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Outline 

 Presentation and Demo Plans 

 

 Recap 
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Smartphones, Platforms, Apps 

 Design and develop network protocols and applications 

wireless and mobile devices 
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Smartphone Apps 

 Pocket 

When you find something 

interesting you want to view 

later, put it in pocket 

iPhone, iPad, Browsers, … 

 

 Car GPS 

Entry level Garmin $80-$100 

MotionX GPS Drive 

4.4 Stars, $0.99 

Voice navigation costs 

The Good Enough Revolution: When Cheap and Simple Is Just Fine  
Wired Magazine, Aug 24, 2009 
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Smartphone Apps 

 

 Skype  

 Quality can be sketchy, but  

 Free or VERY low cost, 4+ rating 

 Available everywhere 

 The user experience is uniform 

 

 Instagram 

 Social video-shooting and sharing 

 Jazz up photos and videos with filters 

 Change the focus while shooting 

 Free, 4+ rating 
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Smartphone Apps 

 

 Duolingo  

 Apple’s top app of 2013  

 Learn a new language  

 Spanish, German, French, … 

 Both visual and verbal lessons 

 Free. Reward points to buy perks 

 

 Over 

 Overlay text on images 

 Turn routine pictures into e-cards 

 Price: $1.99 
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Market Share 
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Sensors 
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Wireless Sensor Platforms 

 Contiki (v2.7 Nov 2013) 

 Open source OS for the Internet of Things 

 Connects tiny low-cost, low-power microcontrollers to the 

Internet 

 Written in C 

 Cooja simulator, emulated before burned into hardware 

 Supports IPv4, IPv6, 6lowpan, RPL, CoAP 

 Coffee flash file system 

 Protothreads – event-driven and multi-threaded 

 Runs on a range of low-power wireless devices 

 ContikiMAC sleepy routers 

 Atmel, Cisco, ETH, Redwire, SAP, Thingsquare 
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Android 1.5 Cupcake, April 
2009, 1st commercially available 
version with Android’s first 
touch-screen phone HTC Magic 

Android 1.6 Donut, Sept 
2009, text-to-speech 
technology, search by 
text and voice  

Android 2.0/2.1 
Eclair, Oct 2009, 
live wallpapers, 
virtual keyboard, 
Bluetooth, 
HTML5, improved 
navigation with 
Google maps  

Android 2.2 Froyo, May 
2010, OS speed with Java V8 
engine and JIT compiler, 
Flash, remote wipe features 

Android 2.3 Gingerbread, Dec 2010, 
quick front and back camera switch, 
better battery mgmt, near field 
communication (NFC) with Google Wallet 

Android 3.0 Honeycomb, 
Feb 2011, designed for 
tablets, no need for 
physical buttons, system 
bar, action bar, redesigned 
keyboard  

Android 4.0 Ice 
Cream Sandwich, 
Oct 2011, 
performance and 
speed, tablet 
features on 
smartphones, GTalk 

Android 4.1 Jellybean, 
July 2012, Google Now, 
faster smoother more 
responsive     

Google acquires 
Android Inc. in 
2005, Android 
1.0 Astro, Sept 
2008 
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 Fast and smooth on a range of 
devices, millions of entry-level 
devices < 512 MB RAM 

 Printing over Wi-Fi or cloud 

 Full-screen immersive mode (use 
every pixel, capture touch 
events) 

 Secure NFC through Host Card 
Emulation (HCE) 

 Low-power sensors (e.g., step 
detector and counter) 

Nov 2013 (Latest) 
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Android Architecture 

Drivers for hardware, 

networking, file system access, 

and inter-process-

communication (IPC). Display, 

camera, flash, Wi-Fi, audio, … 

Native libraries, daemons 

and services (C/C++). 

SQLite, OpenGL, SSL, … 

Dalvik VM, Core libs 

Written mostly in Java. 

