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Scalable Multi-Class Traffic Management in Data
Center Backbone Networks

Amitabha Ghosh, Sangtae Ha, Edward Crabbe, and Jennifer Rexford

Abstract—Large online service providers (OSPs) often build
private backbone networks to interconnect data centers in
multiple locations. These data centers house numerous appli-
cations that produce multiple classes of traffic with diverse
performance objectives. Applications in the same class may
also have differences in relative importance to the OSP’s core
business. By controlling both the hosts and the routers, an OSP
can perform both application rate-control and network routing.
However, centralized management of both rates and routes does
not scale due to excessive message-passing between the hosts,
routers, and management systems. Similarly, fully-distributed
approaches do not scale and converge slowly. To overcome these
issues, we investigate two semi-centralized designs that lie at
practical points along the spectrum between fully-distributed and
fully-centralized solutions. We achieve scalability by distributing
computation across multiple tiers of an optimization machinery.
Our first design uses two tiers, representing the backbone and
classes, to compute class-level link bandwidths and application
sending rates. Our second design has an additional tier rep-
resenting individual data centers. Using optimization, we show
that both designs provably maximize the aggregate utility over
all traffic classes. Simulations on realistic backbones show that
the 3-tier design is more scalable, but converges slower than the
2-tier design.

Index Terms—Traffic management; data centers; optimization;
scalability; multiple traffic classes.

I. INTRODUCTION

A. Wide-Area Traffic Management for OSPs

RECENT years have seen an unprecedented growth in
the number of data centers being deployed by large

OSPs [1]–[5]. These data centers store massive amounts of
data and host a variety of services. Furthermore, to improve
performance and reliability, multiple data centers are deployed
to cover large geographical regions with high-speed backbone
networks interconnecting them [6], [7]. These backbones are
often owned by the same OSP; for instance, Google, Yahoo!,
and Microsoft interconnect their multiple large-scale data
centers with their own private backbones [8]. As the backbones
themselves represent a substantial investment, it is highly
desirable that they be used efficiently and effectively, while
simultaneously respecting the characteristics of the traffic they
carry.
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The types of services and applications hosted in these OSP
networks can be quite diverse. In some cases, the same OSP
which runs the backbone network also controls the traffic
sources. The applications can range from back-end services,
such as background computation, search indexing, and data
replication, to client-triggered front-end services for creating
end-user content [9], such as web search, online gaming, and
live video streaming. Each of these applications can belong
to a different class of traffic that has its own performance
objectives. For example, interactive applications are likely
to be delay-sensitive, whereas back-end applications can be
throughput-sensitive. Applications that belong to the same
traffic class may also have differences in relative importance
to the OSP’s core business.

Despite many challenges, these OSP network characteristics
provide new opportunities for wide-area traffic management.
In traditional traffic engineering (TE), an ISP controls back-
bone routing and link scheduling, but does not control how
end hosts should perform congestion control. In contrast, an
OSP controls both the hosts and the routers, offering the
flexibility to jointly optimize rate control, backbone routing,
and link scheduling. Not knowing the end-to-end performance
objectives of the applications, ISPs typically focus on opti-
mizing indirect measures of performance, such as minimizing
congestion. In contrast, an OSP can maximize the aggregate
performance across all applications, with a different utility
function for each traffic class.

Centralized traffic engineering is increasingly viewed as
a viable approach for wide-area networks. For instance,
Google has deployed an OpenFlow-enabled Software Defined
Networking (SDN) solution for centralized TE in their G-
scale internal backbone for interconnecting multiple data cen-
ters [10]. Centralized TE solutions have the potential to be
algorithmically simpler, faster, scalable, and more efficient.
However, they are not scalable for joint rate and route control
across multiple classes, due to the need for excessive message-
passing between hosts, routers, and management systems.
Fully-distributed solutions, likewise, are also not scalable and
exhibit slow convergence.

B. Semi-Centralized Scalable Design Choices
In this paper, we explore scalable architectures that jointly

optimize rate control, routing, and link scheduling. On one
hand, our design choices are motivated by the advantages of
centralized TE and its industry adoption. On the other hand,
since we also wish to perform rate control, our approach
distributes information and computation across multiple tiers
of an optimization machinery. To this end, we examine two
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semi-centralized designs that both use a small number of
management entities to optimally allocate resources, but differ
in their degree of distributedness. The first design has two tiers
with the management entities at the backbone and class levels,
whereas the second design has three tiers with an additional
management entity at the data center level. The entities
exchange information with each other to optimally subdivide
network bandwidth between applications of different classes.
Using optimization theory, we show that both our designs
provably maximize the aggregate utility over all applications
and traffic classes.

We summarize our two designs below:
A 2-Tier Design: The 2-tier design has a single manage-

ment entity called link coordinator (LC) on the first tier, and
multiple management entities called class allocators (CAs) on
the second tier. The LC computes class-level aggregate band-
width for every link in the backbone and sends it to the CAs.
Each CA then subdivides this bandwidth between different
applications in its own class. Using primal decomposition, we
show that this 2-tier design not only can compute optimal
routing paths, but also map application-level sending rates
on these paths. Simulations on realistic backbone topologies
show that the system converges quickly (within a few tens
of iterations for suitable choices of step sizes), though at the
expense of moderate amount of message-passing between the
management entities.

A 3-Tier Design: The 3-tier design has an additional
type of management entity called data center allocator (DA)
on the third tier. The LC, as before, computes class-level
aggregate bandwidth and sends it to the CAs. Each CA,
however, now subdivides this bandwidth not between different
applications like in the 2-tier design, but across multiple data
centers hosting traffic in its own class. The task of computing
application-level sending rates is delegated to the DAs. We use
a two-level primal decomposition to prove optimality of this 3-
tier design. Simulations show that the system exchanges fewer
messages compared to the 2-tier design, but at the expense of
slightly slower convergence.

