 j=1 ¢
EMST = for (q—i— 1)L, <y<(g—i)L?, i=1,...,i* (5.5a)
r—1
;—7 +3 L +r(2r — 1)Ly, for 0 <y < (2r —1)L% (5.5b)
. 7 Jj=1

O sources
A sink
O routers
2r
I:I\O 0O 0O 0O 0O 0O 0O 0o 0o 0o o
E\‘O O 0O 0O 0O 0O OO0 0 O0
E\‘O\O 0O O 0O 0O O 0O 0O 0o
| [m] O\O\O O O 0O 0O 0O 0O O ©o
D\O\O\O\O O 0O 0O 0O 0O 0 o
AR .
(a) SPT
O sources
A sink
O routers
2r
If| O 0O 0O 0O 0O 0O OO 0 0o
Il'_| 0O 0O 0O O 0O o 0o 0o 0o o o
O 0O 0O 0O 0O 0O OO 0 0O
| E O 0O 0O 0O 0O 0O OO 0 0O
O 0O 0O 0O 0O 0O OO0 O o
Igl—*0—>0—> A
(b) MST

Figure 5.2: SPT and MST routing schemes

Moreover, the minimal cost of the TDG problem is lower bounded by replacing con-

straint (5.2) with VV; € R,Ve € p;, fi > Bjg|, where |[R| = r in this particular case. In

129

other words, we assume that distributed source coding among source nodes is available at no
extra cost. It can be verified that the optimal routing for such an lower bound case forms a
SPT. Hence, the energy costs for the lower bound, €5 can be modeled as

2r\/y(2r — 1), for (2r —1)L2 <y <v* (5.6a)

€ =
LB r

L—7 +r(2r — 1)Ly, for 0 <y < (2r — 1)L2 (5.6b)

r

Based on the above results, we make the following observation about the performance bound

of SPT and MST with respect to the above lower bound on the specific grid deployment.

Observation 1 For the grid deployment in Figure 5.2, we have the following performance

bound regarding SPT and MST:

. €ESPT

1 = 0@ 5.7
’Ygg* €LB () ()

_€spr T

ilg}) €LB O(Hr) (58)
lim 25T — o) (5.9)
Y=7" €ELB

lim M7 = (1) (5.10)
¥—0 €rB

where v* = (2r — 1)L? is the critical point of the system.

Proof: From (5.6a) and the fact v* = (2r — 1)L? = Q(r), we have

Wli)nﬁ}* erp = QryAr) = Q(r?) and
. _ 2 _
Flyll)I})eLB = Q@*L,)=Q(rH,) .

130

Equation (5.7) directly follows from Corollary 1. To prove (5.8), we bound the cost of SPT

based on (5.4b). From the condition in (5.4b), we have [~ < rL, = H, and thus

r—1
C+2rH, +) H;
j=1

= C+O(rH,),

IN

lim ESPT
v—0

where C' = w = O(r?). Hence, (5.8) follows.

From the condition in (5.5a), we have - < (¢ —i)L;. Since v* = (2r — 1)L?, we have

g—i—1 i

WIHE*GMST = O(\/; Z \/;)‘*' Hj+0(i(q_i)Li)

j=2r—1 j=

O(r*) + Y Hj +O((q —)Hy)
j=1

O(r?) + O(rH,) .

Thus,

L £MST O(r*) + O(rH,)
Y—=>7v* €LB a Q(Tz)
= 0(1)+0(=2) = 0(1)

Lastly, we bound the cost of limy_,0 €prs7. From the condition in (5.5b), we have - <

(2r — 1)L,. Hence,

r—1
iig%)eMST < Z;Hj + (2r —)rL,
=

= O(rH,)

and (5.10) follows. [|

131

Though the results in Observation 1 is derived for the grid deployment in Figure 5.2, it gives
an insight into why MST may perform well even in general graph regardless of the form of H;
and the relative energy cost .2 Although MST is NP-hard on a general graph, our simulation
results suggest that even an approximated MST can be used as a practical routing scheme for

solving the TDG problem.

5.5.3 Tradeoffs Between SPT and MST

For the purpose of demonstration, we instantiate H; based on the joint entropy model from [78].

Specifically, for a stationary Gaussian random process with correlation coefficient as e~% and
a scalar quantizer with uniform step size and infinite number of levels, H; scales as O(logi) as
i — oo. Hence, we set H; = plogi, where p is the data entropy rate. According to the lossless

compression ratio for CCITT test images [27], we set p = 0.1. In Figure 5.3, we plot espr,

emst, and e p for r = 20, p = 0.1 and varying v between 0 and v* = (2r — 1)p? = 0.39.

200 -1.2
11 -
o
150 R

log @

g 5
@] =
© o
> 100 106 £
B 3
[%)]
2 s

o {04

e ~o

50r " © EgpT 2

', - EMSteinerT 10.2
! €
LB
O L L L O
0 0.1 0.2 0.3 0.4

relative computation cost (y)

Figure 5.3: Performance of SPT and MST for grid deployment

2Theoretically, the performance of MST for the TDG problem in general graphs is unbounded in the worst
case.

132

From Figure 5.3, we can clearly observe the tradeoffs of the performance of SPT and MST
with respect to variations in y. When = is large, SPT outperforms MST with espr approaching
to ez p. This is because large computation cost discourages data compression, hence shortest
paths from source nodes to sink are preferred for saving communication costs. However, the
performance of MST is also quite satisfactory when v = 0.4, with no more than 15% increase
over SPT.

On the other hand, when 7 approaches to zero, MST provides a nearly 40% reduction with
respect to SPT. Essentially, when the computation costs is low, compressing data from multiple
sources before routing to the sink gains great advantage in reducing the flow on the tree and
hence the communication costs. In the special case of v = 0, our problem becomes similar to the
scenario studied in [87], where tradeoffs between MST and SPT exist due to variations in spatial
correlation (essentially captured by H;). Briefly, results in [87] state that MST outperforms
SPT when the spatial correlation among source nodes is high and SPT outperforms MST when
the spatial correlation is low. In our study, the specific form of H; determines that MST
performs better than SPT, which is in keeping with the results presented in [87].

Though the above analysis is based on a specific grid topology, it clearly shows that MST
provides reasonably good performance with respect to variations in . Another important
insight is that the optimal solution to TDG shall explore the tradeoffs between SPT and MST
when «y varies. This is not surprising since y essentially abstracts the cost of compression. Hence,
the extent to which routing shall be driven by compression depends on 7. The above analysis
suggests a tree structure that resembles both SPT and MST for solving the TDG problem. In

the next section, we show the use of a hierarchically clustered tree for this purpose.

133

5.6 A Randomized O(log?v) Approximation

In this section, we show a randomized algorithm with an expected O(log? v) approximation
performance based on the k-hierarchically well-separated tree (k-HST) proposed in [14] (recall
that v is the number of vertices in NG). The key idea is to approximate the graph NG with a
set of k-HST’s such that the routing selected according to a randomly chosen k-HST is expected
to have a cost at most O(log” v) times the optimal.

We first give the notion of probabilistic metric approximations from [14]. Let V' denote a
set of n points and M a metric space over V where the distance between u; € V and us € V

is denoted by dps(uy,uz).

Definition 10 A metric space N over V, dominates a metric space M over V, if for every

ur,u2 € V, dn(u1,u2) > dy(ur,us).

Definition 11 A metric space N over V, a-approximates a metric space M over V, if it

dominates M and for every uy,us € V, dy(ui,us) < a-dp(ug,uz).

Definition 12 A set of metric spaces S over V', a-probabilistically-approzimates a metric space
M over V, if every metric space in S dominates M and there exists a probability distribution

over metric spaces N € S such that for every uy,us € V, E(dn(u1,us)) < a-dps(ug,us).

Definition 13 A k-hierarchically well-separated tree (k-HST) is defined as a rooted weighted

tree with the following properties:
e The edge weight from any node to each of its children is the same.

o The edge weights along any path from the root to a leaf are decreasing by a factor of at

least k.

