Algorithmic Aspects of Throughput-Delay Performance for Fast Data Collection in Sensor Networks

Amitabha Ghosh
Committee:
Bhaskar Krishnamachari
C.S. Raghavendra
Gaurav S. Sukhatme

Autonomous Networks Research Group
Ming Hsieh Department of Electrical Engineering
USC Viterbi School of Engineering
amitabhg@usc.edu
http://anrg.usc.edu/~amitabhg

July 27, 2010
Thesis Statement:

Multi-channel scheduling, optimal routing topologies, and transmission power control are necessary in order to improve the throughput-delay trade-off for aggregated convergecast in large-scale, multi-hop, wireless sensor networks.
Outline

1. **Maximizing Convergecast Throughput**
 - Motivation and Preliminaries
 - Scheduling with Unlimited Frequencies
 - Approximations on Unit Disk Graphs
 - Approximations on General Disk Graphs

2. **Multi-Channel Scheduling in SINR**
 - Motivation and Interference Models
 - Problem Formulation and Approach
 - Approximations in SINR

3. **Throughput-Delay Trade-off**
 - Motivation
 - Bi-criteria Formulation
 - Optimal Spanning Trees (parts)

4. **Distributed Topology Control in 3-D**
 - Motivation
 - Two Approaches: Orthographic Projections, SDT
Outline

1. **Maximizing Convergecast Throughput**
 - Motivation and Preliminaries
 - Scheduling with Unlimited Frequencies
 - Approximations on Unit Disk Graphs
 - Approximations on General Disk Graphs

2. **Multi-Channel Scheduling in SINR**
 - Motivation and Interference Models
 - Problem Formulation and Approach
 - Approximations in SINR

3. **Throughput-Delay Trade-off**
 - Motivation
 - Bicriteria Formulation
 - Optimal Spanning Trees

4. **Conclusions**
Model and Assumptions

e.g., Applications with fast & efficient data collection requirements.
Model and Assumptions

- **TDMA periodic** scheduling

 - every node generates a single packet at the beginning of each frame

 - every node transmits once per slot

- **Graph-based** network & interference model

- **Half-duplex, single transceiver**

- **Receiver-based Frequency Assignment**

- **Non-interfering** orthogonal channels

- **In-network** aggregation

 (distributive, algebraic

 - aggregation happens at each hop)

Secondary conflict

- e.g., Applications with fast & efficient data collection requirements.
Convergecast

A many-to-one communication pattern (i.e., flow of data): from all the nodes to a sink (opposite of broadcast).

Figure: Schedule length is 5.
Convergecast and Benefits of Multiple Frequencies

Convergecast

A many-to-one communication pattern (i.e., flow of data): from all the nodes to a sink (opposite of broadcast).

Figure: Schedule length is 5.

Figure: Schedule length is 3.
Convergecast

A many-to-one communication pattern (i.e., flow of data): from all the nodes to a sink (opposite of broadcast).

<table>
<thead>
<tr>
<th>Frame 1</th>
<th>Frame 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver</td>
<td>Slot 1</td>
</tr>
<tr>
<td>s</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>e</td>
</tr>
<tr>
<td>c</td>
<td>g</td>
</tr>
</tbody>
</table>

Pipelining

Figure: Schedule length is 3.
Joint Frequency and Time Slot Assignment

Given a connected network $G = (V, E)$ of arbitrarily deployed nodes, K orthogonal frequencies, and a routing tree $T \subseteq G$ rooted at the sink $s \in V$

- Assign a frequency to each receiver in T
- Assign a time slot to each edge in T

such that the aggregated throughput at the sink is maximized, where

\[
\text{Aggregated Throughput} = \frac{1}{\text{Schedule Length}}
\]

(equivalent to minimizing the Schedule Length)
Theorem

Joint Frequency and Time Slot Assignment is NP-hard on general graphs.
Proof: Reduction from Vertex Color.

Questions

- Does the problem still remain NP-hard with unlimited frequencies?
- If not, how many frequencies (at a min, or at most) are needed?
- Can we design algorithms that have provable, worst-case guarantee?
Maximizing Convergecast Throughput

Scheduling Complexity

Theorem

Joint Frequency and Time Slot Assignment is NP-hard on general graphs.