Managers for Activity, 

Window, Package, … 

Written in Java, executed in 

Dalvik VM. Home, Contacts, 

Phone, Browser, … 

The Linux kernel, the libraries, and the runtime are encapsulated by the Application 

Framework. Developers typically work with the top two layers 



13 

Android Runtime 

 Core Java Libraries 

 Dalvik Virtual Machine (Dan Bornstein from Google) 

 

 

 Dalvik 
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Dalvik Virtual Machine 

It is the software that executes Android apps (not the Java VM), 

specifically designed to run on 

 

 Slow CPU 

 Relatively little RAM 

 OS without swap space 

 Powered by a battery 

 Diverse set of devices 

 Sandboxed application runtime for security, performance, and 

reliability 

Somewhat conflicting 
constraints  
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Dalvik Virtual Machine 

Typical Workflow 

 Write apps in Java 

 Compile into Java bytecode 

 One .class file per class 

 

 DX tool converts multiple Java 

classes into a single DEX file 

(classes.dex) 

 Rearranges classes, removes 

redundancy 

 

 Dex file is packaged with other 

resources and installed on 

device 
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Dalvik Virtual Machine 

Conserving Memory 

 .dex uses shared, type-specific 

constant pools 

 Minimal repetition and more 

logical pointers than a .class 

file 

 

 A constant pool stores all literal 

constant values within the class 

 String constant, field, 

variable, class, interface, and 

method names 

 

 In a .class file, constant part: 60%, 

method part: 33% 
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Android ART 

Android Run Time : Google finally moves to replace Dalvik, to boost 

performance and battery life. Early version included in Android 

KitKat 

   
 ART straddles a middle-ground 

between compiled and interpreted 

code, called “ahead-of-time” (AOT) 

compilation 

 

 Currently apps are interpreted at 

runtime using JIT (slow), compare 

with iOS 

 

 With ART, app is compiled into native 

code while installing (fast) 
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App Lifecycle 

 

Lifecycle is a set of states 

 

 When the current state 

changes, Android OS 

notifies the Activity of 

that change 

 

 Implemented by callback 

methods 
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App Lifecycle 

Four States 

 Active / Running 

Visible, has focus, and 
in foreground 

 Paused 

Partially visible but not 
active and lost focus 

Completely alive and 
maintains its state 

 Stopped 

Completely obscured 
by another activity 

 Destroyed / Dead 

No longer in memory 
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App Lifecycle 

Seven Callback Methods 

 onCreate() – UI creation 

and initialization of data 

elements 

 onStart() – called before 

Activity is visible (but not 

alive) 

 onResume() – Activity 

becomes visible and active 

for user to interact  

 onPause() – another 

Activity comes in front, or 

user navigates away 

Gray boxes 
show callback 
methods prior 
to state 
changes 
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App Lifecycle 

Seven Callback Methods 

 onStop() – back button, or 

new Activity completely 

covers 

 onRestart() – user 

navigates back to the 

Activity 

 onDestroy() – Activity is 

destroyed 

Gray boxes 
show callback 
methods prior 
to state 
changes 
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App Lifecycle 
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App Lifecycle 

Three Lifecycle loops for 

every Activity, defined by 

callback methods 

 Entire Lifetime – first call 

to onCreate() and final call 

to onDestroy() 

 

 Visible Lifetime – from 

onStart() and onStop()  

 

 Foreground Lifetime – from 

onResume() to onPause 
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App Lifecycle 

Saving Persistent State 

 When an Activity is 

stopped or paused, its 

state is preserved 

 

 When an Activity is 

destroyed by the system, it 

is recreated next time 

Activity starts 

 

 User is often unaware that 

an Activity is destroyed, 

resulting in surprises and 

crashes 
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App Lifecycle 

Two Kinds of Persistent States 

 Shared document-like data 

 SQLite storage using a 
content provider 

“Edit-in-Place” user 
model 

Backup fully at 
onPause() 

 

 Internal state (user prefs) 

API calls to store prefs 

E.g., user’s initial 
calendar display (day vs 
week view), or default 
webpage in a browser 
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Fun with Math 

 

S = 1 + 2 + 3 + 4 + …. ? 

 

a) Infinity 

b) Does not converge (diverges) 

c) A finite value 

d) A Googolplex 10(10)^100 

e) Confused 

S = -1/12        Is it Absurd?  
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Motivation 

 Mobile Video Traffic Projection 

 Over 66% of all mobile data traffic will be from video by 2017 

 7.4 exabytes (EB) out of 11.2 EB (1 EB = 1018 bytes) 
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Content-Pipe Divide 

 Content Providers 

 Media companies, end-

users, operators of CDN 

and P2P 

 Generate content treating 

the network as simply a 

means for communication 

(dumb pipes) 