In the above definition, k > 1 is a pre-specified constant. The main results in [14] can be
simply stated as follows:

134

Theorem 3 FEvery weighted connected graph NG can be a-probabilistically-approzimated by
a set of k-HST’s constructed from NG, denoted as S, where a = O(log®v). Moreover, the

probability distribution over S is computable in polynomial time.

The construction of the k-HST’s is based on a randomized recursive partitioning algorithm.
Regarding NG as a cluster of nodes, the algorithm starts by randomly partitioning NG into a
set of sub-clusters, with each sub-cluster having a diameter at most 1/k of the diameter of NG.
A set of nodes are then created for NG and each of the sub-clusters. These nodes form a tree
rooted at the node created for NG with all the edge weights set to 1/k of the diameter of NG.
The above procedure is recursively performed for each sub-cluster till each sub-cluster contains
only one node from NG. Details of the construction of the set of k-HST’s can be found in [14].

Using the above metric approximations, we can show:

Theorem 4 Given a TDG problem on graph NG with optimal cost equal to C, there is a
feasible solution on the set of k-HST’s that a-probabilistically-approximate NG with the expected

cost (over the distribution on the k-HST’s) to be at most aC'.

Proof: Consider an arbitrary path from the optimal tree to the TDG problem, denoted as 7.
Without loss of generality, let let p = {V1,V5,..., Vi } denote the path from V; to sink, where
V1 is the source node, k is the number of links on the path, and V} is the sink. We still use
the notations in Theorem 2. Let f; denote the flow on link e; = (Vj, Vjy1), where j € [k —1].

From Theorem 2, the cost of p, C'(p) can be calculated as:
i—1 5 k—1

Clp) = w;Bj + 7 + Y wy,
j=1 Jj=t

where v € (W12, W;8%_,] for some i, and f* € [B;, Bi—1]-
Consider any edge e; = (V},Vj41) on p. We associate with the edge, in an arbitrary tree
M € S, a path M,; between V; and Vj;1 of length das(e;) = wianr, where E(an) = O(a).

135

Thus, the path p is associated with a path in M, denoted as pyy = {M.,, Me,,... , M., _,}.
In the following, we construct a feasible flow on pj; and bound the cost of this flow by O(«)
times the cost of p. Note that the path pys may not be simple, but this does not affect the
construction of a flow on the path and the calculation of the cost of the flow.

For each path in M., € M that corresponds to an edge in e; € T, let 3}, denote the lower
bound of the flow over each link e along M. ;. Now consider the optimal tree T* and the tree
composed by all M,,’s, denoted as Th. Since the number of source nodes that have their flow
going through e}, in Ths cannot be less than the number of flows going through e; in T*, we
have 3}, < B;. Recall that f; is the flow on edge e; over p in the optimal solution. Thus, setting
the flow on each edge of M., to be f; gives a feasible flow on pjs. Moreover, the expected cost

of this flow can be calculated as:

i—1 k—1
Clom) = Y dule;)B;+ fl + 1> due))
j=1 j=i

i—1 k—1

< aMijBj + % +apuf” ij
j=1 Jj=t

< auC(p)

where v € [W; 1182, W; 8%] for some i, and f* € [3;, Bi—1]-

The above result indicates that for each path in 7, we can construct a feasible path in an
arbitrary M € S, with the cost of the path to be bounded by ajs. Since the cost of T* is the
sum of C'(p) over all nodes in R and E(aps) = O(w), the theorem is proved. [|

It is easy to show that the optimal solution to a TDG problem over a tree T is simply the
composition of routes from each node in R to sink on T'. Thus, by mapping each route in 7" to
a path in NG, we can get the data gathering tree in NG. The problem with the mapping is
that from the construction of 7', every node in NG actually corresponds to a leaf in 7', which

means all internal nodes in 7" do not correspond to the nodes in NG. To handle this issue, we

136

simply map each internal node in 7' to an arbitrary node in the cluster corresponding to the
internal node. From the fact that the weight of any edge incident from the internal node is 1/k
of the diameter of the corresponding cluster, the possible increase of path length resulting from
the above mapping is bounded by a factor of constant k.

Thus, we have the following algorithm:

1. Choose at random a tree T' € S.

2. Map the route from each v € R to sink on T to a path on NG from v to sink as previously

described.
3. Determine the optimal flow on each path based on Theorem 2.

Theorem 5 Given a TDG problem on a graph G, the above randomized algorithm gives a

O(log® v) approzimation.

5.7 Simulation Results

5.7.1 Simulation Setup

A sensor network was generated by randomly scattering v sensors in a unit square with a
uniform distribution. The largest communication range of the radio devices was set to r, which
in turn determines the number of neighbors for each sensor node to be around vrr? (ignoring
boundary effect). The weight on each edge can be modeled by using various path-loss models
in wireless communication. For our purpose, we set the weight on each edge to be the geometry
distance between the two nodes incident to the edge. The sink node was always fixed at the left-
bottom corner of the square, while the source nodes were randomly selected from all the sensor
nodes in the square. We used the same joint entropy model as the one given in Section 5.5.3.
The performance of three tree construction methods, namely the SPT, MST, and the k-HST
(or simply HST), is studied by simulation. While SPT and k-HST can be constructed based on

137

polynomial time algorithms, the construction of MST is NP-Hard for general graphs. We used
the Greedy Incremental Tree (GIT) algorithm [68] that gives a 2-approximation MST, with
A-MST denoting the resulting approximated MST. Moreover, the lower bound of the TDG
problem were obtained using the relaxation method described in Section 5.5.2 with p fixed to
0.1.

All the data shown in this section is averaged over 300 instances such that they have a
95% confidence interval with a 5% (or better) precision. For each instance, the sensor field was

randomly generated based on the above description.

5.7.2 Results

12 112
8r 8r £
=7
€ I3 1 T>t 41
A-MST “SPT
'§) Ea-msT CspT y g
V4 A
. 6f 7 . g . 6 */»{;7/ los g
b > b ./‘6 >
8 5 a /':/,/ + SPT 5]
o = O N v S A— =
> 106 2 > 5/ AMST) o6 2
Saf > B4 A LB ;
2 o2 /\'7 HST o
@ {foas @ & / 104G
b + SPT 2 2
2r el 2t]
/ + A-MST = =
v B H0.2 {0.2
/
P HST YV/
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01

relative computation cost () relative computation cost (y)

(a) Number of sensor nodes n = 400 (b) Number of sensor nodes n = 50

Figure 5.4: Impact of the number of sensor nodes n and the relative computation cost ~
(|R| =30,r=0.2)

5.7.2.1 Impact of the number of sensor nodes n and the relative computation cost

v

For the results shown in Figure 5.4(a), we fixed v = 400, |R| = 30, r = 0.2, while varying

within [0,0.01] (we have v* = Diam(sink, R)L? ~ 0.014). The first thing to notice is that

138

the simulation results in general graphs conform the analytical tradeoffs between SPT and
A-MST described in Section 5.5.2. The performance of SPT approaches to the lower bound
when + is close to 0.1, while A-MST outperforms SPT when 7 tends to zero. As expected,
HST performs in between SPT and A-MST throughout the variations in . More importantly,
A-MST demonstrates quite acceptable performance throughout the variations of 7v. The curves
of eprsr/espr clearly show that A-MST offers 60% energy savings over SPT for low vy, and less
than 20% increase over SPT at high ~.

We also illustrate the results for n = 50 in Figure 5.4(b). We observe that the tradeoffs
between SPT, A-MST, and HST still hold. Also, that the energy cost for each tree construction
decreases with n when -y is large, since better routing can be discovered with more sensor nodes
available in the field. However, because SPT always routes through the shortest path which
may hinder data aggregation, the energy cost of SPT increases with n when v = 0.

The lesson we learn from the results is that when the relative computation cost «y is known,
either SPT or A-MST can be selected accordingly as a practical routing scheme. A-MST per-
forms well on the average, with only slight degradation compared to SPT when v is large.
Although HST can be used to provide an approximation with guaranteed performance bound,
the complexity involved in the implementation of HST does not gain much performance ad-
vantage over A-MST in the studied scenarios (although theoretically A-MST does not have a

performance bound).

