
EE 579: Wireless and Mobile Networks

Design & Laboratory

Lecture 11

Amitabha Ghosh

Department of Electrical Engineering

USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by

Bhaskar Krishnamachari and Murali Annavaram.

2

Outline

 Presentation and Demo Plans

 Recap

3

Smartphones, Platforms, Apps

 Design and develop network protocols and applications

wireless and mobile devices

4

Smartphone Apps

 Pocket

When you find something

interesting you want to view

later, put it in pocket

iPhone, iPad, Browsers, …

 Car GPS

Entry level Garmin $80-$100

MotionX GPS Drive

4.4 Stars, $0.99

Voice navigation costs

The Good Enough Revolution: When Cheap and Simple Is Just Fine
Wired Magazine, Aug 24, 2009

5

Smartphone Apps

 Skype

 Quality can be sketchy, but

 Free or VERY low cost, 4+ rating

 Available everywhere

 The user experience is uniform

 Instagram

 Social video-shooting and sharing

 Jazz up photos and videos with filters

 Change the focus while shooting

 Free, 4+ rating

6

Smartphone Apps

 Duolingo

 Apple’s top app of 2013

 Learn a new language

 Spanish, German, French, …

 Both visual and verbal lessons

 Free. Reward points to buy perks

 Over

 Overlay text on images

 Turn routine pictures into e-cards

 Price: $1.99

7

Market Share

8

Sensors

9

Wireless Sensor Platforms

 Contiki (v2.7 Nov 2013)

 Open source OS for the Internet of Things

 Connects tiny low-cost, low-power microcontrollers to the

Internet

 Written in C

 Cooja simulator, emulated before burned into hardware

 Supports IPv4, IPv6, 6lowpan, RPL, CoAP

 Coffee flash file system

 Protothreads – event-driven and multi-threaded

 Runs on a range of low-power wireless devices

 ContikiMAC sleepy routers

 Atmel, Cisco, ETH, Redwire, SAP, Thingsquare

10

Android 1.5 Cupcake, April
2009, 1st commercially available
version with Android’s first
touch-screen phone HTC Magic

Android 1.6 Donut, Sept
2009, text-to-speech
technology, search by
text and voice

Android 2.0/2.1
Eclair, Oct 2009,
live wallpapers,
virtual keyboard,
Bluetooth,
HTML5, improved
navigation with
Google maps

Android 2.2 Froyo, May
2010, OS speed with Java V8
engine and JIT compiler,
Flash, remote wipe features

Android 2.3 Gingerbread, Dec 2010,
quick front and back camera switch,
better battery mgmt, near field
communication (NFC) with Google Wallet

Android 3.0 Honeycomb,
Feb 2011, designed for
tablets, no need for
physical buttons, system
bar, action bar, redesigned
keyboard

Android 4.0 Ice
Cream Sandwich,
Oct 2011,
performance and
speed, tablet
features on
smartphones, GTalk

Android 4.1 Jellybean,
July 2012, Google Now,
faster smoother more
responsive

Google acquires
Android Inc. in
2005, Android
1.0 Astro, Sept
2008

11

 Fast and smooth on a range of
devices, millions of entry-level
devices < 512 MB RAM

 Printing over Wi-Fi or cloud

 Full-screen immersive mode (use
every pixel, capture touch
events)

 Secure NFC through Host Card
Emulation (HCE)

 Low-power sensors (e.g., step
detector and counter)

Nov 2013 (Latest)

12

Android Architecture

Drivers for hardware,

networking, file system access,

and inter-process-

communication (IPC). Display,

camera, flash, Wi-Fi, audio, …

Native libraries, daemons

and services (C/C++).

SQLite, OpenGL, SSL, …

Dalvik VM, Core libs

Written mostly in Java.