Proof: Reduction from Vertex Color.

Questions

- Does the problem still remain NP-hard with unlimited frequencies?
- If not, how many frequencies (at a min, or at most) are needed?
- Can we design algorithms that have provable, worst-case guarantee?

Theorem

Given a spanning tree T on a graph $G = (V, E)$, finding the minimum number of frequencies required to remove all secondary conflicts is NP-hard.
A Frequency Upper Bound

Constraint Graph

- For each receiver in G create a node in G_C.
- Create an edge between two nodes in G_C if the corresponding receivers in G form a secondary conflict.

Lemma

$$K_{max} \leq \Delta(G_C) + 1,$$
where $\Delta(G_C)$: max degree in G_C. (Vertex Color)
Algorithm: BFS-\textsc{TimeSlotAssignment}

1. while $E_T \neq \emptyset$ do
2. \hspace{1em} $e \leftarrow$ next edge from E_T in BFS order
3. \hspace{1em} Assign minimum time slot to e respecting adjacency constraint
4. \hspace{1em} $E_T \leftarrow E_T \setminus \{e\}$
5. end while

Theorem

\textsc{BFS-TimeSlotAssignment} gives a schedule of minimum length $\Delta(T)$, where $\Delta(T)$: maximum node degree in T.

[Diagram of tree with time slots assigned]
Evaluation

Parameters:

- Number of nodes: \(n : 200 \), square region of area \(A : 200 \times 200 \)
- Shortest Path Tree, Unit Disk Graph

Figure: Number of frequencies required to remove all secondary conflicts as a function of network density \(n/A \) on SPT.
So far...

Joint Frequency and Time Slot Assignment is

- **NP-hard** with **limited** (constant number) frequencies on arbitrary graphs.
- **Polynomial** with **unlimited** (at most $\Delta(G_C) + 1$) frequencies for arbitrary graphs.

Next...

Approximation algorithms for **Random Geometric Graphs** with **limited** (constant number) frequencies.

- Uniform transmission range (**Unit Disk Graphs**)
- Non-uniform transmission range (**General Disk Graphs**)
Algorithm A_{UDG} Overview

- **Phase 1**: Assign frequencies to the receivers in each cell such that the maximum number of nodes transmitting on the same frequency (load) is minimized. (Load-Balanced Frequency Assignment)
- **Phase 2**: Assign time slot greedily to each edge.
Algorithm \mathcal{A}_{UDG} Overview

- **Phase 1**: Assign frequencies to the receivers in each cell such that the maximum number of nodes transmitting on the same frequency (load) is minimized. (Load-Balanced Frequency Assignment)
- **Phase 2**: Assign time slot greedily to each edge.

Theorem

Algorithm \mathcal{A}_{UDG} achieves a constant factor $8\mu_\alpha \cdot \left(\frac{4}{3} - \frac{1}{3K}\right)$ approximation on the optimal schedule length, where $\mu_\alpha > 0$ is a constant for any given cell size $\alpha \geq 2R$, and given node deployment, where μ_α: maximum number of edges on the same frequency in any cell that can be scheduled simultaneously by any algorithm.
Evaluation

Parameters

UDG on a region of size 200×200 with transmission radius $R = 25$

Shortest Path Tree

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Schedule Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>25</td>
</tr>
<tr>
<td>600</td>
<td>30</td>
</tr>
<tr>
<td>700</td>
<td>35</td>
</tr>
<tr>
<td>800</td>
<td>40</td>
</tr>
</tbody>
</table>

Schedule length decreases with increasing number of frequencies

However, with diminishing returns

Structure of the routing tree (high node degree) may lead to bottlenecks
Approximation on Disk Graphs
Approximation on Disk Graphs