5.7.2.2 Impact of the number of source nodes |R| and v

For the results shown in Figure 5.5, we fixed v = 200, r = 0.2, while setting |R| to 20 or 40 and
varying v within [0,0.01]. It is quite understandable that the energy costs of all tree structures
increase with |R|. Nevertheless, the tradeoffs between SPT, A-MST, and HST still hold for

different |R)|.

139

..ql.2 cql2
L ¥

8 8 \ oo
P ¥ SPT «
Ep-msT'EsPT *A-MST| 1 _ & msTEspT * 7
A4
. LB w% . * RN wf,“,
bag * v bas
o HST 08 5 @ . g V 0.8 g
§ ol— g ¥ O,_
= 06 B = * 57 o6
Sa T B ¥ 3
@ b < @ X <
S ¥ow g oy v SPT o
10.4 © & * A-MST 0.4 ©
ko) 28
2 E 2k LB §
H0.2 : HST 102
hd
A
» *
0 0002 0.004 0.006 0.008 0.01 0 0002 0.004 0.006 0.008 0.01
relative computation cost (y) relative computation cost (y)
(a) Number of source nodes |R| = 20 (b) Number of source nodes |R| = 40

Figure 5.5: Impact of the number of source nodes |R| and the relative computation cost
(n =200, r =0.2)

5.7.2.3 Impact of the communication range r and v

For the results shown in Figure 5.5, we fixed v = 200, |R| = 30, while setting r to 0.1 or 0.3 and
varying v within [0,0.01]. The tradeoffs between SPT, A-MST, and HST are still apparent for
different r. It can also be observed that increasing either r or n leads to very similar impact on
the performance of different tree structures. This is because both result in increased number

of neighbors, which in turn offers opportunities for better tree construction.

5.8 Concluding Remarks

In this chapter, we have studied the Tunable Data Gathering (TDG) problem of constructing a
data gathering tree in wireless sensor networks while taking both computation and communica-
tion energy into consideration. Such problems are important for the development of advanced
and complex applications for sensor networks that involve increasingly high computation en-
ergy cost. To facilitate the tradeoffs between computation and communication energy, we have

applied the notion of tunable compression in the TDG problem.

140

L2 1.2
8 b 8t B \
; T ‘ » T
Ea-msT EsPT & Er-msTCspT " &
0 n
6f bt 6 * vow
" 085 o * v os g
D 3 @ * v 3
Q ° o) v °
o 5 9 * v =
> 06 2 > v 06 2
245 J >a4r * T
@ < o 2 <
c w c * -V w
@ {oas © Y 045
2 4 SPT]
il E 2 s ¥ AomsT E
02 v o LB 0.2
* HST
0 0002 0004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
relative computation cost (y) relative computation cost (y)
(a) Communication range r = 0.1 (b) Communication range r = 0.3

Figure 5.6: Impact of the communication range r and the relative computation cost vy (n = 200,
|R| = 30)

We have developed suitable energy model for tunable compression and a flow based model
for gathering information from correlated sources. We have derived the optimal solution for
scheduling tunable compression at different nodes on a given data gathering tree. Further,
we have both analytically and empirically illustrated the tradeoffs between two data gathering
trees, namely the Shortest Path Tree (SPT) and the Minimal Steiner Tree (MST). We showed
that SPT performs close to optimal when the relative computation cost vy is high, while MST
performs better when - is low. Thus, the availability of such information would help the network
designers to select the appropriate routing scheme. When information about v is unknown or
if it shows large application-specific spatio-temporal variations, a randomized algorithm can be
used to provide a guaranteed poly-logarithmic approximation. However, we have shown that
the simple (greedy) approximation of MST (A-MST) provides a constant-factor approximation
for the grid deployment and very acceptable performance on the average for general graphs.

Due to its simple implementation, the A-MST is attractive for practical applications.

141

Chapter 6

Concluding Remarks and Future Directions

In this chapter, we present concluding remarks of the thesis and a list of future research

directions.

6.1 Concluding Remarks

We have presented techniques for three specific topics centered around cross-layer optimiza-
tion for energy-efficient information processing and routing in wireless sensor networks. We
summarize the three topics along four dimensions, including their functionalities, objectives,
performance constraints, and the tradeoffs enabled by the investigated system knobs.

From the perspective of application level functionality, these three topics cover various stages
of information processing and routing, including in-cluster information processing, information
transportation over a given tree substrate, and the construction of a routing tree. As pointed
out in Chapter 1, these three topics are particularly suitable for certain cluster-based network
infrastructure [30, 52, 106, 130, 129]. In such an infrastructure, information sensing and proper
information processing is performed in a localized fashion in each cluster while the output

from all clusters are then routed to the base station. By addressing these various stages of

142

information processing and routing, we believe that our work provides a framework over which
various extensions can be further overlaid. We are also aware of other schemes for information
processing and routing, for instance, the network flow-based scheme [56, 62, 58]. To apply the
presented optimization techniques in the context of such schemes are very interesting topics.

From the perspective of optimization objectives, we aim to balance the energy cost of sensor
nodes for in-cluster processing or to minimize the overall energy costs for the other two topics
on information transportation and routing. While both objectives can be used to improve the
energy-efficiency of the system, their pros and cons still have not been well quantified by any
research efforts at this time. In general, to balance the energy cost can be used to provide
fairness in the lifetime of sensor nodes. By avoiding the so-called “hot spots” in the network,
which consist of a set of heavily loaded sensor nodes that die earlier than other sensor nodes due
to depleted energy, we gain advantages in terms of network connectivity and coverage. However,
to balance the energy cost may not lead to a minimal overall energy cost, hence potentially
reducing the lifetime of the system. Also, people can argue that in a highly dense network,
energy-balance can be realized by other system knobs such as sleep scheduling. Therefore, it
may be easier for just minimizing the total energy cost of awaking sensor nodes while still
achieving certain extent of energy-balance across the system. Future works are needed to
further justify the tradeoffs between the two objectives.

From the perspective of performance constraints, we have considered real-time latency con-
straint for both in-cluster processing and information transportation over a given tree substrate.
Optimization under such a constraint is important for many mission-critical applications that
are envisioned in the near future [77, 18, 21]. One of the unsolved issues is that the latency
constraint for the above two operations is normally given as a whole from the user. It is not
clear how to break the constraint into two parts that can be applied to the two operations

respectively. In the topic of information transportation over a given tree, the impact of joint

143

information entropy is addressed by assuming a given aggregation function. Also, the constraint
of joint information entropy is explicitly considered in the topic of constructing a routing tree.
However, the latency constraint is not considered in this topic due to its high complexity.
We also note that there are other performance metrics, including throughput and information
fidelity that can be considered in future.

From the perspective of involved system knobs, we have presented an unified scheme for
voltage scaling and rate adaptation of in-cluster processing to explore the energy-latency trade-
offs. A similar tradeoff is explored for information transportation over a given tree. Although
not explicitly emphasized, the work on in-cluster processing also achieves certain balance be-
tween the computation and communication energy costs. Such a balance is explicitly addressed
by using tunable compression in the problem of information routing. When other performance
metrics are considered, we can imagine a larger tradeoff space by employing different system

knobs accordingly, including those to be discussed in the next section.

6.2 Future Directions

There are several possible directions to extend the works presented in this thesis. We first
discuss in detail the notion of adaptive fidelity algorithms, an interesting system knob that is
closely related to the presented works. Then we will identify a set of future directions in a broad
context, of information processing and routing for sensor networks. These directions are chosen
to address issues including node mobility, wireless communication reliability, and integration

with existing technologies, respectively.

144

6.2.1 Adaptive Fidelity Algorithms

While adaptive fidelity algorithms were briefly mentioned in Chapter 5, we present a more
detailed discussion here. According to the definition of Estrin et al. [40], “adaptive fidelity al-
gorithm is one where the quality (fidelity) of the answer can be traded against battery lifetime,
network bandwidth, or number of active sensors”. An understanding of this definition at a
higher level of abstraction is that the fidelity of the information delivered to end users is one
of the application level performance metrics that can be traded against each other, including
computation and communication capabilities and energy costs. Hence, by considering adap-
tive fidelity algorithm, we enlarge the design space of cross-layer optimization with one more
dimension.