Managers for Activity,

Window, Package, …

Written in Java, executed in

Dalvik VM. Home, Contacts,

Phone, Browser, …

The Linux kernel, the libraries, and the runtime are encapsulated by the Application

Framework. Developers typically work with the top two layers

13

Android Runtime

 Core Java Libraries

 Dalvik Virtual Machine (Dan Bornstein from Google)

 Dalvik

14

Dalvik Virtual Machine

It is the software that executes Android apps (not the Java VM),

specifically designed to run on

 Slow CPU

 Relatively little RAM

 OS without swap space

 Powered by a battery

 Diverse set of devices

 Sandboxed application runtime for security, performance, and

reliability

Somewhat conflicting
constraints

15

Dalvik Virtual Machine

Typical Workflow

 Write apps in Java

 Compile into Java bytecode

 One .class file per class

 DX tool converts multiple Java

classes into a single DEX file

(classes.dex)

 Rearranges classes, removes

redundancy

 Dex file is packaged with other

resources and installed on

device

16

Dalvik Virtual Machine

Conserving Memory

 .dex uses shared, type-specific

constant pools

 Minimal repetition and more

logical pointers than a .class

file

 A constant pool stores all literal

constant values within the class

 String constant, field,

variable, class, interface, and

method names

 In a .class file, constant part: 60%,

method part: 33%

17

Android ART

Android Run Time : Google finally moves to replace Dalvik, to boost

performance and battery life. Early version included in Android

KitKat

 ART straddles a middle-ground

between compiled and interpreted

code, called “ahead-of-time” (AOT)

compilation

 Currently apps are interpreted at

runtime using JIT (slow), compare

with iOS

 With ART, app is compiled into native

code while installing (fast)

18

App Lifecycle

Lifecycle is a set of states

 When the current state

changes, Android OS

notifies the Activity of

that change

 Implemented by callback

methods

19

App Lifecycle

Four States

 Active / Running

Visible, has focus, and
in foreground

 Paused

Partially visible but not
active and lost focus

Completely alive and
maintains its state

 Stopped

Completely obscured
by another activity

 Destroyed / Dead

No longer in memory

20

App Lifecycle

Seven Callback Methods

 onCreate() – UI creation

and initialization of data

elements

 onStart() – called before

Activity is visible (but not

alive)

 onResume() – Activity

becomes visible and active

for user to interact

 onPause() – another

Activity comes in front, or

user navigates away

Gray boxes
show callback
methods prior
to state
changes

21

App Lifecycle

Seven Callback Methods

 onStop() – back button, or

new Activity completely

covers

 onRestart() – user

navigates back to the

Activity

 onDestroy() – Activity is

destroyed

Gray boxes
show callback
methods prior
to state
changes

22

App Lifecycle

23

App Lifecycle

Three Lifecycle loops for

every Activity, defined by

callback methods

 Entire Lifetime – first call

to onCreate() and final call

to onDestroy()

 Visible Lifetime – from

onStart() and onStop()

 Foreground Lifetime – from

onResume() to onPause

24

App Lifecycle

Saving Persistent State

 When an Activity is

stopped or paused, its

state is preserved

 When an Activity is

destroyed by the system, it

is recreated next time

Activity starts

 User is often unaware that

an Activity is destroyed,

resulting in surprises and

crashes

25

App Lifecycle

Two Kinds of Persistent States

 Shared document-like data

 SQLite storage using a
content provider

“Edit-in-Place” user
model

Backup fully at
onPause()

 Internal state (user prefs)

API calls to store prefs

E.g., user’s initial
calendar display (day vs
week view), or default
webpage in a browser

26

Fun with Math

S = 1 + 2 + 3 + 4 + …. ?

a) Infinity

b) Does not converge (diverges)

c) A finite value

d) A Googolplex 10(10)^100

e) Confused

S = -1/12 Is it Absurd?

27

Motivation

 Mobile Video Traffic Projection

 Over 66% of all mobile data traffic will be from video by 2017

 7.4 exabytes (EB) out of 11.2 EB (1 EB = 1018 bytes)

28

Content-Pipe Divide

 Content Providers

 Media companies, end-

users, operators of CDN

and P2P

 Generate content treating

the network as simply a

means for communication

(dumb pipes)

Transcode
Generate

multimedia

Frames Shaping

Queuing

Marking

Dropping

Transportation network

DIVIDE

 Pipe Providers

 ISPs, equipment & network

management vendors,

municipalities

 Treat every content equally

as simply bits to be

transported between nodes

(dumb content)

29

Content Aware Networking

 Protocol Fairness

 Rate fair: Each flow gets half

the capacity

 Rate-Distortion fair: Flow1 gets

more

 A New Protocol Design Paradigm

 Utilize content characteristics

 Allocate resources based on the optimality criteria that are

reflective of the content

 More adaptive and effective network protocols that are rate-

distortion fair

30

Kartik Pandit, Amitabha Ghosh, Dipak Ghosal, and Mung Chiang, "Content

Aware Optimization for Video Delivery over WCDMA," EURASIP Journal on

Wireless Communications and Networking, July 2012.