Notations

- **\(r(u) \):** Transmission range of node \(u \)
- **\(\ell(e) \):** Length of edge \(e \)
- **\(I(e) \):** Set of edges that are either adjacent to \(e \) or form a secondary conflict with \(e \)
- **\(I_{\geq}(e) \):** Subset of \(I(e) \) that have larger disks than \(e \)

\[
I_{\geq}(e) = \{ e' = (u', v') : e' \in I(e), \ell(e') \geq \ell(e) \}\]
Algorithm A_{DG} Overview

- **Phase 1**: Assign frequencies such that the maximum number of edges interfering with any given edge is minimized.
 - **0–1 Integer Linear Program**: Define indicator variables X_{vk} for edge $e = (u, v)$ as:

 $$X_{vk} = \begin{cases}
 1, & \text{if receiver } v \text{ is assigned frequency } f_k \\
 0, & \text{otherwise}
 \end{cases}$$

 A frequency assignment is a 0–1 assignment to X_{vk}, $\forall e$, $\forall f_k$.
Algorithm A_{DG} Overview

- **Phase 1**: Assign frequencies such that the maximum number of edges interfering with any given edge is minimized.
 - **0 − 1 Integer Linear Program**: Define indicator variables X_{vk} for edge $e = (u, v)$ as:
 \[
 X_{vk} = \begin{cases}
 1, & \text{if receiver } v \text{ is assigned frequency } f_k \\
 0, & \text{otherwise}
 \end{cases}
 \]
 A frequency assignment is a 0 − 1 assignment to $X_{vk}, \forall e, \forall f_k$.

- **Phase 2**: Sort edges in non-increasing order of lengths, and assign smallest available slots starting from the largest.
Approximation on Disk Graphs

\textbf{0-1 Integer Linear Program of Frequency Assignment}

\begin{align*}
\text{Minimize} \quad & \lambda \\
\text{subject to} \quad & : \sum_{v'} n(e, v') X_{vk} \leq \lambda \quad (1) \\
& : \sum_{f_k} X_{vk} = 1, \quad (2) \\
& : X_{vk} \in \{0, 1\} \quad (3)
\end{align*}

- Solve the Linear Relaxation (LP) by modifying constraint (3)
- **Randomized Rounding**: Assign $Y_{vk} = 1$ with probability X^*_{vk}, where X^*_{vk} are the optimal fractional LP solutions, and Y_{vk} are the new integral random variables.
Lemma

Let Y_{vk} be the rounded solution, as described above. Then,

$$\max_{e,f_k} \left\{ \sum_{e'=(u',v') \in I_{\geq}(e)} Y_{v'k} \right\} = O(\Delta(T) \log n \cdot \lambda^*),$$

with probability at least $(1 - 1/n)$.

Proof: Apply Chernoff bound.
Lemma

Let Y_{vk} be the rounded solution, as described above. Then,

$$\max_{e,f_k} \left\{ \sum_{e'=(u',v') \in I \geq (e)} Y_{v'k} \right\} = O(\Delta(T) \log n \cdot \lambda^*),$$

with probability at least $(1 - 1/n)$.

Proof: Apply Chernoff bound.

Theorem

The schedule constructed by time slot assignmentt strategy along with the fre- quency assignment using the above randomized rounding procedure results in a schedule of length $O(\Delta(T) \cdot \log n)$ times the optimum.
Outline

1. Maximizing Convergecast Throughput
 - Motivation and Preliminaries
 - Scheduling with Unlimited Frequencies
 - Approximations on Unit Disk Graphs
 - Approximations on General Disk Graphs

2. Multi-Channel Scheduling in SINR
 - Motivation and Interference Models
 - Problem Formulation and Approach
 - Approximations in SINR

3. Throughput-Delay Trade-off
 - Motivation
 - Bicriteria Formulation
 - Optimal Spanning Trees

4. Conclusions
Realistic Interference Model

Limitations of a Graph-Based Model (Protocol Model)

- Interference is *binary* and stops abruptly beyond a distance - idealizes physical laws
- Fails to capture *cumulative interference* from (many) far-away transmitters
- Sometimes *pessimistic* decisions and *conflicting* schedules
SINR Model (Physical Model)

For a given frequency f, the received signal power from sender s_i to its intended receiver r_i is:

$$P_{r_i}(s_i) = \frac{P}{d(s_i, r_i)^\alpha},$$

where $\alpha \in [2, 6]$ is called the path-loss exponent; value depends on external conditions.
Realistic Interference Model

SINR Model (Physical Model)

For a given frequency f, the received signal power from sender s_i to its intended receiver r_i is:

$$P_{r_i}(s_i) = \frac{P}{d(s_i, r_i)^\alpha},$$

where $\alpha \in [2, 6]$ is called the path-loss exponent; value depends on external conditions.