One example given by Estrin et al. [40] is that we can selectively switch off certain portion
of sensor nodes in object localization. While the precision of the object location may be com-
promised because less sensor nodes are involved in the triangulation process, the energy costs
of the localization is also reduced. Consider another example of JPEG in image compression.
Studies have shown that by tuning two parameters — quantization level and Virtual Block Size
(VBS) — it is possible to trade the image quality with both processing delay and compression
output size [114]. While processing delay can be linearly translated to computation energy, the
output size can also be translated to either bandwidth requirement or communication energy.

To apply adaptive fidelity algorithms into the context of information processing and routing
in sensor networks involves several challenges. The major challenge is to identify the suitable
system knobs to realize graceful tradeoffs between the information fidelity and the energy costs,
which seems to be very application-specific.

One example is the so-called energy scalable algorithm proposed by Sinha et al. [110] that
performs algorithmic transform such that a nice energy ws quality scaling can be achieved for

a specific set of computation. Consider the simple example of calculating the sum of a list of

145

numbers. The key idea of the transform is to sort the vectors so that the numbers that might
dominate the final sum are accumulated first. In case that the energy budget is not sufficient for
performing all the required adding operations, the last several numbers that are least significant
are ignored. By doing so, the accuracy of the final sum can be gracefully traded against the
energy cost. Such a transform may be more complicated for other applications (please refer
to [110] for several examples pertinent to real applications). Also, the overhead of the transform
should be relatively small.

When image compression is concerned in video surveillance applications, the aforementioned
two system parameters — quantization level and VBS — can be used to adjust the quality
of the delivered image and both computation and communication energy costs. Intuitively,
quantization level affects the precision of the sampling while VBS tunes the fraction of pixels
that are sampled by the compression algorithm. Hence, we can either increase quantization level
or decrease VBS to reduce the computation intensity and the output size of the compression,
but with degraded image quality.

Another challenge lies in the inter-relationship between adaptive fidelity algorithms and
other system knobs including the three that have been investigated in this thesis. For instance,
it is not clear to us how the above algorithmic transform can be integrated with voltage scaling
to achieve further reduced energy cost for performing a computation task with latency con-
straint and certain tolerance in the accuracy of the results. Also, it is not clear how the above
coding techniques for image compression can be integrated into a system with channel coding
techniques at wireless communication level (including rate adaptation) and application level
tunable compression.

Moreover, it is understood that the integration of adaptive fidelity algorithms with other

system knobs should also be quite application-specific. Hence, identify the set of applicable

146

system knobs for a specific application scenario is a crucial step (which in fact already holds in

the broad context of cross-layer optimization).

6.2.2 Directions from a Broad View
6.2.2.1 Consideration for Mobile Sensor nodes

The works in the thesis are based on static networks where mobility of sensor nodes are not
considered. Another trend in WSNs is the integration of mobile nodes into the traditionally
static network [59]. The presence of mobile nodes will change the basic method for routing
information across the network, implying a possible integration of existing results in mobile ad
hoc networks together with coding techniques for correlated information source.

An interesting approach for information processing and routing in mobile WSNs is to use
mobile nodes to transport and gather information from stationary nodes, which in most cases
are sparsely dispersed. In such an approach, mobile nodes will affect the de-composition of
system energy cost — a large portion of the system energy will be spent on moving the mobile
nodes. Hence, a carefully scheduled mobility of nodes is crucial to maximize the system lifetime.
Knowledge on information availability and correlation among sources can be used to assist the
mobility scheduling so that energy is saved by avoiding visiting nodes with no new information.

Intuitively, various tradeoffs between the energy cost and the quality of the gathered infor-
mation can be explored. In case of unlimited storage at all stationary nodes, the quality of
the information can be captured by the timeliness of the gathering process. In case of limited
storage, stale information at stationary nodes needs to be discarded when the storage capacity
is approached. Hence, the quality of the information can also be measured by its completeness.

There are also types of WSNs where all nodes are mobile and need to cover the monitoring
environment by autonomous moving [59]. In this case, tradeoffs between the energy cost of the

system and its coverage can be explored.

147

6.2.2.2 Cooperation with Routing Diversity

Routing diversity has been considered in various studies [45, 66, 83, 50, 71]. Two models
have been considered with different focus of routing technology. When multi-path routing is
considered at the network layer, a simple disk model is often used to abstract the wireless
transmission [45]. The key point is to identify a set of disjoint paths to route the packets
such that a reliable packet delivery can be achieved above unreliable wireless communication.
However, other than opportunistic data aggregation, existing techniques for multi-path routing
have not formally addressed the issues for collaborative information processing with routing.
To address these issues is challenging due to the fact that multiple information flows from the
same source become available in the network. However, to efficiently use the advantage of data
aggregation is crucial to reduce the relatively high cost of multi-path routing.

At the physical layer, routing diversity considers the exact behavior of fading channels using
probabilistic models and exploits the broadcast property of wireless transmission to provide
increased throughput and reliability [66, 83, 50, 71]. For example, the transmission of the
same packet from multiple nodes can be coordinated to achieve the effect of multi-antenna
transmission [66]. However, existing studies on routing diversity at physical layer also have not
considered the collaboration between information processing and routing, which is an interesting

and challenging topic in the future.

6.2.2.3 Integration with Sleep Scheduling

Sleep scheduling is also an important and widely used technology for low-traffic scenarios. It has
been applied at various layers for different purposes, including reducing interference at physical
layer, optimizing packet scheduling at MAC layer, enabling topology and routing control at

network layer, and tuning sensing coverage at application layer. It is however not clear how to

148

integrate the techniques proposed in the thesis with existing techniques for sleep scheduling.
In the following, we discuss several relevant issues.

From the perspective of the entire system, the topology and routing control enabled by sleep
scheduling at network layer leads to re-construction of the network infrastructure from time to
time. Hence, there should be certain mechanisms to signaling the change in the members of
clusters, or the structure of the routing tree. Consequent adaptations to re-schedule the com-
putation and communication tasks according to the changes are also necessary. For example,
for the problem of information transportation over a given tree substrate, our on-line protocol
can also be used to handle changes in the tree structure due to its feedback packet. However,
for the problem of in-cluster processing, an on-line adaptation mechanism is missing. A basic
approach is to re-calculate the task assignment every time change of the cluster occurs, hoping
to amortize the cost of re-calculation in the case that such changes are rare. However, more
efficient approaches are expected for real systems.

From the perspective of individual nodes, it is not clear how our rate adaptation based
techniques can co-exist with sleep scheduling based protocols on a specific node. In fact, it is
not clear how sleep scheduling policy designed at different layers could co-exist in the first place.
It seems that coordination among these techniques are needed to provide an arbitration policy
so that decisions for the most significant functionality can overwrite decisions for less critical
needs. Considering the fact that there might be potentially multiple applications simultaneously
running in the system, this kind of coordination is not always easy. For example, using rate
adaptation on a sensor node may reduce both space and time re-usability for nodes in proximity,

which may affect the behavior and performance of certain sleep scheduling based protocols.

149

Reference List

[1]

[6]

[7]

[8]
[9]

Z. Abrams, A. Goel, and S. Plotkin. Set k-cover algorithms for energy efficient monitoring
in wireless senosr networks. In ACM/IEEE International Symposium on Information
Processing in Sensor Networks, Apr. 2004.

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow. IEEFE
Trans. on Information Theory, 46:1204-1216, 2000.

M. H. Ahmed, H. Yanikomeroglu, D. D. Falconer, and S. Mahmoud. Performance en-
hancement of joint adaptive modulation, coding and power control using cochannel-
interferer assistance and channel reallocation. In IEEE Wireless Communications and
Networking Conference (WCNC), Mar. 2003.

O. B. Akan and I. F. Akyildiz. ARC: The analytical rate control scheme for real-time
traffic in wireless networks. IEEE/ACM Trans. on Networking, June 2004. to appear.

S. Aldosari and J. Moura. Fusion in sensor networks with communication constraints.
In ACM/IEEE International Symposium on Information Processing in Sensor Networks,
Apr. 2004.