Transcode 
Generate 

multimedia 

Frames Shaping 

Queuing 

Marking 

Dropping 

Transportation network 

DIVIDE 

 Pipe Providers 

 ISPs, equipment & network 

management vendors, 

municipalities 

 Treat every content equally 

as simply bits to be 

transported between nodes 

(dumb content) 
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Content Aware Networking 

 Protocol Fairness 

 Rate fair: Each flow gets half 

the capacity 

 Rate-Distortion fair: Flow1 gets 

more 

 

 

 

 

 A New Protocol Design Paradigm 

 Utilize content characteristics 

 Allocate resources based on the optimality criteria that are 

reflective of the content 

 More adaptive and effective network protocols that are rate-

distortion fair 
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Kartik Pandit, Amitabha Ghosh, Dipak Ghosal, and Mung Chiang, "Content 

Aware Optimization for Video Delivery over WCDMA," EURASIP Journal on 

Wireless Communications and Networking, July 2012. 

URL: http://anrg.usc.edu/~amitabhg/papers/EURASIP-2012.pdf 

Content Aware Video Delivery over 

3G WCDMA Networks 
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Network Model 

 Cellular Uplink 

 Increasing demand for high data rate 

 EVDO RA (1.8 Mbps), LTE (50 Mbps) 

 A single WCDMA cell, with a base 

station serving all users 

 Each user transmits a pre-encoded 

video upstream 

 Videos are encoded as GOP (Group of 

Pictures) structures 

 

 Degrees of Freedom – Control 

 Scheduling (send or drop frame) 

 Transmission power 
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Video Model 

 Group of Pictures (GOP) 

 Successive frames organized into a repetitive structure 

 I frame (intra) – coded independently 

 P frame (predictive) – motion-compensated difference, depends on 

previous P frame 

 B frame (bipredictive) – depends on previous and following P/I frames 

 

 Idea: Drop unimportant frames without hurting the quality 

B

PI P

B BB
GOP: IPBBPBB 

Directed acyclic graph 

Arrows indicate dependency 
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Constraints 

 SINR – signal to 

interference plus 

noise ratio 

 

 Achievable rate 

User i’ 

User i 



34 

Optimization Formulation 

 Content-Aware Distortion-Fair Optimization (CADF) 

 Minimize the sum of distortions over a GOP for all videos subject 

to SINR constraints 

 

 

 

 

 

 

 

 

 

 An NP-hard problem (MINLP) 

 Can solve efficiently using heuristics 
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Jiasi Chen, Amitabha Ghosh, Josphat Magutt, and Mung Chiang, "QAVA: 

Quota Aware Video Adaptation," ACM CoNEXT, pp. 121--132, Nice, 

France, December 2012. 

URL: http://anrg.usc.edu/~amitabhg/papers/CoNEXT-2012.pdf 

QAVA: Quota Aware Video 

Adaptation 
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Motivation: The Conflict 

 Emerging Trends 

 Video traffic becoming dominant (>66% by 2017) 

 Usage-based pricing becoming prevalent 

 AT&T wireless (Jan 2012): $30/$50 for 3/5 GB (baseline) + $10 per GB 

 Verizon Wireless (July 2011): $30/$50/$80 for 2/5/10 GB (baseline) + 

$10 per GB  

 

 Can the user consume more content without worrying 

about the wallet? 

 

 Is every bit needed for everyone at all times? 
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QAVA: Graceful Tunable Tradeoff  

Distortion 

Cost 

Videos watched 

Cost 

Within budget 

Distortion 

Minimize 

A 3-way tradeoff 

# Videos 

watched 

Supply 

Size of the video 

(bit-rate) 

Video compressibility Usage profile 
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Modular Architecture 

 Three Modules 

 Video Profiler 

 Exploit video compressibility 

from motion vectors 

 

 User Profiler 

 Predict user’s future data 

consumption from past 

history 

 

 Stream Selector 

 Choose the right bitrate to 

maximize video quality 

subject to budget 

Video 

Profiler 

(offline) 

motion vectors, 

bitrates 

utility 

(MOS, PSNR) 

User 

Profiler 

(online) 

past data 

consumption 

predicted 

consumption 

Stream 

Selector 

(online) 

video 

request 

bit rate 

video 
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Modular Architecture 

Adaptively choose the right bit rates 

User 

Profiler 

(online) 

Stream 

Selector 

(online) 

Video Delivery at right bit rate 

Video 

Profiler 

(offline) 

Video Request 

User device Content provider’s server 

Access 

Network 
Backbone 
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Princeton Trial 