The rest of the paper is organized as follows: In Section II,
we present the network and data center traffic models, and for-
mulate the multi-class backbone traffic management problem.
In Section III, we describe the components and functionalities
of the two semi-centralized designs. In Section IV, we prove
the optimality of these designs using the theory of optimization
decomposition. In Section V, we compare the two designs
in terms of their convergence behavior and the number of
messages exchanged until convergence. We present related
work in Section VI, and finally conclude in Section VII.

II. MULTI-CLASS TRAFFIC-MANAGEMENT PROBLEM

In this section, we first describe our inter-data center traffic
model and backbone network model, and then formulate the
multi-class traffic-management problem. We also introduce
our key notations, as summarized in Table I.

A. Inter-Data Center Traffic Model
1) Traffic Classes and Flows: We consider a set J of data

centers, geographically-distributed and interconnected over a

backbone network. The backbone carries inter-data center
traffic flowing between different source and destination hosts
located in the data centers. This traffic can be categorized
into a set K of distinct classes based on its performance
objectives. For instance, some of this traffic can belong to
a throughput-sensitive class, some to a delay-sensitive class,
and some can have varying degrees of both throughput and
delay requirements. Typically, however, the network will have
just a few traffic classes. We index the data centers by j and
the traffic classes by k. The cardinalities of the sets J and K
are denoted by J and K , respectively.

Traffic within a given class can belong to several applica-
tions, each of which, in turn, may produce a large number
of flows. For example, delay-sensitive traffic may include
applications such as video streaming, Voice-over-IP (VoIP),
and multimedia conferencing, and each of these can have
multiple flows between different source-destination pairs. For
simplicity of exposition, however, we do not differentiate
between multiple applications within a class, but, instead, refer
to the traffic between a given source-destination pair in a
particular direction as a flow, regardless of the application to
which it belongs. For instance, a flow can be at the granularity
of an individual UDP session, or at an aggregate level between
two end hosts or subnets in a particular direction. We index
the flows by s, and denote by F the set of all flows. We use
Fk to denote the set of flows that belongs to a particular class
k.

2) Utility Functions and Weights: We characterize the per-
formance objective of each class k by a utility function Uk(·),
parameterized by two positive coefficients ak and bk. Thus,
all the flows of a given class have the same utility function.
We design this class-wise utility function as having two parts
in it, fk(·) and gk(·), which are multiplied by the coefficients
ak and bk, respectively, to incorporate different degrees of
sensitivity to throughput and delay. We model throughput-
sensitivity by making the first part, fk(·), dependent on the
total sending rate, and model delay-sensitivity by making the
second part, gk(·), dependent on the average end-to-end delay.
The arguments of these functions are described later in this
section.

The two coefficients can take different values to model
different types of traffic. For instance, a fixed rate traffic
with delay requirement (e.g., VoIP) can be modeled using
ak = 0 and bk > 0, whereas a variable rate traffic with delay
requirement (e.g., multimedia streaming) can be modeled
using both ak > 0 and bk > 0. Likewise, a variable rate
traffic with no delay requirement (e.g., database backup or
file-downloading) can use ak > 0 and bk = 0.

Modeling Flow Importance: Despite all the flows of a
given class sharing the same utility function, the individual
flows may have differences in relative importance. For exam-
ple, two database back-up flows that belong to a throughput-
sensitive class, or two video streaming flows that belong to a
delay-sensitive class, may have different business importance.
We model this relative importance by assigning a positive
weight to each flow, denoted by wk

s for flow s of class k.

The weighted utility of flow s of class k can now be written



GHOSH et al.: SCALABLE MULTI-CLASS TRAFFIC MANAGEMENT IN DATA CENTER BACKBONE NETWORKS 3

TABLE I
TABLE OF KEY NOTATIONS.

Symbol Description
L Set of unidirectional links in the backbone.
K Set of distinct traffic classes.
J Set of data centers.
P Set of available paths.
F Set of all flows across all classes.
Fk Set of flows in class k.
cl Capacity of link l.
wk

s Weight of flow s of class k.
zksp Rate of flow s of class k on its pth path.
ykl Bandwidth allocated for class k on link l.

Uk(·) Utility function of class k.

ak , bk Parameters to model throughput and delay sensitivity
of traffic in class k.

dkl
Average queuing delay on link l experienced by traffic
of class k.

uk
l Utilization of link l due to traffic of class k.
A Topology matrix.
R Path routing matrix.

as:
Uk
s = wk

s

[
akfk(·) − bkgk(·)

]
, (1)

where the subtraction indicates that a flow gains more utility
by lowering its average end-to-end delay.

Modeling Throughput-Sensitivity: We assume that the
rate-dependent function fk(·) is non-negative, strictly con-
cave, non-decreasing, and twice differentiable in the total
sending rate xk

s of flow s of class k. For example, the function
can be logarithmic, such as log

(
xk
s

)
, or belong to a more

general class of functions that subsumes different notions
of “rate-fairness,” typically used for Internet TCP conges-
tion control (e.g., max-min fairness, proportional fairness, α-
fairness, etc.) [11], [12]. The concavity of fk(·) is justified
because of diminishing returns of the resources allocated to the
flows. In other words, the first unit of bandwidth allocated to a
flow is often more valued than every additional unit, especially
when the flow already has an adequate bandwidth allocation.
We also assume that each flow has an infinite backlog.

Modeling Delay-Sensitivity: The second part gk(·) of the
utility function is dependent on the average end-to-end delay
for traffic in class k. We consider this average end-to-end delay
for a given path to be the sum of the propagation delays and
the average queuing delays for all the links on that path. We
choose to minimize the average delay because of two reasons:
(1) it results in lower delay for more traffic than minimizing
some other metric, for instance, the maximum delay along the
paths; and (2) for mathematical convenience, which allows us
to formulate the problem as a convex optimization problem
and solve it more easily. We do not claim to model the
queuing delay accurately, but, instead, this is our way of
keeping the links below high load, while favoring paths with
low propagation delay.