K. Arisha, M. Youssef, and M. Younis. Energy-aware TDMA-based MAC for sensor net-
works. In IEEE Workshop on Integrated Management of Power Aware Communications,
Computing, and Networking (IMPACCT), May 2002.

E. Armanious, D. D. Falconer, and H. Yanikomeroglu. Adaptive modulation, adaptive
coding, and power control for fixed cellular broadband wireless systems. In IEEE Wireless
Communications and Networking Conference (WCNC), Mar. 2003.

ATMEL ATmegal28L Datasheet. http://www.atmel.com.

B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Annual Symposium on Foun-
dations of Computer Science (FOCS), 1997.

H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Determining optimal processor
speeds for periodic real-time tasks with different power characteristics. In 13th Euromicro
Conference on Real-Time Systems, June 2001.

K. Balachandran, S. R. Kadaba, and S. Nanda. Channel quality estimation and rate
adaption for cellular mobile radio. IEEE J. of Selected Areas in Communication (JSAC),
17:1244-1256, 1999.

K. Barr and K. Asanovi¢. Energy aware lossless data compression. In First International
Conference on Mobile Systems, Applicatiosn and Services, May 2003.

G. Barriac, R. Mudumbai, and U. Madhow. Distributed beamforming for information
transfer in sensor networks. In ACM/IEEE International Symposium on Information
Processing in Sensor Networks, Apr. 2004.

150

[14] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In Annual Symposium on Foundations of Computer Science (FOCS), 1997.

[15] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Annual ACM Sympo-
sium on Theory of Computing (STOC), 1998.

[16] E. M. Belding-Royer, P. M. Melliar-Smith, and L. E. Moser. An analysis of the op-
timal node density for ad hoc mobile networks. In IEEE International Conference on
Communications (ICC), 2001.

[17] T. Bell, M. Powell, J. Horlor, and R. Arnold. The Canterbury Corpus.
http://www.cosc.canterbury.ac.nz.

[18] P. Bergamo, S. Asgari, H. Wang, D. Maniezzo, L. Yip, R. E. Hudson, K. Yao, and
D. Estrin. Collaborative sensor networking towards real-time acoustical beamforming in
free-space and limited reverberance. IEEE Trans. on Mobile Computing, 3(3), July 2004.

[19] K. Bharat-Kumar and J. Jaffe. Routing to multiple destination in computer networks.
IEEE Trans. on Computers, 3(31):343-351, 1983.

[20] R. Bhatia and M. Kodialam. On power efficient communication over multi-hop wireless
netowks: Joint routing, scheduling and power control. In IEEE InfoCom, Mar. 2004.

[21] G. Boone. Reality mining: Browsing reality with sensor networks.

[22] D. Bradinsky and D. Estrin. Rumor routing algorithm for sensor networks. In ACM
International Workshop on Wireless Sensor Networks and Applications (WSNA), Sep.
2002.

[23] T. D. Braun, S. Ali, H. J. Siegel, and A. A. Maciejewski. Using the Min-Min heuristic to
map tasks onto heterogeneous high-performance computing systems. In 2nd Symposium
of the Los Alamos Computer Science Institute, Oct. 2001.

[24] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen. A dynamic voltage
scaled microprocessor system. IEEE J. of Solid-State Circuits, 35(11), Nov. 2000.

[25] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power CMOS digital design.
IEEE J. of Solid-State Circuits, 27(4):473-484, Apr. 1992.

[26] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coor-
dination algorithm for topology maintenance in ad hoc wireless networks. In ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom), pages 85-96,
July 2001.

[27] Compression ratios. http://www.cs.waikato.ac.nz/ singlis/ratios.html.

[28] M. Conard, M. Marrakchi, Y. Robert, and D. Trystram. Parallel Gaussian elimination
on an MIMD computer. Parallel Computing, 6:275-295, 1988.

[29] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[30] Cougar Project. http://www.cs.cornell.edu/database/cougar.
[31] R. L. Cover and J. A. Thomas. Elements of Information Theory. John-Wiley and Sons
Inc., 1991.

151

[32] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated data gathering.
In IEEE InfoCom, Mar. 2004.

[33] R. L. Curz and A. V. Santhanam. Optimal routing, link scheduling and power control in
multi-hop wireless networks. In IEEE InfoCom, Apr. 2003.

[34] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path met-
ric for multi-hop wireless routing. In ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom,), Sep. 2003.

[35] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task graphs for free. In International
Workshop on Hardware/Software Codesign, pages 97-101, Mar. 1998.

[36] T. ElBatt. On the scalability of hierarchical cooperation for dense sensor networks. In
ACM/IEEE International Symposium on Information Processing in Sensor Networks,
Apr. 2003.

[37] T. ElBatt and A. Ephremides. Joint scheduling and power control for wireless ad hoc
networks. IEEE Trans. on Wireless Communications, 3(1), 2004.

[38] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using

reference broadcasts. In Symposium on Operating Systems Design and Implementation
(OSDI), Dec. 2002.

[39] M. Enachescu, A. Goel, R. Govindan, and R. Motwani. Scale free aggregation in sensor
networks. In Ist International Workshop on Algorithmic Aspects of Wireless Sensor
Networks (Algosensors), 2004.

[40] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable
coordination in sensor networks. In ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages 263-270, Aug. 1999.

[41] J. Fakcheroenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. In Annual ACM Symposium on Theory of Computing (STOC),
2003.

[42] G. Fohler and K. Ramamritham. Static scheduling of pipelined periodic tasks in dis-
tributed real-time systems. In 9th Euromicro Workshop on Real Time Systems, 1997.

[43] A. E. Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu, and S. Zahedi. Energy-efficient
scheduling of packet transmissions over wireless networks. In IEEE InfoCom, June 2002.

[44] S. Ganeriwal, R. Kumar, S. Adlakha, and M. B. Srivastava. Network-wide time syn-
chronization in sensor networks. Technical report, University of California, Los Angeles,
2002.

[45] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient, energy-efficient
multipath routing in wireless sensor networks. In ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom,), pages 251-254, July 2001.

[46] A. Giridhar and P. R. Kumar. Computing and communicating statistics in sensor net-
works. In International Symposium on Information Theory, June 2004.

[47] A. Goel and D. Estrin. Simultaneous optimization for concave costs: Single sink aggre-
gation or single source buy-at-bulk. In ACM-SIAM Symposium on Discrete Algorithms,
Jan. 2003.

152

[48]

[49]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards efficiency and porta-
bility: programming with the bsp model. In 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 1-12, June 1996.

F. Gruian and K. Kuchcinski. LEneS: Task scheduling for low-energy systems using
variable supply voltage processors. In Design Automation Conference (DAC), pages 449
455, 2001.

M. Haenggi. Analysis and design of diversity schemes for ad hoc wireless networks. IEEE
J. of Selected Areas in Communication (JSAC), 23(1):19-27, Jan. 2005.

S. Hanly and D. Tse. Power control and capacity of spread-spectrum wireless networks.
Automatica, 35:1987-2012, 1999.

W. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An application specific pro-
tocol architecture for wireless microsensor networks. IEEE Trans. on Wireless Commu-
nications, 1(4):660-670, Oct. 2002.

W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dis-
semination in wireless sensor networks. In ACM/IEEE International Conference on Mo-
bile Computing and Networking (MobiCom), Aug. 1999.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for networked sensors. In 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, 2000.

G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive MAC protocol for multi-hop wireless
networks. In ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom,), July 2001.

B. Hong and V. K. Prasanna. Optimizing a class of in-network processing applications in
networked sensor systems. In Ist IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS), Oct. 2004.

I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis techniques for low-
power hard real-time systems on variable voltage processors. In IEEFE Real-Time Systems
Symposium (RTSS), Dec. 1998.

Y. T. Hou, Y. Shi, and J. Pan. A lifetime-aware flow routing algorithm for energy-
constrained wireless sensor networks. In IEEE MILCOM, 2003.

A. Howard, M. J. Mataricié, and G. S. Sukhatme. Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem. In
6th International Symposium on Distributed Autonomous Robotics Systems, June 2002.