 Set Up 

 15 volunteers with Android phones 

 ~500 videos encoded at 25 Kbps granularity (100 Kbps – 500 Kbps) 

 

Database logs: 

 Video request 

 Time stamp 

 User ID / Android ID 

 MB of video delivered 

User and video 

info request 

Tomcat webserver 

(QAVA server) 
MySQL DB 
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Android App Screenshots 
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Outline 

 Administrative Stuff 

 

 Wireless Links 

 

 GPS and Localization in Sensor Networks 

 

 Open Forum 
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Reality 

Ganesan et al. ‘02 Woo et al. ‘03 
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Radio Propagation 
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A Simple Model 

 Exponential path loss with log-normal fading: 

 

   Pr,dB(d) = Pt,dB – PLdB(d) 

 

  PLdB(d) = PLdB(d0) + 10n log10 (d/d0) + X,dB 
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Localization Overview 

 Localization – To determine the location of objects 

 

 Location information is necessary / useful for many 

functions 

 Location stamps 

 Coherent signal processing 

 Tracking and locating objects 

 Cluster formation 

 Efficient addressing 

 Efficient querying and routing 
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Localization Design Issues 

 What to localize? 

 Unknown node vs. reference node 

 Mobile vs. static node 

 Node localization vs. network localization 

 Cooperative vs. non-cooperative nodes 

 When to localize? 

 Static vs. dynamic 

 How well to localize? 

 Coarse vs. fine grained 

 Where to localize? 

 Central server vs. localizing object 

 How to localize? 

 Technology: RF, IR, Ultrasound, Combination, UWB 

 What methodology to use? 
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Node Localization Approaches 

 Coarse-grained 

 Use minimal information 

 Use minimal computation power 

 

 Fine-grained 

 Gather and use as much information as possible 

 Requires higher computation power 

 

 Trade-off 

 Accuracy vs. implementation / computation / cost 
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Radio Signal Strength Based 

Localization 
 Developing local 

positioning systems 

suitable for embedded 

wireless devices 

 

 Low cost alternatives to 

GPS that can also work 

well under foliage / 

indoor environments 

 

 Ecolocation and 

sequence-based 

localization 
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Ecolocation 

 Unknown node initiates localization process 

 Sends out a localization request 

 

 Reference nodes in the radio range send response packets 

 

 Measure signal strength of received packets (RSSI) 

 

 Rank reference nodes based on RSSI values 

 Ranks can be written as a set of constraints on the location of the 

unknown node 

 

 The locations of reference nodes with respect to the grid 

points can also be written as distance constraints 
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Location Constraints 

 Relationship between distances of a pair of reference 

nodes with respect to the unknown node 

 N reference nodes => n(n-1)/2 constraints (A constraint set) 

1 

2 

3 
4 

A 
B 

C 

D 

E 

Location Constraint Set for A 

{dB < dC, dB < dD, dB < dE, 

dC < dD, dC < dE, 

dD < dE} 

Redundancy in the constraint set 
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Location Constraints 

Constraints on the unknown 

node w.r.t. the reference nodes 

Constraints on the reference nodes 

w.r.t. each of the grid points 
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Ecolocation Results 
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Indoor Tracking 
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Outdoor Experiment 
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Maximum Ratio Combining 
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Location Sequence 

 The ordered sequence of distance ranks of reference 

nodes from a given location 

1 

2 

3 
4 

A 
B 

C 

D 

E 

Location Sequence for A 

B C D E 

1 2 3 4 

A 

B Locations 

closer to 1 

(dA < dB) 

Locations 

closer to 2 

(dB < dA) 

Locations 

equidistant 

from 1 and 2 

(dA = dB) 

Rank order between two reference 

nodes is defined by the perpendicular 

bisector between them. 
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Location Sequence 

 Location sequences are unique to each region 

 All locations in a region have the same location sequence 

 One-to-one mapping with centroid of the region they 

represent 

A 

B D 

A B C D 

1 2 3 4 

A B C D 

1 1 3 4 
A B C D 

3 3 1 1 

A B C D 

4 3 2 1 
C 

Face 

Vertex 

Edge 
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Indoor Experiment: Office Building 
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Moteiv Tmote Sky 
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Tmote Sky Features 

 2.4 GHz, 250 Kbps IEEE 802.15.4 CC2420 radio, range: 
tens of meters 

 