The average queuing delay experienced by a flow on a given
physical link depends on several factors, such as the number
of queues, the link-scheduling policy, and the bandwidth
allocated on that link. In this work, we assume that each link
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Fig. 1. Queue scheduling policies: A work-conserving scheduler would
transmit additional packets for the flow of class A if link 1 is idle, thus,
causing additional congestion on the common link 3. A non-work-conserving
scheduler would not transmit such additional packets.

maintains one queue per class, and configures aggregate link
bandwidth on a per-class basis. To this end, the links employ
a non-work-conserving scheduler. The reason we choose such
a scheduler instead of a work-conserving one is as follows:
Suppose there are two flows that share a common link, but
belong to two different classes A and B, as shown in Figure 1.
If link 1 is idle, then a work-conserving scheduler will transmit
additional packets for the flow of class A. This will cause
additional congestion on link 3, and incorrectly signal that
class A traffic needs more bandwidth on link 3, leading to a
redistribution of resources with lesser bandwidth allocated to
class B.

Suppose dkl denotes the average queuing delay experienced
by a packet of class k on link l. The queuing delay is a function
of the link load due to the traffic of class k, and the aggregate
bandwidth on link l allocated to class k. This class-level
bandwidth can be thought as the class having its own virtual
link with a capacity equal to the aggregate bandwidth allocated
on the physical link. We denote the link load by Lk

l , and the
class-level bandwidth by ykl . We choose the form of the delay
function in such a way that it penalizes links that approach
or exceed their capacity. For mathematical convenience, we
also want this delay function to be non-negative, convex, non-
decreasing, and twice-differentiable. Thus, instead of using the
M/M/1 queuing formula for average delay, dkl = 1/(ykl −Lk

l ),
which is undefined for over-utilized links, we use a piecewise
linear approximation to it, following the approach in [13].
Denoting the utilization of link l due to the traffic of class
k by uk

l (i.e., uk
l = Lk

l /y
k
l ), we define this piecewise linear

function as:

dkl
(
uk
l

)
= mk

l L
k
l + qkl , (2)

where mk
l = m(uk

l )/y
k
l is a function that determines the slope

of the region for class k, and qkl = q(uk
l )/y

k
l is a function that

determines the associated y-intercept for class k. Like in [13],
the values of dkl are small for low utilizations, but increase
rapidly as the load approaches or exceeds the link capacity.

B. Backbone Network Model

1) Backbone Topology and Paths: We model the backbone
network as a set L of interconnecting unidirectional links,
with a finite capacity cl, and a propagation delay pl for every
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link l ∈ L. To support large volumes of data transfer between
remote data center locations, in our model, we consider the
links to typically have high capacities.

Let a path p be a non-empty subset of L, and let P be the
set of available paths. The set P does not necessarily include
all possible paths in the physical topology, but only a subset of
them chosen by operators. Since the backbone comprises long-
haul, high-capacity links, most data center pairs have only a
few paths connecting them. These paths are set up in advance
by OSP operators using, for instance, MPLS (Multi-Protocol
Label Switching) labels. Each path emerges from an edge
router in a source data center, and passes through intermediate
routers before ending at another edge router in a destination
data center.

2) Flow Rates and Multi-Path Routing: We assume that
each flow can use multiple paths from its source to destination
end host. Multi-path routing for inter-data center traffic is
relatively easy to implement, because the backbone as well as
the sources are owned by the same OSP. Multi-path routing
provides several benefits by splitting high-volume traffic along
multiple paths, thereby increasing the end-to-end capacity.

We denote by zksp the sending rate of flow s of class k on
its pth path. We assume that each flow can be split flexibly,
i.e., the host or router originating the flow can send packets
at the computed rates along each of the specified paths. With-
out proper handling [14], such flow-level multi-path routing
might cause out-of-order delivery of packets. Conventional
techniques, such as hash-based splitting of traffic, can prevent
this out-of-order arrival of packets belonging to the same TCP
or UDP session.

3) Routing Matrix: A routing matrix typically encodes the
mapping between paths, links, and traffic flows in a network.
For inter-data center routing, we split this single matrix into
two parts to bring scalability in the resulting system. Since
the number of flows per class can be very large compared
to the number of paths and links, we store the mapping
between paths and links in a smaller matrix A, called the
topology matrix, of size |L|× |P|, and the mapping between
flows and paths in a larger matrix R, called the path routing
matrix, of size |P|× |F|. Thus, if a management server in the
backbone needs information only about the links comprising
the paths, but not about the flows on those paths, it can
store only the smaller matrix A. This saves memory and
communication overhead that would be needed otherwise to
keep a single matrix updated all the time due to dynamic
arrival and departure of flows. The elements of A and R are:

Alp =

{
1, if link l lies on path p
0, otherwise.

Rk
sp =

{
1, if flow s of class k uses path p
0, otherwise.

Since a flow can go over multiple paths, we consider its
weighted average delay as the sum of the products of path rates
and average end-to-end delays on those paths. This captures
the true average delay over all bits of traffic in the flow. Using
(2), the delay-dependent function gk(·) takes the following
form for flow s of class k:

gk
(
uk
l

)
=
∑

p∈P
Rk

spz
k
sp

(
∑

l∈L
Alp

(
pl +mk

l L
k
l + qkl

)
)
. (3)

The link load is given by Lk
l =

∑
s∈Fk

∑
p∈P AlpRk

spz
k
sp.

C. Maximizing Aggregate Utility
In an OSP network, the backbone and the traffic sources are

under the same ownership, simplifying the task of choosing
an objective function. As a natural choice, we consider that
the OSP aims to maximize the sum of the utilities of all flows
across all traffic classes, thus, maximizing the global “social
welfare.” In other words, the flows do not have conflicting
objectives, but, instead, share a common goal prescribed by
the OSP. The constraints in our problem are the link capacity
constraints, and the variables are the flow path rates, zksp, and
the aggregate bandwidth, ykl , for each class k on link l. The
optimization problem can thus be written as:

GLOBAL:

maximize U =
∑

k∈K

∑

s∈Fk

wk
s

[
akfk

(
xk
s

)
− bkgk

(
uk
l

)]

subject to
∑

s∈Fk

∑

p∈P
AlpR

k
sp z

k
sp ≤ ykl , ∀k, l

∑

k∈K
ykl ≤ cl, ∀l

variables zksp ≥ 0, ∀k, s, p
ykl ≥ 0, ∀k, l

(4)

where xk
s =

∑
p∈P Rk

sp zksp is the total sending rate of flow
s of class k over all its paths. The first constraint says that
the total sending rate of all the flows of class k that go over
link l cannot exceed the aggregate bandwidth ykl . The second
constraint says that the total bandwidth allocated to all the
classes on link l cannot exceed the capacity cl. In the above
form, (4) is a convex optimization problem, due to the linear
inequality constraints and the concave objective function.