C. Huang and R. D. Yates. Rate of convergence for minimum power assignment algorithm
in cellular radio systems. Wireless Networks, 4:223-231, 1998.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A scalable and
robust communication paradigm for sensor networks. In ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom), Aug. 2000.

K. Kalpakis, K. Dasgupta, and P. Namjoshi. Maximum lifetime data gathering and
aggregation in wireless sensor networks. In IEEFE International Conference on Networking
(NETWORKS ’02), pages 685-696, Aug. 2002.

153

[63]

[68]

[69]

[70]

[71]

[75]

[76]

[77]

[78]

B. Kao and H. Garcia-Molina. Subtask deadline assignment for complex distributed soft
real-time tasks. In International Conference on Distributed Computing Systems (ICDCS),
1993.

P. Karn. MACA: A new channel access method for packet radio. In ARRL/CRRL
Amateur Radio Computer Ntworking Conference, Sep. 1990.

B. Karp and H. T. Kung. Gpsr: Greedy perimeter stateless routing for wireless net-
works. In ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom,), Aug. 2000.

A. E. Khandani, J. Abounadi, E. Modiano, and L. Zheng. Cooperative routing in wireless
networks. In Allerton Conference, Oct. 2004.

U. C. Kozat, I. Koutsopoulos, and L. Tassiulas. A framework for cross-lyaer design of
energy-efficient communication with qos provisioning in multi-hop wireless networks. In
IEEE InfoCom, Mar. 2004.

B. Krishnamachari, D. Estrin, and S. Wicker. The impact of data aggregation in wireless
sensor networks. In International Workshop on Distributed Event-Based Systems, 2002.

B. Krishnamachari, Y. Mourtada, and S. Wicker. The energy-robustness tradeoff for rout-

ing in wireless sensor networks. In IEEE International Conference on Communications
(ICC), May 2003.

M. Kubisch, H. Karl, A. Wolisz, L. C. Zhong, and J. Rabaey. Distributed algorithms for
transmission power control in wireless sensor networks. In IEEE Wireless Communica-
tions and Networking Conference (WCNC), pages 16-20, Mar. 2003.

J. N. Laneman, D. Tse, and G. W. Wornell. Cooperative diversity in wireless networks:
Efficient protocols and outage behavior. to appear in IEEE Trans. on Information Theory.

The LINDO System Inc. http://www.lindo.com.

S. Lindsey, C. S. Raghavendra, and K. Sivalingam. Data gathering algorithms in sen-
sor networks using energy metrics. IEEE Trans. on Parallel and Distributed Systems,
13(9):924-935, Sep. 2002.

G. Lu, B. Krishnamachari, and C. Raghavendra. An adaptive energy-efficient and low-
latency mac for data gathering in sensor networks. In International Workshop on Algo-
rithms for Wireless, Mobile, Ad Hoc and Sensor Networks, Apr. 2004.

G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel. Delay efficient sleep scheduling
in wireless sensor networks. In IEEE InfoCom, Mar. 2005.

J. Luo and N. K. Jha. Static and dynamic variable voltage scheduling algorithms for
real-time heterogeneous distributed embedded systems. In VLSI Design, Jan. 2002.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny AGgregation
service for ad-hoc sensor networks,. In Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2002.

D. Marco, E. J. Duarte-Melo, M. Liu, and D. L. Neuhoff. On the many-to-one trans-
port capacity of a dense wireless sensor network and the compressibility of its data. In
ACM/IEEE International Symposium on Information Processing in Sensor Networks,
pages 1-16, Apr. 2003.

154

[79]

[80]

[81]

[82]

[91]

[92]

[93]

[94]

[95]

G. P. McCormick. Nonlinear Programming: Theory, Algorithms, and Applications. John
Wiley & Sons, 1982.

P. Mejfa—Alvarez, E. Levner, and D. Mossé. An integrated heuristic approach to power-
aware real-time scheduling. In Workshop on Power-Aware Computer Systems, Feb. 2002.

A. Meyerson, K. Munagala, and S. Plotkin. Cost-distance: Two metric network design.
In Annual Symposium on Foundations of Computer Science (FOCS), 2000.

R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang, and A. P. Chandrakasan.
Low-power wireless sensor networks. In 14th International Conference on VLSI Design,
pages 205-210, 2001.

E. Moiano. Increasing reliability in ad hoc networks through diversity routing. In Inter-
national Workshop on Wireless Ad-Hoc Networks, May 2004.

R. A. Mucci. A comparison of efficient beamforming algorithms. IEEE Trans. on Acous-
tic, Speech, Signal processing, ASSP-22:548-558, June 1984.

S. Narayanaswamy, V. kawadia, R. S. Sreenivas, and P. R. Kumar. Power control in
ad-hoc networks: Theory, architecture, algorithm and implementation of the COMPOW
protocol. In Furopean Wireless Conference - Next Generation Wlreless Netwroks: Tech-
nologies, Protocols, Services and Applications, Feb. 2002.

PARSEC Project. http://pcl.cs.ucla.edu/projects/parsec.

S. Pattem, B. Krishnamachari, and R. Govindan. The impact of spatial correlation
on routing with compression in wireless sensor networks. In ACM/IEEE International
Symposium on Information Processing in Sensor Networks, Apr. 2004.

G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Comunications of
the ACM, 43(5):551-558, May 2000.

B. Prabhakar, E. Uysal-Biyikoglu, and A. E. Gamal. Energy-efficient transmission over
a wireless link via lazy packet scheduling. In IEEE InfoCom, Apr. 2001.

J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan. PicoRadios for
wireless sensor networks: The next challenge in ultra-low power design. In International
Solid-State Circuits Conference, Feb. 2002.

C.S. Raghavendra and S. Singh. PAMAS — power aware multi-access protocol with signal-
ing for ad hoc networks. ACM SIGCOMM Computer Communication Review, 28(3):5-26,
July 1998.

V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. B. Srivastava. E2WFQ: An energy
efficient fair scheduling policy for wireless systems. In International Symposium on Low
Power Electronics and Design (ISLPED), pages 30-35, Aug. 2002.

V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava. Energy-aware wireless
microsensor networks. IEEE Signal Processing Magazine, 19(2):40-50, March 2002.

R. Ramanathan and Rosales-Hail. Topology control of multihop wireless networks using
transmit power adjustment. In IEEE InfoCom, pages 404-413, Mar. 2000.

V. Rodoplu and T. H. Meng. Minimum energy mobile wireless networks. IEEE J. of
Selected Areas in Communication (JSAC), 8(17):1333-1344, 1999.

155

[96]

[97]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

V. Sarkar. Partitioning and Scheduling Programs for Execution on Multiprocessors. The
MIT Press, Cambridge, Massachusetts, 1989.

A. Scaglione and S. D. Servetto. On the interdependence of routing and data compres-
sion in multi-hop sensor networks. In ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom,), Sep. 2002.

C. Schurgers, O. Aberhorne, and M. B. Srivastava. Modulation scaling for energy-aware

communication systems. In International Symposium on Low Power FElectronics and
Design (ISLPED), pages 96-99, Aug. 2001.

C. Schurgers, V. Raghunathan, and M. B. Srivastava. Modulation scaling for real-time
energy aware packet scheduling. In IEFE GlobeCom, Nov. 2001.

C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava. Optimizing sensor networks
in the energy-latency-density design space. IEEE Trans. on Mobile Computing, 1(1):70-
80, Jan. 2002.

K. Seada, M. Zuniga, B. Krishnamachari, and A. Helmy. Energy-efficient forwarding
strategies for geographic routing in lossy wireless sensor networks. In ACM SenSys, Nov.
2004.

The Sensoria corporation. http://www.sensoria.com.

S. Shakkottai, T. S. Rappaport, and P. C. Carlsson. Cross-layer design for wireless
networks. IEEE Wireless Communication Magazine, pages 74-80, Oct. 2003.

Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems
on variable speed processors. In IEEE/ACM International Conference Computer-Aided
Design, pages 365-368, 2000.

