Motivation

- **Applications**
 - High data-rate mission critical (e.g., SHM)
 - Real-time continuous monitoring (e.g., wildfire, security-surveillance, environmental)

- **Challenges: Scheduling and Routing**
 - **TDMA Scheduling**
 - Half-duplex transceivers (primary conflict)
 - 2-hop interfering links (secondary conflict)
 - **Routing Topology**
 - High node degree + small radius (SPT) => fewer concurrent transmissions but low delay
 - Low node degree + large radius (MIT) => more concurrent transmissions but high delay

Problem Formulation and Solution

- **Bounded-Degree Optimization Formulation**
 - **Bounded-Degree Minimum-Radius Spanning Tree (NP-Hard)**
 - Given a graph $G = (V,E)$, communication range R, and a constant $\Delta^* \geq 2$, construct a spanning tree T of G rooted at sink $s \in V$, such that:
 - Radius (max hop count to sink) of T is minimized
 - Degree of any node in T is at most Δ^*
 - **Approximation**
 - Design an (α, β) bi-criteria approximation to BDMRST on Unit Disk Graphs such that:
 - Maximum node degree in T is at most $\Delta^* + \alpha$
 - Radius of T is at most β times the optimal radius

- **Approximation Algorithm (\mathcal{A}) for BDMRST**
 - **Phase 1: Backbone Tree (T_B)**
 - Tessellate the region into hexagonal grid cells of length $R/2$
 - Choose one local root arbitrarily from each non-empty cell
 - Let $\mathcal{R} = \{r_1, \ldots, r_n\}$ be the set of local roots
 - Connect the local roots in a Breadth-First-Search order starting from the sink s (using helper nodes when direct links do not exist), while ensuring the radius is not too long compared to an SPT on \mathcal{R}
 - **Phase 2: Local Spanning Trees (T_j)**
 - Nodes within each hexagonal cell form a complete graph
 - Construct local spanning trees T_j with the remaining nodes in each cell such that no node exceeds degree Δ^*
 - **BDMRST** = $T_B \cup \{T_j\}$

Main Result and Evaluation

- **Theorem**
 - Algorithm \mathcal{A} gives an (α, β) constant factor approximation to the Bounded-Degree Minimum-Radius Spanning Tree problem on Unit Disk Graphs, where $\alpha = 10$ and $\beta = 6$.

Evaluation

- Evaluation of the interference-aware link scheduling algorithm in [1] on different trees. BDMRST achieves the best trade-off in terms of maximizing the aggregated sink throughput and minimizing the maximum delay.

References

Author Affiliations: Amitabha Ghosh, Bhaskar Krishnamachari (Electrical Engineering, USC), Ozlem Durmaz Incel (NETLAB, Computer Engineering, Bogazici University), V.S. Anil Kumar (Bioinformatics Institute & Computer Science, Virginia Tech)