A transmission from sender s_i to its intended receiver r_i is successful if the ratio, $SINR_{r_i}$, of the received signal power to the cumulative interference plus noise \mathcal{N} at r_i is more than a hardware-dependent threshold β:

$$SINR_{r_i} = \frac{P}{I_{r_i} + \mathcal{N}} = \frac{P}{\sum_{j \neq i} \frac{P}{d(s_j, r_i)^\alpha} + \mathcal{N}} \geq \beta$$
Realistic Interference Model

Parameters
- CC2420 radio parameters with receiver sensitivity -95 dB
- Path-loss exponent $\alpha = 3.5$, transmit power -6 dB

Observations
- For a given frequency, the amount of conflict increases as the network gets denser, reaching almost 40% for densest deployment with a single frequency.
- With multiple frequencies, the amount of conflict is much less.

Percentage of Conflicting Schedules: SINR vs. Graph-based Model
Problem Formulation in SINR

Joint Frequency and Time Slot Assignment

Given a connected network of arbitrarily deployed nodes, K orthogonal frequencies, and a routing tree $T = (V, E_T)$ rooted at the sink $s \in V$

- Assign a frequency to each receiver in T
- Assign a time slot to each edge in T

such that the schedule length is minimized, subject to

$$SINR_{r_i} \geq \beta$$

at every receiver r_i
Approach

Link Diversity

Classify the edges in E_T based on their lengths $\ell_i = d(s_i, r_i)$. Link diversity is the number of magnitude of different lengths

$$g(E_T) = |\{m | \exists e_i, e_j \in E_T : \lfloor \log (\ell_i / \ell_j) \rfloor = m\}|$$

Usually a small constant in practice, but theoretically can be equal to the number of nodes
Link Diversity

Classify the edges in E_T based on their lengths $\ell_i = d(s_i, r_i)$. Link diversity is the number of magnitude of different lengths

$$g(E_T) = |\left\{ m \mid \exists e_i, e_j \in E_T : \lfloor \log (\ell_i / \ell_j) \rfloor = m \right\}|$$

Usually a small constant in practice, but theoretically can be equal to the number of nodes

Overall Idea

- **Normalize** (w.l.o.g) the minimum edge length to one
- Let

$$E = \{ E_0, \ldots, E_{\log(e_{max})} \}$$

denote the set of non-empty length classes, where E_k is the set of edges of lengths in $[2^k, 2^{k+1})$, and e_{max} is the longest edge
- **Partition** the problem into disjoint length classes, and process edges in each class separately
For Length Class E_k

- Divide the 2-D region into a set C_k of square grids of length $\eta_k = \delta \cdot 2^k$, for some constant δ (will choose δ later)
- **Frequency Assignment:**
 - For each cell in C_k, run *FrequencyGreedy* on the receivers
- **Time Slot Assignment:**
 - Four color the cells in C_k
 - Can we still reuse time slots across non-adjacent cells of the same color? If so, how many?
Approximation Algorithm in SINR

Theorem

For cells of the same color in C_k, we can simultaneously schedule at most one edge in E_k from every non-adjacent cell that lies on the same frequency, so long as the cell size satisfies:

$$\eta_k = \delta \cdot 2^k, \quad \text{for } \delta = 4 \left[8\beta \cdot \frac{\alpha - 1}{\alpha - 2} \right]^{\frac{1}{\alpha}},$$

where $\beta \geq 1$ is the SINR threshold, and $\alpha > 2$ is the path-loss exponent.
Approximation Algorithm in SINR

Theorem

For cells of the same color in C_k, we can simultaneously schedule at most one edge in E_k from every non-adjacent cell that lies on the same frequency, so long as the cell size satisfies:

$$\eta_k = \delta \cdot 2^k,$$

for $\delta = 4 \left[8\beta \cdot \frac{\alpha - 1}{\alpha - 2} \right]^{\frac{1}{\alpha}},$

where $\beta \geq 1$ is the SINR threshold, and $\alpha > 2$ is the path-loss exponent.