III. SEMI-CENTRALIZED SCALABLE DESIGNS

In this section, we present two semi-centralized designs
that are both scalable and use a small number of manage-
ment entities to optimally allocate flow-level sending rates
across multiple classes in an OSP network. We describe the
different components and their functionalities comprising the
two designs, as well as the messages exchanged between the
management entities.

A. A Semi-Centralized 2-Tier Design
Typically, data centers host applications that originate a

large number of flows which belong to different traffic classes
with diverse performance requirements. The flows can have
different weights and can flow over multiple paths from their
source to destination end hosts. In such a setting, centralized
traffic management solutions suffer from scalability issues, due
to the need for excessive message-passing between the hosts,
routers, and management systems. Likewise, fully-distributed
solutions are also not scalable and exhibit slow convergence.
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Fig. 2. A semi-centralized 2-tier design with two types of management
entities: a single LC on tier-1, and multiple CAs on tier-2. The arrows indicate
message-passing.

To overcome these drawbacks, we follow a top-down
approach and propose a semi-centralized 2-tier design (see
Figure 2) that is modular, scalable, and requires only moderate
amount of message-passing. The design has two types of
management entities on its two tiers. On tier-1, it has a single
management entity called a link coordinator (LC), and on
tier-2, there are multiple management entities called class
allocators (CAs). There is one CA assigned for each class.
These entities are hosted from one or multiple servers in
the backbone. Each type of entity has limited knowledge
about the backbone and inter-data center traffic, but can
communicate with each other to optimize flow-level sending
rates across multiple classes. In the following, we describe the
functionalities of these components.

Link Coordinator on Tier-1: The LC is a centralized entity
that knows only about the network topology. In particular,
it knows the capacity cl of every link l, and the topology
matrix A, but does not know the utility functions of the
classes, the weights, or the paths traversed by the individual
flows. The LC optimizes aggregate link bandwidths across
multiple classes in the backbone. In particular, it computes an
aggregate bandwidth ykl for each class k on every link l in
the backbone. This aggregate bandwidth is shared by all the
flows of class k that go over link l, and is called the class-
level bandwidth. The LC then sends these ykl s to the CAs on
tier-2 for driving flow rate allocation decisions. In turn, the
LC receives a set of optimal Lagrange multipliers from each
CA. This message-passing is shown in Figure 2 by the arrows
labeled “1” and “2” between the LC and the CA of class k.
The Lagrange multipliers, as described in the next section,
are optimal subgradients of an optimization problem solved
by each CA, and are functions of the ykl s.

Class Allocator on Tier-2: Unlike the LC, which has no
information about the inter-data center traffic, each CA knows
the utility function of its own class, the weights of the flows,
and the paths traversed by them. These weights and paths are
communicated to the CAs by the end hosts. There are a total
of K CAs, one assigned for each class k, denoted by CAk.
Each CA optimizes sending rates across multiple flows that
belong to its own class. In particular, the CA of class k first
receives the class-level bandwidths ykl s from the LC, and then
solves an optimization problem to subdivide these bandwidths
among the flows of its own class. The CA then sends these

+"#$%,--./"#01-.2"3.4&

2"3.4'

,!055%)!!-601-.
!!! !!! ,)7

2"3.4(

!!! !!!

,)& ,)$

8,&
9-:.635 8,; 8,<

!!!

,!055%)!!-601-. ,!055%)!!-601-.

8,%)!!-601-.
8)$&

8,%)!!-601-.
8)$;

8,%)!!-601-.
8)$<

& '

(( (== =

>

!!! !!!

Fig. 3. A semi-centralized 3-tier design with three types of management
entities: a single LC on tier-1, multiple CAs on tier-2, and multiple DAs on
tier-3. The arrows indicate message-passing.

optimal path rates to the sources hosting these flows, as shown
by the arrows labeled “3” in Figure 2. It also sends the optimal
Lagrange multipliers to the LC.

B. A Semi-Centralized 3-Tier Design

In our 2-tier design, each CA sends the flow-level path rates
to the end hosts that belong to its own class. However, since
the flows of a given class can be hosted from any of the
data centers, each CA potentially communicates with all data
centers. When the number of flows is very large, this incurs
expensive control plane overhead. To overcome this drawback,
we now propose a semi-centralized 3-tier design that is more
scalable and has less message-passing overhead.

The 3-tier design has a third type of management entity
called a data center allocator (DA) on tier-3, in addition
to the LC on tier-1 and the CAs on tier-2 (see Figure 3).
The functionality of the LC is the same as before, i.e., it
optimizes aggregate link bandwidths across multiple classes
in the backbone. The CAs and the DAs, however, perform
different tasks. In particular, the task of allocating flow-level
path rates for a given class is now split between a CA
and multiple DAs assigned for that class. We describe the
functionalities of the CAs and the DAs in the following.