URL: http://anrg.usc.edu/~amitabhg/papers/EURASIP-2012.pdf

Content Aware Video Delivery over

3G WCDMA Networks

31

Network Model

 Cellular Uplink

 Increasing demand for high data rate

 EVDO RA (1.8 Mbps), LTE (50 Mbps)

 A single WCDMA cell, with a base

station serving all users

 Each user transmits a pre-encoded

video upstream

 Videos are encoded as GOP (Group of

Pictures) structures

 Degrees of Freedom – Control

 Scheduling (send or drop frame)

 Transmission power

32

Video Model

 Group of Pictures (GOP)

 Successive frames organized into a repetitive structure

 I frame (intra) – coded independently

 P frame (predictive) – motion-compensated difference, depends on

previous P frame

 B frame (bipredictive) – depends on previous and following P/I frames

 Idea: Drop unimportant frames without hurting the quality

B

PI P

B BB
GOP: IPBBPBB

Directed acyclic graph

Arrows indicate dependency

33

Constraints

 SINR – signal to

interference plus

noise ratio

 Achievable rate

User i’

User i

34

Optimization Formulation

 Content-Aware Distortion-Fair Optimization (CADF)

 Minimize the sum of distortions over a GOP for all videos subject

to SINR constraints

 An NP-hard problem (MINLP)

 Can solve efficiently using heuristics

35

Jiasi Chen, Amitabha Ghosh, Josphat Magutt, and Mung Chiang, "QAVA:

Quota Aware Video Adaptation," ACM CoNEXT, pp. 121--132, Nice,

France, December 2012.

URL: http://anrg.usc.edu/~amitabhg/papers/CoNEXT-2012.pdf

QAVA: Quota Aware Video

Adaptation

36

Motivation: The Conflict

 Emerging Trends

 Video traffic becoming dominant (>66% by 2017)

 Usage-based pricing becoming prevalent

 AT&T wireless (Jan 2012): $30/$50 for 3/5 GB (baseline) + $10 per GB

 Verizon Wireless (July 2011): $30/$50/$80 for 2/5/10 GB (baseline) +

$10 per GB

 Can the user consume more content without worrying

about the wallet?

 Is every bit needed for everyone at all times?

37

QAVA: Graceful Tunable Tradeoff

Distortion

Cost

Videos watched

Cost

Within budget

Distortion

Minimize

A 3-way tradeoff

Videos

watched

Supply

Size of the video

(bit-rate)

Video compressibility Usage profile

38

Modular Architecture

 Three Modules

 Video Profiler

 Exploit video compressibility

from motion vectors

 User Profiler

 Predict user’s future data

consumption from past

history

 Stream Selector

 Choose the right bitrate to

maximize video quality

subject to budget

Video

Profiler

(offline)

motion vectors,

bitrates

utility

(MOS, PSNR)

User

Profiler

(online)

past data

consumption

predicted

consumption

Stream

Selector

(online)

video

request

bit rate

video

39

Modular Architecture

Adaptively choose the right bit rates

User

Profiler

(online)

Stream

Selector

(online)

Video Delivery at right bit rate

Video

Profiler

(offline)

Video Request

User device Content provider’s server

Access

Network
Backbone

40

Princeton Trial

 Set Up

 15 volunteers with Android phones

 ~500 videos encoded at 25 Kbps granularity (100 Kbps – 500 Kbps)

Database logs:

 Video request

 Time stamp

 User ID / Android ID

 MB of video delivered

User and video

info request

Tomcat webserver

(QAVA server)
MySQL DB

41

Android App Screenshots

42

Outline

 Administrative Stuff

 Wireless Links

 GPS and Localization in Sensor Networks

 Open Forum

43

Reality

Ganesan et al. ‘02 Woo et al. ‘03

44

Radio Propagation

45

A Simple Model

 Exponential path loss with log-normal fading:

 Pr,dB(d) = Pt,dB – PLdB(d)

 PLdB(d) = PLdB(d0) + 10n log10 (d/d0) + X,dB

46

Localization Overview

 Localization – To determine the location of objects

 Location information is necessary / useful for many

functions

 Location stamps

 Coherent signal processing

 Tracking and locating objects

 Cluster formation

 Efficient addressing

 Efficient querying and routing

47

Localization Design Issues

 What to localize?