Proof Sketch

- Consider one specific edge $e_i = (s_i, r_i) \in E_k$ in any cell $c \in C_k$
- Received power at r_i

$$P_{r_i}(s_i) = \frac{P}{\ell_i^\alpha} \geq \frac{P}{2^{\alpha(k+1)}}, \quad \therefore 2^k \leq \ell_i < 2^{k+1}$$

- Show that the cumulative interference I_{r_i} caused by concurrent transmissions from all non-adjacent cells is still within β
Consider edge $e_i = (s_i, r_i) \in E_k$.

<table>
<thead>
<tr>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_1</th>
<th>γ_2</th>
<th>γ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
</tr>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
</tr>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
</tr>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
</tr>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
</tr>
<tr>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
<td>γ_2</td>
<td>γ_1</td>
</tr>
</tbody>
</table>
Consider edge $e_i = (s_i, r_i) \in E_k$.

At most 8 from layer 1.
Consider edge $e_i = (s_i, r_i) \in E_k$

- At most 8 from layer 1
- At most 16 from layer 2, ..., at most $8q$ from layer q
- Add up all the interferences up to layer ∞
Computing Cumulative Interference I_{r_i}

- From transmitter s_j in a layer 1 non-adjacent cell of the same color

$$I_{r_i}(s_j) = \frac{P}{\ell_{ij}^\alpha} \leq \frac{P}{[2^k(\delta - 2)]^\alpha}, \quad \therefore \ell_{ij} \geq \delta \cdot 2^k - 2^{k+1}$$
Computing Cumulative Interference I_{r_i}

- From transmitter s_j in a layer 1 non-adjacent cell of the same color

$$I_{r_i}(s_j) = \frac{P}{\ell_{ij}^\alpha} \leq \frac{P}{[2^k(\delta - 2)]^\alpha}, \quad \therefore \ell_{ij} \geq \delta \cdot 2^k - 2^{k+1}$$

- In general, $\ell_{ij} \geq 2^k \{(2q - 1)\delta - 2\}$ in layer q
Computing Cumulative Interference I_{r_i}

- From transmitter s_j in a layer 1 non-adjacent cell of the same color

$$I_{r_i}(s_j) = \frac{P}{\ell_{ij}^\alpha} \leq \frac{P}{[2^k(\delta - 2)]^\alpha}, \quad \therefore \ell_{ij} \geq \delta \cdot 2^k - 2^{k+1}$$

- In general, $\ell_{ij} \geq 2^k \{(2q - 1)\delta - 2\}$ in layer q

- Adding up

$$I_{r_i} \leq \sum_{q=1}^{\infty} \frac{8qP}{[2^k \{(2q - 1)\delta - 2\}]^\alpha} = \frac{8P}{2^{(k-1)\alpha} \delta^\alpha} \cdot \frac{\alpha - 1}{\alpha - 2} \leq \frac{P_{r_i}(s_i)}{\beta}$$
Theorem: $O(g(E_T))$ Approximation

Given a routing tree T on an arbitrarily deployed connected network in 2-D, and K orthogonal frequencies, the algorithm gives a $O(g(E_T))$ approximation on the optimal schedule length.
Approximation Algorithm in SINR

Theorem: $O(g(E_T))$ Approximation

Given a routing tree T on an arbitrarily deployed connected network in 2-D, and K orthogonal frequencies, the algorithm gives a $O(g(E_T))$ approximation on the optimal schedule length.