M. Singh and V. K. Prasanna. System level energy tradeoffs for collaborative computation
in wireless networks. In IEEE IMPACCT Workshop, May 2002.

M. Singh and V. K. Prasanna. A hierarchical model for distributed collaborative computa-
tion in wirelss sensor networks. In 5th Workshop on Advances in Parallel and Distributed
Computational Models, Apr. 2003.

M. Singh and V. K. Prasanna. Supporting topographic queries in a class of networked
sensor systems. In Workshop on Sensor Networks and Systems for Pervasive Computing
(PerSeNS), Mar. 2005.

A. Sinha and A. P. Chandrakasan. Dynamic power management in wireless sensor net-
works. IEEFE Design and Test of Cmputers, 18(2):62-74, 2001.

A. Sinha and A. P. Chandrakasan. Operating system and algorithmic techniques for
energy scalable wireless sensor networks. In 2nd International Conference on Mobile
Data Management, Jan. 2001.

A. Sinha, A. Wang, and A. Chandrakasan. Algorithmic transforms for efficient energy
scalable computation. In IEEE International Symposium on Low Power Electronics and
Design, Aug. 2000.

D. Slepian and J. Wolf. Noiseless coding of correlated information sources. IEEE Trans.
on Information Theory, 1T-19(4):471-480, 1973.

156

[112] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen. Predictive system shutdown
and other architectural techniques for energy efficient programmable computation. IEEE
Trans. on VLSI Systems, 4(1):42-55, Mar. 1996.

[113] W. Su and I. F. Akyildiz. Time-diffusion synchronization protocol for sensor networks.
Technical report, Georgia Institute of Technology, Broadband and Wireless Networking
Laboratory, 2002.

[114] C. N. Taylor and S. Dey. Adaptive image compression for wireless multimedia communi-
cation. In IEEE International Conference on Communications (ICC), June 2001.

[115] D. Tian and N. D. Georganas. A coverage-preserving node scheduling scheme for large
wireless sensor networks. In ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA), Sep. 2002.

[116] L. Tong, Q. Zhao, and G. Mergen. Multipacket reception in random access wireless net-
works: From singal procesisng to optimal medium access control. IEEE Communications
Magazine, 39(11):108-112, Nov. 2001.

[117] T. Ue, S. Sampei, N. Morinaga, and K. Hamaguchi. Symbol rate and modulation level-
controlled adaptive modulation/ TDMA /TDD system for high-bit rate wireless data trans-
mission. IEEE Trans. on Vehicular Technology, 47(4):1134-1147, Nov. 1998.

[118] T. van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for wireless
sensor networks. In ACM SenSys, Nov. 2003.

[119] S. Verdu. Multiuser Detection. Cambridge Univ. Press, 1998.

[120] A. Wang, S.-H. Cho, C. G. Sodini, and A. P. Chandrakasan. Energy-efficient modulation
and MAC for asymmetric microsensor systems. In International Symposium on Low
Power Electronics and Design (ISLPED), Aug. 2001.

[121] R. Wattenhofer, L. Li, B. Bahl, and Y. M. Wang. Distributed topoloty control for power
efficient operation in multihop wireless ad hoc networks. In IEEE InfoCom, Apr. 2001.

[122] H. P. Williams. Model Building in Mathematical Programming. John Wiley & Sons, Ltd,
1999.

[123] The WINS Project, Rockwell Science Center. http://wins.rsc.rockwell.com.

[124] Y. Xu, J. Heidemann, and D. Estrin. Adaptive energy-conserving routing for multihop
ad hoc networks. Technical Report 527, University of Southern California/Information
Seicneces Institute, Oct. 2000.

[125] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad hoc
routing. In ACM/IEEFE International Conference on Mobile Computing and Networking
(MobiCom,), July 2001.

[126] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an unbounded number of
processors. IEEE Trans. on Parallel and Distributed Systems, 5(9):951-967, Sep. 1994.

[127] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. Annual
Symposium on Foundations of Computer Science (FOCS), pages 374-382, 1995.

[128] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In IEEFE InfoCom, June 2002.

157

[129] M. Younis, M. Youssef, and K. Arisha. Energy-aware routing in cluster-based sensor net-
works. In International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, Oct. 2002.

[130] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in designing middleware for wire-
less sensor networks. IEEE Network Magazine, special issue on Middleware Technologies
for Future Communication Networks, 18(1):15-21, Jan. 2004.

[131] Y. Yu and V. K. Prasanna. Energy-balanced multi-hop packet transmission in wireless
sensor networks. In IEEE GlobeCom, Dec. 2003.

[132] Y. Yuand V. K. Prasanna. Energy-balanced task allocation for collaborative processing in
wireless sensor networks. ACM Mobile Networks and Applications (MONET), 10(1):115—
131, 2005. special issue on Algorithmic Solutions for Wireless, Mobile, Ad Hoc and Sensor
Networks.

[133] W. H. Yuen, H.-N. Lee, and T. D. Andersen. A simple and effective cross layer networking
system for mobile ad hoc networks. In PIMRC, 2002.

[134] Y. Zhang and L. Cheng. Cross-layer optimization for sensor networks. In New York
Metro Area Networking Workshop, Sep. 2003.

[135] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy
minimization. In Design Automation Conference (DAC), 2002.

[136] L. C. Zhong, R. Shan, C. Guo, and J. Rabaey. An ultra-low power and distributed access
protocol for broadband wireless sensor networks. In IEEE Broadband Wireless Summit,
May 2001.

[137] C. Z. Zhou and B. Krishnamachari. Localized topology generation mechanisms for self-
configuring sensor networks. In IEEE GlobeCom, Dec. 2003.

[138] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multi-processor real-time systems. In IEEE Real-Time Systems
Symposium (RTSS), Dec. 2001.

158

Appendix A

Correctness of EMR-ALgo

Proof of Lemma 1: = Condition (1) trivially holds for an optimal solution. Otherwise, we
can always increase 7;° without violating the latency constraint and thus decrease the energy
dissipation of V.

Let A denote a matrix of size M x v, where A[i][j] = 1 if and only if V; € p;. Intuitively,
the 1’s in the i-th row of A indicate the set of nodes on path p;. Let [' be a M x 1 vector with
all elements equal to I'. Then OPTP can be expressed as to minimize f(7), subject to A7 = .

Based on the first-order necessary condition for linearly constrained problems [79], there exists

a vector of values X = (A1, ..., Aa)7, such that
Vi) +ATX =0 (A.1)
where V f(7%) is a column vector with the partial derivative %T_f) = w;(7]") as the i-th element.

By solving equation A.1, we have for any internal node, V;,

wi(rf)+ Y Aj=0 (A.2)

Jj:Vi€p;

159

The sum in equation A.2 sums up A;’s such that path p; passes through V;. Since any path

containing the children of V; must also pass through V;, we have

dooh= 2 {2 M) (A.3)

j:Vi€p; (ki)EE j:Vi€pj

Thus, the necessary condition of optimality can be obtained by summing up equations A.2 for
all the children of V; and subtracting equation A.2 for V;.

< The proof follows the fact that the feasible space of OPTP is convex and compact. H
Comments: We examine Lemma 1 in two interesting examples. In the first example, consider
an aggregation tree T' = (V, E) where V = {V1,V5,V5,V4} and E = {(1,3),(2,3),(3,4)}. Let
7% denote the optimal schedule of such a problem. Assume that ms +ms > I' and m, is fairly
small compared with ms and ms such that we have 77 = m, in the optimal schedule. In this
case, we shall have w; (77) = 0 and wx(75) = w3(75), which respects Lemma 1.

In the second example, consider an OPTP problem with an extremely large latency con-
straint (e.g., I' = oo) such that the optimal schedule is obtained by setting 7;* = m; for each
Vi € V. In such a case, we have w;(7}) =0, for each V; € V, which again respects Lemma 1.

More importantly, we shall note the following fact in the optimal solution for the second
example. Let 6; denote the start time for packet transmission from V;. Ideally, #; can be
determined as max(; ;cp(0; + 7%j). However, due to the laxity in the latency constraint, we
can safely increase the start time of packet transmissions to some extent without compromising
the optimality of the schedule. To prevent such situations, we adopt a strict definition of #; in

the proof of Lemma 4 and Theorem 1 such that 6; must equal max; ;e p(6; + 777).