Class Allocator on Tier-2: Each CA optimizes aggregate
link bandwidths across multiple data centers. As before, there
are a total of K CAs, one assigned for each class k, denoted
by CAk. Unlike the 2-tier design, where the CAs knew about
the utility functions and the weights of the flows, in this 3-tier
design, each CA knows only the paths traversed by the flows
of its own class. The CA of class k first receives the class-
level bandwidths ykl s from the LC, and then subdivides these
among multiple data centers that host flows of class k. We
call this the DC-level bandwidth and denote it by ykjl . This
bandwidth is shared by the flows of class k that originate from
data center j and go over link l. The CA then sends these ykjl s
to the DAs on tier-3 for driving flow-rate allocation decisions.
In turn, the CA receives a set of optimal Lagrange multipliers
from each DA. These Lagrange multipliers are functions of the
ykjl s. The message-passing between the CA and the DAs is
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Fig. 4. A single-level primal decomposition of GLOBAL into a master primal
on tier-1, and K class-level subproblems on tier-2.

shown in Figure 3 by the arrows labeled “3” and “4.” Finally,
each CA also sends the Lagrange multipliers to the LC after
optimizing the DC-level bandwidths, as shown by the arrows
labeled “1.”

Data Center Allocator on Tier-3: The DAs lie on tier-
3 and are hosted by servers located within the data centers.
There is one DA assigned for each class in each data center,
summing up to a total of KJ DAs. We denote the DA for
class k in data center j by DAkj . Each DA has a localized
view of the inter-data center traffic. It only knows the utility
function of its class, and the weights and paths of the flows
that originate from its own data center. Each DA optimizes
sending rates across multiple flows in the same data center. In
particular, DAkj first receives the DC-level bandwidths ykjl s
from the CA, and then optimally subdivides these among the
flows of class k that originate from data center j. It then sends
these optimal path rates to the respective sources, shown by the
arrow labeled “5” in Figure 3, as well as the optimal Lagrange
multipliers to the CA from which it receives the ykjl s.

IV. OPTIMIZATION DECOMPOSITION

In this section, we describe the optimization decomposition
underlying the two designs to prove optimality of the traffic
management protocols. We first present a single-level primal
decomposition for the 2-tier design, and then a two-level
primal decomposition of the 3-tier design. We also describe
the associated message-passing, and the rate allocation updates
by the different management entities.

A. Decomposing the 2-Tier Design
In our 2-tier design, the class-level bandwidths are first

computed by the LC on tier-1, and then are subdivided by
the CAs on tier-2 to compute flow-level path rates. This
particular rate allocation strategy suggests a decomposition of
GLOBAL into multiple smaller subproblems, each of which
can be solved independently by a CA, while together being
coordinated by the LC. Such a decomposition, where the
primary resources (i.e., bandwidths) are first optimized and
coordinated at an aggregate level, and then further subdivided
among individual components (i.e., flows) by solving multiple
smaller subproblems, is known as primal decomposition. The
coordination problem that optimizes aggregate resources is
called the master primal.

1) Primal Decomposition: The LC first allocates a class-
level bandwidth ykl for each class k and link l in the backbone.
This decomposes GLOBAL into a total of K subproblems,
as shown in Figure 4. Each of these subproblems is then
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Fig. 5. Message passing in the 2-tier design.

independently solved by a CA to subdivide ykl among the
flows of class k that use link l. We define the subproblem for
class k as:

CLASS(k):

maximize Uk =
∑

s∈Fk

wk
s

[
akfk

(
xk
s

)
− bkgk

(
uk
l

)]

subject to
∑

s∈Fk

∑

p∈P
AlpR

k
sp z

k
sp ≤ ykl , ∀l

variables zksp ≥ 0, ∀s ∈ Fk, p

(5)

where the right hand side ykl of the constraint is a fixed
quantity that plays the role of fixed link capacities, as in
standard network utility maximization (NUM) problems.

These class-level subproblems are coordinated by solving a
master primal in the LC. We define this master primal as:

MASTER-PRIMAL:

maximize U =
∑

k

Uk∗ (
yk
)

subject to
∑

k∈K
ykl ≤ cl, ∀l

variables ykl ≥ 0, ∀k, l

(6)

where Uk∗ (
yk
)

is the optimal objective value of (5) for a
fixed class-level bandwidth vector yk = {ykl , ∀l}.

2) Subgradient Updates: The master primal and the class-
level subproblems are solved using a subgradient method in
an iterative fashion until convergence. Suppose at iteration
t of the master primal, the LC allocates a class-level band-
width vector yk(t) for class k. The CA then subdivides this
bandwidth among the flows of class k by solving (5). Let the
optimal Lagrange multipliers corresponding to the constraints
in (5) be λk∗

. Clearly, this is a function of yk(t). These
Lagrange multipliers are sent by the CAs to the LC, which
then updates the class-level bandwidths for the next iteration
as:

yk(t+ 1) =
[
yk(t) + β(t) · λk∗ (

yk(t)
)]

X
, (7)

where [·]X denotes the projection onto the feasible set X , and
β(t) is a small positive step size for iteration t. Figure 5 shows
the message exchange for subgradient updates. We note that
the above primal decomposition computes optimal sending
rates for all the flows in the network across all classes and
data centers.

B. Decomposing the 3-Tier Design
In our 3-tier design, the class-level bandwidths are first

computed by the LC on tier-1, and then are subdivided by
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Fig. 6. A two-level primal decomposition of GLOBAL into a master primal
on tier-1, K class-level secondary primals on tier-2, and KJ DC-level
subproblems on tier-3.

the CAs on tier-2 across multiple data centers to compute
DC-level bandwidths. These DC-level bandwidths are further
subdivided by the DAs on tier-3 to compute flow-level path
rates. Like in the 2-tier design, this rate allocation strategy also
suggests a primal decomposition of GLOBAL into multiple
smaller subproblems that can be coordinated by different
management entities. However, now there are two levels of
primal decomposition; one in which GLOBAL is decomposed
into multiple subproblems at tier-2, and the other in which
each tier-2 subproblem is further decomposed into multiple
smaller subproblems at tier-3. We describe this two-level
primal decomposition in the following.