 MSP430 microcontroller, 10 KB RAM, 48 KB flash 

 

 1 MB external flash 

 

 USB programming using NesC/TinyOS/Contiki 

 

 On-board Humidity, Temperature, and Light Sensors 

 

 Power consumption @ 3V: mcu + radio: ~20 mA, mcu 
alone: ~2 mA, standby: 20 A 
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Recap 
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Contiki OS 

 Open source - BSD license  

 Multitasking using C programming language  

 Developed by Adam Dunkels at the Swedish Institute of 

Computer Science 

 Version 1.0 released in March 2003 

 Version 2.7 released November 15, 2013 

 Highly portable 

 Tmote Sky, JCreate, TelosB, Atmel Raven, MicaZ, … 

 Simulators: Cooja, MSPsim, AvoraZ, netsim 

 Native platform 

 Actively developed 

 17 developers from SICS, SAP, Cisco, NewAE, TU 
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Contiki OS (2002) 

 Contiki – pioneering open source operating system for 

sensor networks 

 IP networking 

 Hybrid threading model, protothreads 

 Dynamic loading 

 Power profiling – measure network power consumption 

 Network shell – makes interaction easier 

 Rime stack – makes network programming easier 

 Multitasking using C language 

 Highly portable – 14 platforms, 5 CPUs 

 

 Small memory footprint targeted for small embedded 

processors with networking  

 50% of all processors are 8-bit, e.g., MSP430, AVR, ARM7, 6502, ...  
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The Name Contiki 

 The Kon-Tiki raft 

 Used by Norwegian explorer and writer Thor Heyerdahl in his 1947 

expedition across the Pacific Ocean from South America to the 

Polynesian islands with minimal resources 

 Named after the Inca sun god, Viracocha, whose old name was 

“Kon-Tiki”  
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Getting Started 

 Step 1: Download Instant Contiki 

 Contiki development environment – single-file download 

 Ubuntu Linux virtual machine with all development tools, 

compilers, and simulators installed 

 www.contiki-os.org/start.html 

 

 Step 2: Download VMWarePlayer 

 www.vmware.com/go/downloadplayer 

 

 Step3: Start Instant Contiki 

 Open the Instant Contiki folder and execute 

 instantContiki2.6.vmx  

 Wait for the virtual Ubuntu Linux to boot up 

http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
http://www.vmware.com/go/downloadplayer
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Rime: Lightweight and Layered 

 Each module is fairly 

simple 

 Compiled code 114-598 bytes 

 

 Complexity handled 

through layering 

 Modules are implemented in 

terms of each other 

 

 Not a fully modular 

framework 

 Full modularity typically gets 

very complex 

 Rime uses strict layering 

http://contiki.sourceforge.net/docs/2.6/

examples.html 

http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
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An Example 

 We will go through an example Contiki program step-by-

step to see the structure of the code and different data 

structures used 

 

 This example program opens a UDP broadcast connection 

and sends one packet every second 
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One of the biggest challenges 

 

 Sensors have a limited source of power and it’s hard to 

replace or recharge, e.g., sensors deployed in the battle 

field, sensors in a large forest 

Power Consumption 
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Sources of Power Consumption 

Wasteful power consumption 

 

 Idle listening to the channel 
 Waiting for possible traffic 

 

 Retransmitting because of collision 
 Two packets arrived at the same time at the same sensor 

 

 Overhearing 
 When a sensor received a packet doesn’t belong it 

 

 Generating and handling control packets. 
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Hidden Terminal Problem 

R 

S2 
S1 

 How to avoid? – Use of additional signaling packets 
 Sender asks receiver whether it is able to receive a transmission - 

Request to Send (RTS) 

 Receiver agrees, sends out a Clear to Send (CTS) 

 Sender sends, receiver sends Acknowledgements (ACKs) 

 Another sender’s presence is hidden from the intended 

sender, and therefore simultaneous transmissions from 

both os them to the same receiver cause collision  



72 

 An exposed node is one that is in the range of the 

transceiver but not the receiver 

 Sender mistakenly thinks that the medium is in use, and it 

unnecessarily defers transmission 

 

 

 

 

 

 How to avoid? 

