

Lecture 10

Amitabha Ghosh Department of Electrical Engineering USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by Bhaskar Krishnamachari and Murali Annavaram.

Outline

- Administrative Stuff
- Traffic Management in Data Centers using Software Defined Networks (SDN)
- Puzzles

School of Engineerin

Scalable Multi-Class Traffic Management in Data Center Backbone Networks

(Collaborators: Google, Princeton)

Outline

- Motivation
- Contributions
- Model and Formulation
- Scalable Designs
- Performance Evaluation
- Conclusions

USC Viterbi School of Engineering

Motivations

- Multiple interconnected data centers (DCs) with multiple paths between them
- DCs, traffic sources, and backbone owned by the same OSP, e.g., Google, Yahoo, Microsoft
- Traffic with different performance requirements
- Different business importance

Contributions

Controlling the three "knobs"

- Sending rates of hosts
- Weights on link schedulers
- Splitting of traffic across paths

Joint optimization of rate control, routing, and link scheduling

USC Viterb School of Engineerin

Contributions

- Computation is distributed across multiple tiers using a few controllers
- Result is provably optimal using optimization decomposition
- Semi-centralized solutions viable and, in fact, preferred in practice, e.g., Google's B4 globally-deployed software defined private WAN (SIGCOMM '13)

USC Viterk

Traffic Model

- Performance requirements \implies Set of traffic classes $\mathcal{K} = \{k\}$
- Multiple flows per class
 - Flow: traffic between a source-destination pair $s \in \mathcal{F}^k$
- $extsf{ }$ Business importance $extsf{ }$ flow weight $extsf{ } w_s^k$

Utility Function of a Class

- All flows in the same class have the same utility function $U^k(\cdot)$
- For simplicity, assume only throughput and delay sensitive traffic $f^k(\cdot) = g^k(\cdot)$

Network Model

- Set of unidirectional links $\mathcal{L} = \{l\}$
 - Capacity Cl
 - Propagation delay *Pl*
- Set of paths $\mathcal{P} = \{p\}$
- Routing matrix
 $A = [A_{lp}]$ $R = [R_{sp}^k]$ Topology matrix
 One queue per class
 smaller $R = [R_{sp}^k]$ $R = [R_{sp}^k]$
- Multi-path routing
 - Path rate of flow s of class k over path p

 z_{sp}^k

Utility of Flow s of Class k

Coefficients to model different degrees of sensitivity to throughput and delay

$$U_s^k = w_s^k \left| a^k f^k(x_s^k) - b^k g^k(u_l^k) \right|$$

Weight of flow s of class k

Throughput Total Utilization Delay sending rate sensitivity of class k sensitivity of class k, of class k over link l of flow s of e.g., log(.) class k Sum of the products of path rates and average end-to-end delays on those paths

USC Viterb School of Engineerin

Objective Function

- Data centers, backbone and traffic sources under the same OSP ownership
- Maximize the sum of utilities of all flows across all traffic classes (global "social welfare")

$$\begin{array}{ll} \text{maximize} & \mathcal{U} = \sum_{k} \sum_{s \in \mathcal{F}^{k}} U_{s}^{k} \\ \\ \text{Global Problem G:} & \text{subject to} & \mathbf{AR}^{k} \mathbf{z}^{k} \preceq \mathbf{y}^{k}, \quad \forall k \\ & \sum_{k} y_{l}^{k} \leq c_{l}, \quad \forall l \\ & \text{variables} & \mathbf{z}^{k} \succeq 0, \quad \forall k \end{array}$$

Two-Tier Design

Each controller has a limited view about the network and inter-DC traffic

Link Coordinator (LC) Optimizes aggregate link bandwidth across classes

• A centralized entity

USC Viters

 Knows network topology

- Class Allocator (CA)
 Optimizes sending
 rates across flows in
 its own class
- One for each class
- Knows the utility function, weights, and paths of individual flows in its own class

13

USC Viterbi

Two-Tier Design

Flows

Primal Decomposition

Primal Decomposition

Subproblem for Class k

maximize
$$\mathcal{U}^k = \sum_{s \in \mathcal{F}^k} U_s^k$$

subject to $\mathbf{AR}^k \mathbf{z}^k \preceq \mathbf{y}^k \quad \forall k$
variables $\mathbf{z}^k \succeq 0$

Primal Decomposition

Subproblem for Class kMaster Primalmaximize $\mathcal{U}^k = \sum_{s \in \mathcal{F}^k} U_s^k$ maximize $\mathcal{U} = \sum_k \mathcal{U}^{k^*}(\mathbf{y}^k)$ subject to $\mathbf{AR}^k \mathbf{z}^k \preceq \mathbf{y}^k \quad \forall k$ subject to $\sum_k y_l^k \leq c_l \quad \forall l$ variables $\mathbf{z}^k \succeq 0$ variables $\mathbf{y}^k \succeq 0$

Primal Decomposition

Message-Passing

 \mathbf{y}^k : Aggregate bandwidth assigned to class k $\boldsymbol{\lambda}^{k^*}$: Optimal subgradient of CLASS(k)

Why another tier? (High control overhead)

Flow of a given class may originate from any DC

Each class allocator potentially communicates with all DCs

Three-Tier Decomposition

2-Level Primal Decomposition

Three-Tier Decomposition

Message-Passing

 \mathbf{s}^{k^*} : Optimal subgradient of CLASS(k) $\boldsymbol{\lambda}^{kj^*}$: Optimal subgradient of DATACENTER(k,j)

 \mathbf{y}^k : Aggregate bandwidth assigned to class k

 $\mathbf{y}^{kj}:$ Aggregate bandwidth assigned to DC j sending traffic of class k

ool of Enginee

Performance Evaluation

Performance Metrics

- □ Rate of convergence
- Message-passing overhead

Simple topology

- DC1 & DC2 send traffic to DC3
- 100 Mbps link capacity
- Two classes with log utility

Abilene topology

- 4 DCs
- 1 Gbps link capacity in each direction
- First 3 shortest possible paths between every pair of DCs (36 total)
- Two classes with log utility functions

School of Engineeri

Rate of Convergence

Each iteration is in the order of a few seconds:

There can be only so many different types of performance requirements (~10)
 Only so many inter-connected DCs (a few 10s)

Rate of Convergence

Three-tier: Number of iterations to converge for different combinations of class-level and DC-level step sizes.