Proof Sketch

- Choice of the critical cell \hat{c} in which the number of edges on the same frequency $L_{\hat{c}}^m \ast$ is maximum across all length classes.
- Show that OPT will take at least $L_{\hat{c}}^m \ast / \mu$ slots, for

 $$\mu = \frac{\left(2(\sqrt{2} \cdot \delta + 1)\right)^\alpha}{\beta}$$

- Show by contradiction that OPT cannot schedule $\mu + 1$ edges on the same frequency in any cell.
Algorithmic Aspects of Throughput-Delay Performance for Fast Data Collection in Sensor Networks

Multi-Channel Scheduling in SINR

Approximations in SINR

Approximation Algorithm in SINR

Proof Sketch (cobming together)

\[
\Gamma \leq 4 \cdot \max_{k,c} \{|\gamma_{c \in C_k}|\} \cdot g(E_T)
\]

\[
\leq 8 \cdot \max_{k,c} \left\{ L_{c \in C_k}^{\phi} \right\} \cdot g(E_T)
\]

\[
\leq 8 \cdot \max_{k,c} \left\{ \left(\frac{4}{3} - \frac{1}{3K} \right) \cdot L_{c \in C_k}^{m^*} \right\} \cdot g(E_T)
\]

\[
\leq 8\mu \cdot \left(\frac{4}{3} - \frac{1}{3K} \right) \cdot g(E_T) \cdot OPT
\]

\[
= O \left(g(E_T) \right)
\]
Outline

1. Maximizing Convergecast Throughput
 - Motivation and Preliminaries
 - Scheduling with Unlimited Frequencies
 - Approximations on Unit Disk Graphs
 - Approximations on General Disk Graphs

2. Multi-Channel Scheduling in SINR
 - Motivation and Interference Models
 - Problem Formulation and Approach
 - Approximations in SINR

3. Throughput-Delay Trade-off
 - Motivation
 - Bicriteria Formulation
 - Optimal Spanning Trees

4. Conclusions
Properties of Spanning Trees

Shortest Path Tree (shallow and fat)

- High node degree \Rightarrow low throughput
- Few hops \Rightarrow low delay
Algorithmic Aspects of Throughput-Delay Performance for Fast Data Collection in Sensor Networks

Throughput-Delay Trade-off

Motivation

Properties of Spanning Trees

Shortest Path Tree *(shallow and fat)*
- High node degree \Rightarrow low throughput
- Few hops \Rightarrow low delay

Minimum Interference Tree *(weighted MST)*
- [Mobihoc '04] *(deep and skinny)*
- $w(u, v)$: no. of nodes covered by the union of two disks centered at u and v, each of radius $|uv|$
- Low node degree \Rightarrow high throughput
- More hops \Rightarrow high delay
Evaluation of A_{UDG} on SPT & MIT

Parameters

Random geometric graph on a region of size 200×200 with $R = 25$

Shortest Path Tree

Minimum Interference Tree
Tree Property for Bounded Throughput

Theorem

If the maximum node degree of the routing tree is bounded by a constant \(\Delta_C > 0 \), then there exists an algorithm that gives a constant factor \(8\mu_\alpha \cdot \Delta_C \) approximation on the optimal schedule length, where \(\mu_\alpha > 0 \) is a constant for a given cell size \(\alpha \geq 2R \) and given node deployment.
Tree Property for Bounded Throughput

Theorem

If the maximum node degree of the routing tree is bounded by a constant $\Delta_C > 0$, then there exists an algorithm that gives a constant factor $8\mu_\alpha \cdot \Delta_C$ approximation on the optimal schedule length, where $\mu_\alpha > 0$ is a constant for a given cell size $\alpha \geq 2R$ and given node deployment.