 Unknown node vs. reference node

 Mobile vs. static node

 Node localization vs. network localization

 Cooperative vs. non-cooperative nodes

 When to localize?

 Static vs. dynamic

 How well to localize?

 Coarse vs. fine grained

 Where to localize?

 Central server vs. localizing object

 How to localize?

 Technology: RF, IR, Ultrasound, Combination, UWB

 What methodology to use?

48

Node Localization Approaches

 Coarse-grained

 Use minimal information

 Use minimal computation power

 Fine-grained

 Gather and use as much information as possible

 Requires higher computation power

 Trade-off

 Accuracy vs. implementation / computation / cost

49

Radio Signal Strength Based

Localization
 Developing local

positioning systems

suitable for embedded

wireless devices

 Low cost alternatives to

GPS that can also work

well under foliage /

indoor environments

 Ecolocation and

sequence-based

localization

50

Ecolocation

 Unknown node initiates localization process

 Sends out a localization request

 Reference nodes in the radio range send response packets

 Measure signal strength of received packets (RSSI)

 Rank reference nodes based on RSSI values

 Ranks can be written as a set of constraints on the location of the

unknown node

 The locations of reference nodes with respect to the grid

points can also be written as distance constraints

51

Location Constraints

 Relationship between distances of a pair of reference

nodes with respect to the unknown node

 N reference nodes => n(n-1)/2 constraints (A constraint set)

1

2

3
4

A
B

C

D

E

Location Constraint Set for A

{dB < dC, dB < dD, dB < dE,

dC < dD, dC < dE,

dD < dE}

Redundancy in the constraint set

52

Location Constraints

Constraints on the unknown

node w.r.t. the reference nodes

Constraints on the reference nodes

w.r.t. each of the grid points

53

Ecolocation Results

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

X-AXIS (length units)

Y
-A

X
IS

 (
le

n
g

th
 u

n
its

)

Location estimate for 124739586

E

P

A1

A2

A4

A7

A3 A9

A5

A8

A6

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

X-AXIS (length units)

Y
-A

X
IS

 (
le

ng
th

 u
ni

ts
)

Location estimate for 913276584

P

E

A9

A1

A3

A2

A7 A6

A5

A8

A4

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

X-AXIS (length units)

Y
-A

X
IS

 (
le

n
g

th
 u

n
its

)

Location estimate for 123456789

 E

 P

 A1

 A2

 A3

 A4

 A5 A6

 A7

 A8

 A9

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

X-AXIS (length units)

Y
-A

X
IS

 (
le

ng
th

 u
ni

ts
)

Location esitmate for 123745968

P

E
A1

A2

A3

A7

A4 A5

A9

A6

A8

A: Reference Node P: True Location of unknown node E: Ecolocation Estimated Location

54

Indoor Tracking

55

Outdoor Experiment

56

Maximum Ratio Combining

57

Location Sequence

 The ordered sequence of distance ranks of reference

nodes from a given location

1

2

3
4

A
B

C

D

E

Location Sequence for A

B C D E

1 2 3 4

A

B Locations

closer to 1

(dA < dB)

Locations

closer to 2

(dB < dA)

Locations

equidistant

from 1 and 2

(dA = dB)

Rank order between two reference

nodes is defined by the perpendicular

bisector between them.

58

Location Sequence

 Location sequences are unique to each region

 All locations in a region have the same location sequence

 One-to-one mapping with centroid of the region they

represent

A

B D

A B C D

1 2 3 4

A B C D

1 1 3 4
A B C D

3 3 1 1

A B C D

4 3 2 1
C

Face

Vertex

Edge

59

Indoor Experiment: Office Building

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X (meters)

Y
 (

m
e

te
rs

)