1) A Two-Level Primal Decomposition: As before, the LC
first allocates a class-level bandwidth ykl for each class k
and link l in the backbone. This decomposes GLOBAL into
K class-level subproblems that are coordinated by a master
primal in the LC, as shown in Figure 6. Each class-level
subproblem is solved by a CA. However, unlike in the 2-tier
design where the CAs compute flow-level path rates, each CA
now only allocates an aggregate DC-level bandwidth for each
data center. Computing the flow-level path rates is delegated
to the DAs, which solve the DC-level subproblems. Let Fkj

denotes the set of flows of class k that originate from data
center j. Also, let DATACENTER(k, j) denote the subproblem
solved by the DA of class k in data center j, which we define
as:

DATACENTER(k, j):

maximize Ukj =
∑

s∈Fkj

wk
s

[
akfk

(
xk
s

)
− bkgk

(
uk
l

)]

subject to
∑

s∈Fkj

∑

p∈P
AlpR

k
sp z

k
sp ≤ ykjl , ∀l

variables zksp ≥ 0, ∀s ∈ Fkj , p

(8)

where, as before, the right hand side ykjl of the constraint is a
fixed quantity. We note that the structure of (8) is similar to that
of (5), except for the superscript j which restricts considering
only the flows that originate from data center j. These DC-
level subproblems are coordinated by the CAs. In particular,
CAk coordinates all the DC-level problems that belong to
class k by solving a secondary primal, which is defined as:

*452
.6678459:67

.;9<<
";;6=9:67

."2

2E>!

)2

B9:9'.G5:G7
";;6=9:67

B"2E
)2E

,2>

*2<?

Fig. 7. Message passing in a 3-tier design.

SECONDARY-PRIMAL(k):

maximize Uk =
∑

j

Ukj∗
(
ykj
)

subject to
∑

j∈J
ykjl ≤ ykl , ∀l

variables ykjl ≥ 0, ∀j, l

(9)

where Ukj∗
(
ykj
)

is the optimal objective value of (8) for a
fixed DC-level bandwidth vector ykj = {ykjl , ∀l}.

Finally, these secondary primals are coordinated by a master
primal, defined as:

MASTER-PRIMAL:

maximize U =
∑

k

Uk∗ (
yk
)

subject to
∑

k∈K
ykl ≤ cl, ∀l

variables ykl ≥ 0,

(10)

where Uk∗ (
yk
)

is the optimal objective value of (9) for a
given class-level bandwidth yk .

2) Subgradient Updates: The primals and the subproblems
are solved in an iterative fashion until convergence using a
subgradient method as before. In particular, all the secondary
primals need to converge first before the master primal goes
on to the next iteration. Let t and t′ denote the iteration indices
of the master primal and secondary primals, respectively.
Suppose at iteration t, the LC fixes a class-level aggregate
bandwidth yk(t). The CA then optimally divides this among
the DAs of class k to solve (9). In particular, suppose at
iteration t′, the CA fixes a DC-level aggregate bandwidth
ykj(t′). Then the DA uses this as the total budget to solve
(8) and compute flow-level path rates.

Suppose the optimal Lagrange multipliers corresponding to
the constraints in (8) is λkj∗ , which is a function of ykj(t′).
These Lagrange multipliers are sent by the DAs to the CA,
which then updates the DC-level bandwidth as:

ykj(t′ + 1) =
[
ykj(t′) + α(t′) · sk

(
ykj(t′)

)]
X . (11)

Here sk(·) is a subgradient corresponding to the constraints
in (9), and is given by the sum of the optimal Lagrange
multipliers of (8) as: sk =

∑
j∈J λkj∗ (ykj(t′)

)
. As before,

[·]X denotes the projection onto the feasible set X , and α(t′)
is a small positive step size for iteration t′.

Once all the secondary primals converge, the next iteration
of the class-level bandwidth allocation takes place. Suppose,
the optimal Lagrange multipliers once (9) converges be sk

∗
.

These Lagrange multipliers are again a function of yk(t), and
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Fig. 9. Abilene backbone network with 4 data centers located at nodes 1, 6,
8, and 11.

are sent by the CAs to the LC. The LC then updates the class-
level bandwidth as:

yk(t+ 1) =
[
yk(t) + β(t) · s

(
yk(t)

)]
Y . (12)

Here s(·) is a global subgradient corresponding to the con-
straints in (10), and is given by the sum of the optimal
Lagrange multipliers of (9) as: s =

∑
k∈K sk

∗ (
yk(t)

)
. As

before, [·]Y denotes the projection onto the feasible set Y , and
β(t) is a small positive step size for iteration t. Figure 7 shows
the message exchange for these subgradient updates. Like in
the 2-tier design, here also the two-level primal decomposition
computes optimal sending rates for all the flows in the network
across all classes and data centers.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the two
designs on two different topologies. We first compare their
convergence behavior, and then the number of messages
exchanged until convergence.

A. Experimental Setup

Backbone Topologies: We experiment with two network
topologies: (1) a simple 3-node, 3-link topology, as shown in
Figure 8, and (2) the Abilene backbone network [15], as shown
in Figure 9. The simple topology allows us to reason about
the system more easily, while the Abilene topology is more
realistic and has more number of nodes and path diversity.

The simple topology has a data center located at each node.
We assume that both data centers, DC1 and DC2, host two
classes of traffic that are throughput-sensitive. We set the
parameters for the two classes as: a1 = 2, b1 = 0 for class C1,
and a2 = 10, b2 = 0 for class C2. We assume that the rate-
dependent function is logarithmic, and the weights of all the
flows in both classes are set to one. Each link has a capacity
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Fig. 10. Rate of convergence of the 2-tier design for different values of the
class-level step size β.

of 100 Mbps. Following (1), the utility functions are therefore
given by: Uk

s = ak log(
∑

p∈P Rk
spz

k
sp).

The Abilene backbone has a link capacity of 1 Gbps in
each direction, and the propagation delays are chosen so as to
approximate realistic values between respective pairs of nodes.
We suppose that there are four data centers located at nodes
1, 6, 8, and 11. Out of the many possible paths between the
data centers, we choose the first three shortest paths between
each pair, resulting in a total of 36 paths.