Properties

- Degree-bounded spanning trees? Minimum Degree Spanning Tree is NP-hard [SODA’92]
- Is constant factor approximation on schedule length and delay achievable?
Bicriteria Formulation

Bounded-Degree Minimum-Radius Spanning Tree

\[\mathcal{P} = (\text{Degree}, \text{Radius}, \text{Spanning Tree}) \]

- **Radius**: \(R(T) \): Maximum hop distance from any node to sink in \(T \)
- **\(\Delta^* \)**: Budget on max degree

Goal: Find a spanning tree of **min radius** subject to **max degree** \(\Delta^* \)
Bounded-Degree Minimum-Radius Spanning Tree

\(\mathcal{P} = (\text{Degree, Radius, Spanning Tree}) \)

Radius: \(R(T) \): Maximum hop distance from any node to sink in \(T \)

\(\Delta^* \): Budget on max degree

Goal: Find a spanning tree of min radius subject to max degree \(\Delta^* \)

Approximation Definition

Algorithm \(\mathcal{A} \) is an \((\alpha, \beta)\)-approximation to a bicriteria optimization problem \(\mathcal{P} = (\text{Degree, Radius, Spanning Tree}) \) if:

- \(\Delta(T) \leq \alpha + \Delta^* \)
- \(R(T) \leq \beta \cdot R^*(T) \)

where \(R^*(T) \) is the min radius of any spanning tree \(T \) whose max degree is \(\Delta^* \).
Algorithm Overview

Algorithm A_{BDMRST}

Three phases:

1. Construct a **Global Backbone Tree of low radius**.
2. Construct **degree-bounded Local Spanning Trees**.
3. Merge the local spanning trees and the global backbone tree.
Algorithm Overview

Global Backbone Tree
Algorithmic Aspects of Throughput-Delay Performance for Fast Data Collection in Sensor Networks

Throughput-Delay Trade-off

Optimal Spanning Trees

Algorithm Overview

Global Backbone Tree

Local Spanning Tree
Properties of Spanning Trees

Bounded-Degree Minimum-Radius Spanning Tree, $\Delta^* = 4$
Theorem

Algorithm A_{BDMRST} gives a constant factor (α, β) bicriteria approximation for the Bounded-Degree Minimum-Radius Spanning Tree, where $\alpha = 10$ and $\beta = 5$.
Algorithm A_{BDMRST} gives a constant factor (α, β) bicriteria approximation for the Bounded-Degree Minimum-Radius Spanning Tree, where $\alpha = 10$ and $\beta = 5$.

Schedule Length

Max Delay
Outline

1. Maximizing Convergecast Throughput
 - Motivation and Preliminaries
 - Scheduling with Unlimited Frequencies
 - Approximations on Unit Disk Graphs
 - Approximations on General Disk Graphs

2. Multi-Channel Scheduling in SINR
 - Motivation and Interference Models
 - Problem Formulation and Approach
 - Approximations in SINR

3. Throughput-Delay Trade-off
 - Motivation
 - Bicriteria Formulation
 - Optimal Spanning Trees

4. Conclusions
Contributions

- Maximizing aggregated convergecast throughput using **multi-channel scheduling**
 - Constant factor approximation on UDG
 - $\Delta(T) \cdot \log(n)$ approximation on DG
 - $O(g(\mathcal{E}_T))$ approximation in SINR
- **Throughput-delay** trade-off in the same optimization framework
 - Bicriteria formulation
 - Constant factor approximation on constructing bounded-degree minimum-radius spanning trees
- Efficient, distributed **topology control in 3-D**
 - Simple orthographic projection based approach extending 2-D results
 - Robust spherical Delaunay triangulation based algorithm
Publications

Book Chapters

Journal Papers

Conclusions

Publications

Conference Papers (reverse chronologically)

Manuscripts

Acknowledgments

Collaborators

- **USC (EE, Civil):** Bhaskar Krishnamachari, Erik Johnson, Yi Wang, Tat Fu
- **Bogazici University:** Ozlem Durmaz Incel
- **Virginia Tech:** Anil Vullikanti
- **University of Texas:** Sajal K. Das
- **IBM Research:** Shivkumar Kalyanaraman, Partha Dutta, Malolan Chetlur
- **Siemens Corporate Research:** Chellury Ram Sastry
- **Microsoft Research:** Krishnakant Chintalapudi
- **Eaton Corporation:** Ting Yan, Luis Pereira, Hui Cao
- **AT&T Labs Research:** Vaidyanathan Ramaswami, Rittwik Jana, N.K. Shankar

Thank You!