Ref. nodes
True Path
Estimated Path

1

2

3

4
5

Office room Office room

Conference room with furniture

Door

60

Moteiv Tmote Sky

61

Tmote Sky Features

 2.4 GHz, 250 Kbps IEEE 802.15.4 CC2420 radio, range:
tens of meters

 MSP430 microcontroller, 10 KB RAM, 48 KB flash

 1 MB external flash

 USB programming using NesC/TinyOS/Contiki

 On-board Humidity, Temperature, and Light Sensors

 Power consumption @ 3V: mcu + radio: ~20 mA, mcu
alone: ~2 mA, standby: 20 A

62

Recap

63

Contiki OS

 Open source - BSD license

 Multitasking using C programming language

 Developed by Adam Dunkels at the Swedish Institute of

Computer Science

 Version 1.0 released in March 2003

 Version 2.7 released November 15, 2013

 Highly portable

 Tmote Sky, JCreate, TelosB, Atmel Raven, MicaZ, …

 Simulators: Cooja, MSPsim, AvoraZ, netsim

 Native platform

 Actively developed

 17 developers from SICS, SAP, Cisco, NewAE, TU

64

Contiki OS (2002)

 Contiki – pioneering open source operating system for

sensor networks

 IP networking

 Hybrid threading model, protothreads

 Dynamic loading

 Power profiling – measure network power consumption

 Network shell – makes interaction easier

 Rime stack – makes network programming easier

 Multitasking using C language

 Highly portable – 14 platforms, 5 CPUs

 Small memory footprint targeted for small embedded

processors with networking

 50% of all processors are 8-bit, e.g., MSP430, AVR, ARM7, 6502, ...

65

The Name Contiki

 The Kon-Tiki raft

 Used by Norwegian explorer and writer Thor Heyerdahl in his 1947

expedition across the Pacific Ocean from South America to the

Polynesian islands with minimal resources

 Named after the Inca sun god, Viracocha, whose old name was

“Kon-Tiki”

66

Getting Started

 Step 1: Download Instant Contiki

 Contiki development environment – single-file download

 Ubuntu Linux virtual machine with all development tools,

compilers, and simulators installed

 www.contiki-os.org/start.html

 Step 2: Download VMWarePlayer

 www.vmware.com/go/downloadplayer

 Step3: Start Instant Contiki

 Open the Instant Contiki folder and execute

 instantContiki2.6.vmx

 Wait for the virtual Ubuntu Linux to boot up

http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
http://www.vmware.com/go/downloadplayer

67

Rime: Lightweight and Layered

 Each module is fairly

simple

 Compiled code 114-598 bytes

 Complexity handled

through layering

 Modules are implemented in

terms of each other

 Not a fully modular

framework

 Full modularity typically gets

very complex

 Rime uses strict layering

http://contiki.sourceforge.net/docs/2.6/

examples.html

http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html

68

An Example

 We will go through an example Contiki program step-by-

step to see the structure of the code and different data

structures used

 This example program opens a UDP broadcast connection

and sends one packet every second

69

One of the biggest challenges

 Sensors have a limited source of power and it’s hard to

replace or recharge, e.g., sensors deployed in the battle

field, sensors in a large forest

Power Consumption

70

Sources of Power Consumption

Wasteful power consumption

 Idle listening to the channel
 Waiting for possible traffic

 Retransmitting because of collision
 Two packets arrived at the same time at the same sensor

 Overhearing
 When a sensor received a packet doesn’t belong it

 Generating and handling control packets.

71

Hidden Terminal Problem

R

S2
S1

 How to avoid? – Use of additional signaling packets
 Sender asks receiver whether it is able to receive a transmission -

Request to Send (RTS)

 Receiver agrees, sends out a Clear to Send (CTS)

 Sender sends, receiver sends Acknowledgements (ACKs)

 Another sender’s presence is hidden from the intended

sender, and therefore simultaneous transmissions from

both os them to the same receiver cause collision

72

 An exposed node is one that is in the range of the

transceiver but not the receiver

 Sender mistakenly thinks that the medium is in use, and it

unnecessarily defers transmission

 How to avoid?