Rate of Convergence

Summary of the convergence behavior

Class-level step size β	2-tier design	3-tier design
small $\beta=1,2$	slow	very slow, all α
medium $\beta = 5, 10$	moderate	slow, all α
large $\beta = 20, 30$	fast	moderate, all α
very large $30 < \beta < 40$	fast	moderate, $\alpha \leq 16$
extremely large $40 \ge \beta < 50$	fast	does not converge
$\beta \geq 50$	does not converge	does not converge

In practice, choose step sizes that converge quickly.
 Dynamic traffic demand: For private OSP backbone, the demand variability can be controlled to some extent

ichool of Engineeri

Message-Passing Overhead

K No. of classes

L No. of backbone links

USC Viters

J No. of DCs

- N N' No. of class-level
 - 100 allocations to converge in two-tier and three-tier designs
 - M No. of DC-level
 - 5 allocations to converge in three-tier
- □ Messages are sent over the wide area network

 $\left(2KL + \sum_{k}\sum_{j}\sum_{s \in \mathcal{F}^{kj}}\sum_{p}R_{sp}^{k}\right)$

- Number of messages depends on the number of flows in the two-tier design, but not in the three-tier design
- $\hfill\square$ Small compared to the total traffic volume

Two-tier: # of variables Three-tier: N' (2KL + 2JKLM)# of variables

Conclusions

- Software defined traffic management for wide area data center backbone networks
- Two scalable and practical semi-centralized designs using a small number of controllers that can be implemented in real-world data center backbones (Google)
- Joint rate control, routing, and link scheduling using optimization in a modular, tiered design
- Results provably optimal using principles of optimization decomposition
- Tradeoff between rate of convergence and message-passing choose the design that suits the OSP best

Thank You

Amitabha Ghosh, Sangtae Ha, Edward Crabbe, and Jennifer Rexford, "Scalable Multi-Class Traffic Management in Data Center Backbone Networks," IEEE JSAC: Networking Challenges in Cloud Computing Systems and Applications, vol. 13, no. 12, 2013 (in press).

<u>http://anrg.usc.edu/~amitabhg/papers/JSAC-CloudComputing-</u> 2013.pdf

USC Viters

Puzzles

Please take a look at the following links:

- 1. <u>http://gurmeet.net/puzzles/</u>
- 2. http://www.dcg.ethz.ch/members/roger/puzzles/
- 3. <u>http://research.microsoft.com/en-</u>

us/um/people/leino/puzzles.html

4. (Lateral Thinking Puzzles)

http://www.thecourse.us/students/lateral_thinking.htm

ichool of Engineering

Engineers and Salary

- Four honest and hard-working computer engineers are sipping coffee at Starbucks. They wish to compute their average salary. However nobody is willing to reveal an iota of information about his/her own salary to anybody else.
- Question: Is it possible? If so, how do they do it?

chool of Engineer

Doors

- There are 100 doors in a row that are all initially closed. You make 100 passes by the doors starting with the first door every time.
 - First time you visit every door and toggle the door (if the door is closed, you open it, if its open, you close it).
 - Second time you only visit every 2nd door (door #2, #4, #6), and toggle.
 - Third time, every 3rd door (door #3, #6, #9), etc., until you only visit the 100th door.
- Question: What state (open / closed) are the doors in after the 100th pass?

ichool of Engineeri

- You have two identical eggs. You can access a 100-story building.
- You are told that if you drop an egg from or above a particular floor the egg will break.
- Question:
 - You need to figure out the highest floor an egg can be dropped without breaking.
 - How many drops you need to make? You are allowed to break both the eggs in the process.

Blind Man and Cards

chool of Engineer

- A blind man is handled a deck of 52 cards, and told that exactly 10 of these cards are facing up.
- Question: How can he divide the cards into two piles, not necessarily of equal size, with each pile having the same number of cards facing up?

Baskets, Apples, and Oranges

- Basket 1 has two apples
- Basket 2 has two oranges
- Basket 3 has one apple and one orange
- Each basket has a label "Apple", "Orange", or "Apple & Orange" -But all the labels are wrong!
- You are allowed to open one basket, pick one fruit, see it, and put it back into the basket (you don't get to see the other fruit)
- Question: How many such operations are necessary to correctly label the baskets?

Cap Colors

- An evil troll once captured a bunch of gnomes and told them:
 - Tomorrow, I will make you stand in a file, ordered by height such that a gnome can see exactly those gnomes that are shorter than him."
 - "I will place a cap (one of 10 different colors) on each head."
 - "Then, starting from the tallest, each gnome has to declare aloud what he thinks the color of his own cap is."
 - "In the end, those who were correct will be spared; others will be eaten, silently."
- The gnomes set thinking and came up with a strategy.
- Question: How many of them survived?

thool of Engineer