Corollary 2 Consider an optimal schedule, 7%, of OPTP; the following hold:

1. Suppose 17 =m; for some V; € V, we have 77 = m; for all sensor nodes in T;.

2. Suppose T < m; for some V; € V, we have 77 < my for all ancestors of V;.

160

Proof of Corollary 2:

1. Since 77 = m; implies E(j,i)eE wj(77) = w;(r]) = 0, we have 77 = m; for all children of

Vi. So on so forth, we have 77 = m; for all sensor nodes in the subtree rooted at V;.
2. Let V; denote the parent of V;. 77" = m; implies w;(7]) < w;(7]) < 0; hence 77 < m;. So

on and so forth. [|

v

%

p+2

Figure A.1: A problem instance of 2-Lev-OPTP

We now define the level of a tree as the greatest number of edges contained by any path

in the tree. We consider an OPTP problem with a two-level aggregation tree with exactly one

internal node that has p children (see Figure A.1). We call the above problem 2-Lev-OPTP.

Let V41 denote the internal node, with V,4» denoting its parent and C = {V4,...,V,} denote

its children. Assume that for any V; € C, a packet is ready to transmission at time §; and V42

must received aggregated information from Vj;1 by time t. We first prove the following lemma:

Lemma 4 Let 7% = {1}, ... yTpr1} denote an optimal schedule to the 2-Lev-OPTP problem as

defined above, then the following hold:

1. The schedule T is unique.

161

2. Let 0,11 denote the start time of packet transmission from V,11 to Vpyo in the optimal
schedule, i.e., Op41 = maxy,cc(0; + 7). Then 0p41 never decreases when (a) some 0;’s,
Vi € C, increase, holding t fized; or (b) t increases, holding 6;’s fized, for all V; € C; or
(c) both some 8;’s and t increase.
Let D denote the set of sensor nodes that increase their transmission start time in cases
(a) and (c). Then, in particular, 8,11 increases in case (a) if for any V; € D, we have
Op+1 — 0; < my; or in case (b) we have t —0pr1 < Mypy1; or in case (c) we have either of

the previous two conditions hold.

3. Opt1 never increases when (a) some (> 1) 8;’s, V; € C, decrease, holding t fized; or (b) t

decreases, holding 0;’s fized, for all V; € C; or (c¢) both some 6;’s and t decrease.

Let D' denote the set of sensor nodes that decrease their transmission start time in cases
(a) and (c). Then, in particular, 0,11 decreases in case (a) if for any V; € D', we have
Op+1 — 0; < my; or in case (b) we have t —0pr1 < mypy1; or in case (c) we have either of

the previous two conditions hold.

Proof of Lemma 4:
1. The uniqueness of the optimal solution follows the strict convexity of the energy functions.

2. From Lemma 1, the optimal schedule 7% must satisfy >5_ u;(1}) = Wpt1(Tyy1). More-

over, we have 77 <mj; fori =1,... ,p+ 1. In the following, we prove property (a).

We first assume that the transmission start time of exactly one child of V,; increases.
That is, for some V, € C, 6, increases to 6. Let §p+1 denote the start time of packet
transmission from Vj41 in the resulting optimal schedule. We consider the following two

cases.
Case (i): Suppose that in schedule 7%, 7 < m,. This implies that 6,41 = 8, + 7. Oth-

erwise, a schedule with less energy dissipation than 7% can be constructed by increasing

162

7o by 6 <min{fp11 — (0o + 77), ma — 7 } without affecting 7, ; or violating the latency
constraint. Similarly, we have 7'1’,‘+1 <mpt1 and G411 + T;Jrl =t.

Now we consider the problem resulted from increasing 6, to 6. Suppose that in the new

packet schedule, we still enforce the transmission by Vj41 to start at 6,1, we have:

wa(ry — (0 —0a)) + Y i) < Y (7)) = tipra (1) - (A4)
V; CAia Viec

The above inequality comes from the fact that the first derivative of an energy function

is strictly increasing due to its strict convexity.

Or, we may start the transmission by V41 at 6p41 + (0, — 0,) in the new schedule. Since

Tpr1 < Mypi1, we have:

wa (7)) + Y whi(min{r + (0, —0),mi} > (7))
V;€CAia Viec

= wp+1(7';+1)

> i1 (T — (0, —0a)) - (A5)

Equations A.4 and A.5 and the uniqueness of the optimal schedule imply that 6,11 <

Opr1 < Opy1 + (0 — ba).

Case (ii): Suppose that in schedule 7%, TX = myg; hence, we have 0,11 — 8, > m,.

If 6,11 — 0, < my, a similar analysis as in Case (i) can be carried out to show that
(Opt1 < ép+1 < 0,41 + (0, —6,). Otherwise, 7* remains an optimal schedule, implying

that ép+1 = 9p+1.

In case when multiple 6;’s (V; € C) increase, it can handled by increasing these 6;’s one
after another and the lemma still holds. Property (b) can be analyzed in a similar fashion.

Also, Property (c) can be handled by first increasing 6;’s and then increasing ¢.

163

3. This part of the lemma is actually an inverse case of part (2) and can be easily proved

by contradiction. u

Now we present the proof of Theorem 1.

Proof of Theorem 1:

1. Recall that EMR-Algo works in iterations: for each iteration k, the algorithm determines
s¥ by decreasing i from v — 1 to M + 1. Since the EMR-Algo initializes §; = 0 for
i=1,...,0—1, it follows that s? < s! for each i = 1,... ,0— 1. Suppose that i’ > 1 and

k

k' > 1 are the first time that there is a violation; that is, si,l > gk,

pt
Consider the 2-level aggregation tree formed by V;» together with its parent, denoted as
V,, and its children, denoted as set C. We have s’;’ < s’;"H, and s¥ 1 < s* for each
VieC.

From line 8 in EMR-Algo, the time stamps 5113’ and sfril’s actually give the boundaries

within which EMR-Algo determines sf,l. Similarly, the time stamps s’;’“ and sfl’s give

the boundaries within which EMR-Algo determines s+ From part (2) of Lemma 4,

i

we have sk < sf,’“. This contradicts the assumption s > S§’+1 and hence property (1)
holds.
2. It is obvious that s? < s¥, for each i = 1,... ,v — 1. Similar to the proof for property

(1), suppose that i' > 1 and k' > 1 are the first time that there is a violation; that is,

r
sk > s

Again, consider the 2-level aggregation tree formed by V;: together with its parent, denoted

1

as Vp, and its children, denoted as set C. We have s’;’ < s, and sflf

*
M < s}, for each

Vi € C. The time stamps 5113’ and sflfl’s actually give the boundaries within which EMR-

Algo determines sf,l. Similarly, the time stamps s, and s}’s give the boundaries within

164

which EMR-Algo determines s},. Part (2) of Lemma 4 again leads to the contradiction

that s& < s% and proves property (2).

. We prove by contradiction and hence assume that j = max{i : s3° < s;}. Let V, denote

the parent of V; and V, denote the parent of V,,. We have s3° = s7

oo * M
> » and S0 = Sy Since

7} is optimal, we have 77 < m;. We consider two cases:

Case (i): We suppose that 77 < mj. Considering the 2-level tree formed by V;, V; and
the children of V},, denoted as C, we have s7° < s} and sj® < s7, for each V; € C A #
j. Suppose that we run EMR-Algo for one more pass and let ép denote the resulting
start time for the transmission from V, to V. From part (3) of Lemma 4, we have
00 — (05 —65°) < ép < 8¢ = 6, contradicting both property (1) for V}, and the definition
of j.

Case (i1): We assume that 77 = m;. From part (1) of Corollary 2, we have 7;* = m; for

any V; € Tj. Moreover, we have 6° —62° > 0, — 67 = 77 = m;. Obviously, we shall have

77° = m;. Again from part (1) of Corollary 2, we have 7° = m; for any V; € T};. Based

on the definition of #7° and 67, we obtain the contradiction that 67° = 7. []

165