 When a node hears an RTS but not a corresponding CTS, it can

deduce that it is an exposed terminal and is permitted to transmit

 Directional antennas

Exposed Terminal Problem

R1

S1 S2

R2

73

802.11 Data Transfer

IEEE 802.11 Disadvantages

 Devices consume large amounts of energy due to the high

percentage of time spent listening without receiving

messages

Wireless MAC Protocols

74

B-MAC

 Uses a tone to wake up sleeping neighbors, similar to

STEM-T

 Uses very long preambles - dominates energy usage

 Suffers from overhearing problem

Unscheduled WSN MAC Protocols

75

S-MAC (Sensor-MAC)

 Inspired by PAMAS, but in-channel signaling

 Nodes periodically go to a fixed listen/sleep cycle

 Virtual clustering to synchronize nodes on a common slot

 Energy is still wasted during listen period, as the sensor

remains awake even if there is no reception/transmission

Scheduled WSN MAC Protocols

76

T-MAC (Timeout-MAC)

 Introduces adaptive duty cycling to improve S-MAC
 Frees the application from the burden of selecting an

appropriate duty cycle

 Automatically adapts to traffic fluctuations

 Borrows virtual clustering from S-MAC for synchronization
 Operates on a fixed length slot (615 ms)

 Uses a time-out mechanism to dynamically determine the end of

the active period

 Downside
 Aggressive power-down policy (nodes often go to sleep too early)

Scheduled WSN MAC Protocols

77

D-MAC (Data Gathering-MAC)

 Uses adaptive duty cycling like T-MAC
 1 receive, 1 send, and n sleep slots

 Low node-to-sink latency: convergecast

 Divides time into short slots (10 ms) and runs CSMA/CA

within each slot

Scheduled WSN MAC Protocols

Convergecast

tree with

matching,

staggered DMAC

slots

78

There is no unique “best” MAC protocol for WSN. Each

one is customized for specific applications.

In Summary

79

 No topology control: nodes

transmit at max power levels

• High energy consumption

• High interference

• Low throughput

Topology Control: Given a network connectivity graph, compute a

subgraph with certain properties: connectivity, low interference etc.

• No topology control: nodes

transmit at min power levels

• Network may partition

Why Topology Control?

80

Benefits
• Global connectivity

• Low energy consumption

• Low interference

• High throughput

Problem

• To find optimal transmission power levels using local information

such that network connectivity is maintained.

An Example

81

2D CBTC
Global connectivity from local geometric constraints [Wattenhofer, Infocom ’01]

[Li Li, PODC ’01, TON ’05]

Assumptions
 Maximum Power Graph G=(V, E) is connected
 Assume receivers can determine direction of senders

Main Result

If every node adjusts its power level, such
that there exists at least one neighbor at
every 2∏/3 sector around itself, then
network is connected

• Complexity O(d log d), d = avg node deg
• Not (efficiently) extensible to 3D

2∏/3

Cone-Based Topology Control

82

3D CBTC [Bahramgiri, ICCCN’05, Wireless Networks ‘06]

Basic Idea

Each node increases its power level until there is at least one

neighbor at every 3D cone of apex angle 2/3 around it

Limitations

- Assumes directional information

- High time complexity – O(d3 log d)

3D Topology Control

83

83

 Phase 1

 Use Multi-Dimensional Scaling (MDS) to find relative location maps for
each node’s neighbors when they use Pmax

 Phase 2

 Simplify the 3D problem
 Orthographic Projections

– Convert the 3D problem into similar problems in 2D

 Solve the 2D problems using CBTC and infer about the 3D solution

 Solve the 3D problem directly

 Use Spherical Delaunay Triangulation (computational geometry tool)

Our Approach

84

1. Each node starts with minimum tx. power

2. For a given tx power, project the neighbors

on xy, yz, and zx

3. Run 2D CBTC on each plane
 If any of the 3 planes do not satisfy the

2∏/3 constraint, increase power to the

next level

 Else STOP, settle with current power

4. Go back to Step 2 unless Pmax is reached.

Algorithm:

Hope that by satisfying CBTC on 3 planes => non-empty 3D

cones

Phase 2: Orthographic Projections

85

Dual of Voronoi diagram

Empty circumcircle property of DT

Delaunay Triangulation

86

Spherical Delaunay Triangulation

 When we do the DT on the surface of a sphere

Spherical triangles,

and spherical caps

87

Lemma 2
If none of the spherical caps have a surface

area greater than 2.7R2, the network is at

least one-connected. O(d log d)