B. Convergence: Sensitivity to Step Sizes α and β

In our 2-tier design, the tunable step size β controls how the
class-level bandwidths and the global utility react to changes
in the subgradient λk (Equation (7)). Similarly, in our 3-tier
design, the step sizes β and α, respectively, controls how
the class-level and DC-level bandwidths react to changes in
the subgradients λk and sk (Equations (11) and (12)). In the
following experiments, we compare the convergence behavior
of the global utility in our two designs for constant values
of these step sizes. We define convergence as being within
0.01% of the optimal. We call β the class-level step size, and
α the DC-level step size. We first experiment with the simple
topology.

Convergence Rate of the 2-Tier Design: In Figure 10, we
plot the percentage error of the global utility for the 2-tier
design for different values of the class-level step size β. We
observe that the utility converges for all values of β between 1
and 20, and the rate of convergence increases rapidly for larger
β. We ran the experiment for different values of β up to 50,
and all of them converge very quickly (not all those graphs are
shown here). For instance, starting at β = 25, the convergence
is always within 3 to 5 iterations. For β > 50, however,
the utility values oscillate and the system never converges;
the reason being, as β gets larger, there is a tendency for
the allocations to overshoot beyond the feasible region every
single iteration. Thus, the convergence of the 2-tier design
is more sensitive to values of β when they are small (i.e.,
1 ≤ β ≤ 20), but not much once β exceeds 25.

Convergence Rate of the 3-Tier Design: Figure 11 shows
the percentage error of the global utility for the 3-tier design
for different values of the class-level step size β, when the DC-
level step size α is fixed at 2. We observe that the utility con-
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Fig. 11. The rate of convergence of the 3-tier design for different values of
the class-level step size β, when the DC-level step size α is fixed at 2.

2 6 10 14 18 22 26 300

50

100

150

200

250

`

# 
of

 it
er

at
io

ns
 to

 c
on

ve
rg

en
ce

 

 

_=2
_=4
_=6
_=10

Fig. 12. Number of iterations to convergence in the 3-tier design for sweeping
the class-level step size β for different values of the DC-level step size α.

verges for all values of β below 40, and the rate of convergence
increases for higher β. The experiment is run with the number
of iterations of the inner loop set to five for every iteration of
the outer loop. We recall that the inner loop allocates DC-level
bandwidths (controlled by α), while the outer loop allocates
class-level bandwidths (controlled by β). Thus, for β = 1,
which takes about 470 iterations to converge, the number of
class-level allocations is 470/5 = 94. Comparing Figure 10
and 11, we see that the rate of convergence for the 3-tier design
is slower than the 2-tier design. For β above 40, however, the
class-level bandwidths overshoot the feasible region in every
iteration of the outer loop, and, as a result, the system never
converges.

To get a better understanding of how sensitive the 3-design
is in terms of its convergence behavior, we fix the DC-level
step size α at different values and sweep the class-level step
size β through all the values between 2 and 30 in steps of
2. Figure 12 shows the plots for four different values of
α. We observe that for fixed α, the number of iterations to
convergence initially decreases for increasing β, but gradually
becomes almost constant for large β. For β more than 18, we
see that all the four curves flatten out and the β values have
almost no effect on the rate of convergence. This behavior is
similar to the 2-tier design, where the convergence rate is very
quick and remains almost unaffected for large values of β. We
also see that the plots for large values of α (i.e., α = 4, 6, 10)
are very close to each other, indicating that the 3-tier design is

TABLE II
RATE OF CONVERGENCE OF THE TWO DESIGNS FOR DIFFERENT VALUES

OF THE CLASS-LEVEL STEP SIZE β . ALSO SHOWN ARE THE “GOOD”
VALUES OF THE DC-LEVEL STEP SIZE α FOR THE 3-TIER DESIGN.

Class-level step size
β

2-tier design 3-tier design

small β = 1, 2 slow very slow, all α
medium β = 5, 10 moderate slow, all α
large β = 20, 30 fast moderate, all α

very large
30 < β < 40

fast moderate, α ≤ 16

extremely large
40 ≥ β < 50

fast does not converge

β ≥ 50 does not converge does not converge

less sensitive to large α. Furthermore, we find that for α > 16
and β > 30, the system oscillates and never converges. Thus,
the “good” values of α and β for which the 3-tier design is
stable are when α ≤ 16 and β ≤ 30.

In summary, Table II lists the different values of α and β,
and the convergence behavior of the two designs. In practice,
one should choose those values of α and β for which the
system converges quickly. We have not experimented with
dynamic traffic demands in this work; however, for the private
OSP backbone networks under consideration, the demand
variability can be controlled to some extent because the traffic
sources are owned by the OSP, and the step sizes can be chosen
accordingly. With respect to fault tolerance (e.g., link failures),
our proposed designs can exploit multi-path routing to split
traffic over the “good” paths, and also re-run the optimization
on the modified topology after failure to compute new optimal
sending rates [16].

C. Message-Passing Overhead
In both our designs, the management entities exchange

messages with each other in order to allocate class-level and/or
DC-level bandwidths in an iterative fashion. In this section, we
compute and compare the number of messages exchanged in
the two designs.

In the analysis below, Fkj is the set of flows of class k
that are hosted from data center j, and the routing matrix
Rk

sp encodes the paths used by each flow s. Also, as stated in
Table I, K is number of traffic classes and L is the number
of links in the backbone. We also assume that the number
of class-level allocations required for the 2-tier design to
converge is N , and that required for the 3-tier design to
converge is N ′. For the 3-tier design, we further assume
that M iterations of DC-level allocations are needed for each
iteration of the class-level allocation.

Message-Passing in the 2-Tier Design: In our 2-tier de-
sign, the LC first allocates the class-level bandwidths, ykl s, to
each CA in the beginning of each iteration. The total number
of variables passed by the LC to all the CAs is therefore KL.
Each CA then computes the path rates for the individual flows
of its own class and sends the rates to the respective sources.
Since the flows of each class can originate from any of the data
centers, each CA potentially communicates with all the data
centers. Thus, the number of path rate variables sent by the CA
of class k is

∑
j∈J

∑
s∈Fkj

∑
p R

k
sp. Finally, after computing
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the flow-level path rates, each CA passes the optimal Lagrange
multipliers, λk∗

, to the LC at the end of each iteration, thus,
sending a total of KL variables. Summing up, the number of
variables exchanged until convergence is

# of messages = N



2KL+
∑

k∈K

∑

j∈J

∑

s∈Fkj

∑

p

Rk
sp



 .