 When a node hears an RTS but not a corresponding CTS, it can 

deduce that it is an exposed terminal and is permitted to transmit 

 Directional antennas 

Exposed Terminal Problem 

R1 

S1 S2 

R2 
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802.11 Data Transfer 

IEEE 802.11 Disadvantages 

 Devices consume large amounts of energy due to the high 

percentage of time spent listening without  receiving 

messages  

Wireless MAC Protocols 
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B-MAC 

 Uses a tone to wake up sleeping neighbors, similar to 

STEM-T 

 Uses very long preambles - dominates energy usage 

 Suffers from overhearing problem 

 

Unscheduled WSN MAC Protocols 
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S-MAC (Sensor-MAC) 

 Inspired by PAMAS, but in-channel signaling 

 

 Nodes periodically go to a fixed listen/sleep cycle 

 

 

 

 

 Virtual clustering to synchronize nodes on a common slot  

 

 Energy is still wasted during listen period, as the sensor 

remains awake even if there is no reception/transmission 

Scheduled WSN MAC Protocols 
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T-MAC (Timeout-MAC) 

 Introduces adaptive duty cycling to improve S-MAC 
 Frees the application from the burden of selecting an 

appropriate duty cycle 

 Automatically adapts to traffic fluctuations 

 

 Borrows virtual clustering from S-MAC for synchronization  
 Operates on a fixed length slot (615 ms) 

 Uses a time-out mechanism to dynamically determine the end of 

the active period 

 

 Downside 
 Aggressive power-down policy (nodes often go to sleep too early) 

Scheduled WSN MAC Protocols 
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D-MAC (Data Gathering-MAC) 

 Uses adaptive duty cycling like T-MAC 
 1 receive, 1 send, and n sleep slots 

 Low node-to-sink latency: convergecast 

 Divides time into short slots (10 ms) and runs CSMA/CA 

within each slot 

Scheduled WSN MAC Protocols 

Convergecast 

tree with 

matching, 

staggered DMAC 

slots 
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There is no unique “best” MAC protocol for WSN. Each 

one is customized for specific applications. 

In Summary 
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 No topology control: nodes 

transmit at max power levels 

•  High energy consumption 

•  High interference 

•  Low throughput  

Topology Control: Given a network connectivity graph, compute a 

subgraph with certain properties: connectivity, low interference etc. 

• No topology control: nodes 

transmit at min power levels 

•  Network may partition 

Why Topology Control? 
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Benefits 
•  Global connectivity 

•  Low energy consumption  

•  Low interference 

•  High throughput 

Problem 

• To find optimal transmission power levels using local information 

such that network connectivity is maintained. 

An Example 
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2D CBTC  
Global connectivity from local geometric constraints [Wattenhofer, Infocom ’01] 

[Li Li, PODC ’01, TON ’05] 
 

Assumptions 
 Maximum Power Graph G=(V, E) is connected  
 Assume receivers can determine direction of senders 

Main Result 
 
If every node adjusts its power level, such 
that there exists at least one neighbor at 
every 2∏/3 sector around itself, then 
network is connected 
 
 
• Complexity O(d log d), d = avg node deg 
• Not (efficiently) extensible to 3D 
 

2∏/3 

Cone-Based Topology Control 
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3D CBTC  [Bahramgiri, ICCCN’05, Wireless Networks ‘06] 
 

Basic Idea 

Each node increases its power level until there is at least one 

neighbor at every 3D cone of apex angle 2/3 around it 

 

Limitations 

- Assumes directional information 

- High time complexity – O(d3 log d) 

3D Topology Control 
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 Phase 1 
 

 Use Multi-Dimensional Scaling (MDS) to find relative location maps for 
each node’s neighbors when they use Pmax 

 

 

 Phase 2 
 

 Simplify the 3D problem 
 Orthographic Projections 

– Convert the 3D problem into similar problems in 2D 

 

 Solve the 2D problems using CBTC and infer about the 3D solution 

 

 Solve the 3D problem directly 

 Use Spherical Delaunay Triangulation (computational geometry tool)    

Our Approach 
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1.  Each node starts with minimum tx. power 

 

2.  For a given tx power, project the  neighbors 

on xy, yz, and zx 

 

3.  Run 2D CBTC on each plane  
 If any of the 3 planes do not satisfy the 

2∏/3 constraint, increase power to the 

next level 

 Else STOP, settle with current power 

 

4.  Go back to Step 2 unless Pmax is reached. 

Algorithm: 

Hope that by satisfying CBTC on 3 planes => non-empty 3D 

cones 

Phase 2: Orthographic Projections 
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Dual of Voronoi diagram 