1. Each node starts with minimum tx. Power

2. For a given tx. power, project the neighbors on the spherical surface

3. Construct Delaunay triangulation on the surface of the sphere

4. Calculate the area of the (empty) spherical caps

5. If any cap area is > 2.7 R2

• Increase the power to next level; go to Step 2

6. Else

• Stop, settle down with current power level

Algorithm: SDT

Phase II: SDT

88

Spherical Delaunay Triangulation using Quickhull for 100 points

randomly distributed on the surface of a sphere of radius 50

Visualization of SDT in Matlab

Scalable Multi-Class Traffic Management in

Data Center Backbone Networks

(Collaborators: Google, Princeton)

90

Motivations

 Multiple interconnected data centers (DCs) with multiple paths

between them

 DCs, traffic sources, and backbone owned by the same OSP, e.g.,

Google, Yahoo, Microsoft

Backbone

 Traffic with different

performance requirements

 Different business importance

Data center & host

TCP?

91

Contributions

Controlling the three “knobs”

 Sending rates of hosts

 Weights on link schedulers

 Splitting of traffic across

paths

Joint optimization of rate

control, routing, and link

scheduling

Data center

backbone

Source DC &

host
Destination

host & DC

Edge

router

92

Contributions

 Computation is distributed across multiple tiers using a few controllers

 Result is provably optimal using optimization decomposition

 Semi-centralized solutions viable and, in fact, preferred in practice, e.g.,

Google’s B4 globally-deployed software defined private WAN (SIGCOMM ‘13)

Fully-centralized

Not scalable
Fully-distributed

Scaling issues due to

message passing, slow

convergence
Semi-centralized: Our work

Modular, scalable with low

message-passing and fast

convergence

TRUMP (CoNEXT ‘07)

DaVinci (CoNEXT ‘08)

93

Model and Formulation

Throughput

sensitivity

of class k,

e.g., log(.)

Delay

sensitivity

of class k

Weight of flow

s of class k

Coefficients to model different

degrees of sensitivity to

throughput and delay

Total

sending rate

of flow s of

class k

Utilization

of class k

over link l

Utility of Flow s of

Class k

Sum of the products of path rates and

average end-to-end delays on those paths

94

Model and Formulation

Objective Function

 Data centers, backbone and traffic sources under the

same OSP ownership

 Maximize the sum of utilities of all flows across all traffic

classes (global “social welfare”)

Global Problem G:

95

Two-Tier Design

Network

C1 C1 CK CK

Classes

. . .

F F F F F F F F F F F F F F

Flows

Message-passing

Message-passing

Coordination

96

Two-Tier Decomposition

Primal Decomposition

Link Coordinator

Coordinates all the

subproblems

Class Allocator

Solves

independently

Message-Passing

97

Three-Tier Design

Network

C1 C1 CK CK

Classes

. . .

F F F F F F F F F F F F F F

Flows

Why another tier? (High control overhead)
 Flow of a given class may originate from any

DC

 Each class allocator potentially communicates

with all DCs

C1 C1 CK CK

Classes

. . .

DC1 DC1 DCj DCj DCJ DCJ

F F F F F F F F F F F F F F

Flows

.
Data

centers

98

Three-Tier Design

Network

C1 C1 CK CK

Classes

. . .

DC1 DC1 DCj DCj DCJ DCJ

F F F F F F F F F F F F F F

Flows

.
Data

centers

Link Coordinator (LC)

Optimizes aggregate link

bandwidth across classes

Class Allocator (CA)

Optimizes aggregate link

bandwidth across DCs sending

traffic in its own class

Data Center Allocator (DCA)

Optimizes sending rates

across flows in its own class

originating from its own DC

One

centralized

entity

One

per

class

One per

class, per DC

99

Three-Tier Design

Message-passing

Message-passing

Message-passing

10

0

Three-Tier Decomposition

Message-Passing

Inner loop

faster

Outer loop

slower

10

1

Please take a look at the following links:

1. http://gurmeet.net/puzzles/

2. http://www.dcg.ethz.ch/members/roger/puzzles/

3. http://research.microsoft.com/en-

us/um/people/leino/puzzles.html

4. (Lateral Thinking Puzzles)

http://www.thecourse.us/students/lateral_thinking.htm

Puzzles

http://gurmeet.net/puzzles/
http://www.dcg.ethz.ch/members/roger/puzzles/
http://www.dcg.ethz.ch/members/roger/puzzles/
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://www.thecourse.us/students/lateral_thinking.htm
http://www.thecourse.us/students/lateral_thinking.htm