(13)
Message-Passing in the 3-Tier Design: In our 3-tier

design, the LC first allocates the class-level bandwidths, ykl s,
to each CA in the beginning of each iteration of the outer
loop, thus, sending a total of KL variables. Each CA then
subdivides the ykl s into DC-level bandwidths, ykjl s, for each
data center j, and sends these to the DAs. The number of
variables passed by the CAs to all the DAs in each iteration
of the inner loop is therefore JKL. Each DA then computes
the path rates for the individual flows and sends the rates to the
respective sources. However, since the DAs are located within
each data center, these messages are sent locally and are not
counted in our analysis. Once the flow-level path rates are
computed, each DA sends the optimal Lagrange multipliers,
λkj∗ , to the CA of its class. This incurs passing a total of
JKL variables for each inner loop iteration. Finally, each CA
sends the optimal Lagrange multipliers, sk

∗
, to the LC at the

end of each iteration of the outer loop. This requires passing
a total of KL variables from all the CAs. Summing up, the
number of variables exchanged until convergence is

# of messages = N ′[2KL+ 2JKLM ]. (14)

Comparison of Message-Passing Overhead: From (13),
we see that the number of messages exchanged in the 2-tier
design depends on the number of the flows, Fkj , of each class
k hosted from each data center j. However, the 2-tier design
has only a single loop which iteratively allocates class-level
bandwidths until convergence. On the other hand, from (14)
we observe that the number of messages exchanged in the 3-
tier design does not depend on the number of flows; however,
the design has two loops which iteratively allocate both class-
level and DC-level bandwidths.

In Figure 13, we compare the message-passing overhead
in the two designs as a function of the number of flows
in each class hosted between every pair of data centers in
the Abilene topology. We choose step sizes for the two
designs that converge within 100 iterations. We observe that,
as expected, the number of messages exchanged in the 3-tier
design remains constant with the number of flows. In the 2-tier
design, however, though the number of messages exchanged is
fewer for small number of flows, it increases once the number
of flows per class hosted from each data center exceeds slightly
more than 110. This amounts to a total of 110 × 2 × 4 = 880
flows. Thus, in practice, if the number of flows is small, one
would prefer to use the 2-tier design; otherwise, the 3-tier
design is preferred.

VI. RELATED WORK

Traffic management using optimization theory [17], [18] has
been extensively studied in literature [13], [19]–[21]. Using
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Fig. 13. Message-passing overhead of the two designs as a function of the
number of flows in each class hosted from each data center in the Abilene
topology.

multiple decompositions, a distributed protocol called TRUMP
is proposed in [20], which is adaptive, robust, and flexible.
In [21], a distributed architecture called DaVinci is presented
which can run customized protocols on multiple virtual net-
works sharing the same physical topology to support appli-
cations with diverse performance objectives. Using adaptive
network virtualization, it is shown that DaVinci maximizes the
aggregate utility of all virtual networks. In [13], a distributed
multi-path protocol is proposed for delay-sensitive, inelastic
traffic using decomposition techniques.

Despite using decomposition theory, the protocols proposed
in [13], [20], [21] are fully-distributed, which rely on periodic
link feedbacks from the routers to adjust the sending rates.
In an ISP network, this is perhaps more desirable because
the traffic sources are typically owned by end users, whereas
the operators control the routing paths and tune the link
weights. In comparison, the focus of this work is on wide-
area OSP networks [22], where the sources as well as the
backbone are owned by the same OSP. To this end, our
proposed designs are semi-centralized, which use a small
number of management entities to compute optimal flow-level
path rates across multiple classes and data centers. This makes
our protocols better in terms of scalability, message-passing
overhead, and convergence behavior. Moreover, while TRUMP
does not consider multiple classes of traffic and different
applications within each class, DaVinci does not consider
scalability, or applications within each virtual network having
different weights.

There have been several recent studies on traffic modeling
and characterization within a single data center [23]–[25].
However, little is known about traffic management in OSP
networks [9]. The study in [9] uses Yahoo! datasets to analyze
both inter-data center and client traffic, revealing a hierarchical
deployment of data centers at different geographical locations.
In [24], the authors capture both macroscopic and microscopic
traffic characteristics in data center networks from large-scale
data sets. In [23], an empirical study of end-to-end traffic
patterns is carried out across multiple data centers to examine
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temporal and spatial variations in link loads and losses.
The work also provides a framework to derive parameters
that define sending behavior of the traffic sources. Finally,
Google’s globally-deployed wide area network (WAN) called
B4 [26] uses Software Defined Networking (SDN) principles
and OpenFlow [27] to simultaneously support standard routing
protocols and centralized TE. Leveraging the common own-
ership (by Google) of all the applications, servers, and data
center networks all the way up to the edge of the backbone,
B4 can (1) adjudicate among competing demands under re-
source constraints, (2) use multi-path forwarding/tunneling to
leverage available network capacity according to application
priority, and (3) dynamically reallocate bandwidth in the face
of link/switch failures or shifting application demands.

VII. CONCLUSION

In this work, we examined two alternative traffic manage-
ment designs for OSP networks. Our designs are both scalable
and semi-centralized, but differ in their degree of distributed-
ness. They have a tiered structure and use a small number of
management entities to optimize sending rates at the flow-level
across multiple traffic classes. Using primal decomposition,
we showed that both the designs are provably optimal in
maximizing the aggregate utility of all flows. Simulations on
a realistic backbone topologies revealed quicker convergence
rate of the 2-tier protocol as compared to the 3-tier one, but
with increased message-passing. Our future research includes
experimenting with real data sets.
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