Empty circumcircle property of DT  

Delaunay Triangulation 
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Spherical Delaunay Triangulation 

 When we do the DT on the surface of a sphere 

Spherical triangles, 

and spherical caps 
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Lemma 2 
If none of the spherical caps have a surface 

area greater than 2.7R2, the network is at 

least one-connected. O(d log d) 

1. Each node starts with minimum tx. Power 
 

2. For a given tx. power, project the neighbors on the spherical surface 
 

3. Construct Delaunay triangulation on the surface of the sphere 
 

4. Calculate the area of the (empty) spherical caps 
 

5. If any cap area is > 2.7 R2  

• Increase the power to next level; go to Step 2 

6. Else 

• Stop, settle down with current power level 

Algorithm: SDT 

Phase II: SDT 



88 

Spherical Delaunay Triangulation using Quickhull for 100 points 

randomly distributed on the surface of a sphere of radius 50 

Visualization of SDT in Matlab 



Scalable Multi-Class Traffic Management in 

Data Center Backbone Networks 
 

 

 
(Collaborators: Google, Princeton) 
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Motivations 

 Multiple interconnected data centers (DCs) with multiple paths 

between them 

 

 DCs, traffic sources, and backbone owned by the same OSP, e.g., 

Google, Yahoo, Microsoft 

Backbone 

 Traffic with different 

performance requirements 

 

 Different business importance 

Data center & host 

TCP? 
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Contributions 

Controlling the three “knobs” 
 

 Sending rates of hosts 

 

 Weights on link schedulers 

 

 Splitting of traffic across 

paths 

Joint optimization of rate 

control, routing, and link 

scheduling 

Data center 

backbone 

Source DC & 

host  
Destination 

host & DC  

Edge 

router  
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Contributions 

 Computation is distributed across multiple tiers using a few controllers 

 

 Result is provably optimal using optimization decomposition 

 

 Semi-centralized solutions viable and, in fact, preferred in practice, e.g., 

Google’s B4 globally-deployed software defined private WAN (SIGCOMM ‘13) 

Fully-centralized 

Not scalable 
Fully-distributed 

Scaling issues due to 

message passing, slow 

convergence 
Semi-centralized: Our work 

Modular, scalable with low 

message-passing and fast 

convergence  

TRUMP (CoNEXT ‘07) 

DaVinci (CoNEXT ‘08) 
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Model and Formulation 

Throughput 

sensitivity 

of class k, 

e.g., log(.) 

Delay 

sensitivity 

of class k 

Weight of flow 

s of class k 

Coefficients to model different 

degrees of sensitivity to 

throughput and delay 

Total 

sending rate 

of flow s of 

class k 

Utilization 

of class k 

over link l 

Utility of Flow s of 

Class k 

Sum of the products of path rates and 

average end-to-end delays on those paths 



94 

Model and Formulation 

Objective Function 

 Data centers, backbone and traffic sources under the 

same OSP ownership 

 

 Maximize the sum of utilities of all flows across all traffic 

classes (global “social welfare”) 

Global Problem G: 
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Two-Tier Design 

Network 

C1 C1 CK CK 

Classes 

. . .  

F F F F F F F F F F F F F F 

Flows 

Message-passing 

Message-passing 

Coordination 
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Two-Tier Decomposition 

Primal Decomposition 

Link Coordinator 

Coordinates all the 

subproblems 

Class Allocator 

Solves 

independently 

Message-Passing 



97 

Three-Tier Design 

Network 

C1 C1 CK CK 

Classes 

. . .  

F F F F F F F F F F F F F F 

Flows 

Why another tier? (High control overhead) 
 Flow of a given class may originate from any 

DC 

 

 Each class allocator potentially communicates 

with all DCs 

C1 C1 CK CK 

Classes 

. . .  

DC1 DC1 DCj DCj DCJ DCJ 

F F F F F F F F F F F F F F 

Flows 

. . .  . . .  
Data 

centers 
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Three-Tier Design 

Network 

C1 C1 CK CK 

Classes 

. . .  

DC1 DC1 DCj DCj DCJ DCJ 

F F F F F F F F F F F F F F 

Flows 

. . .  . . .  
Data 

centers 

Link Coordinator (LC)  

Optimizes aggregate link 

bandwidth across classes 

Class Allocator (CA)  

Optimizes aggregate link 

bandwidth across DCs sending 

traffic in its own class 

Data Center Allocator (DCA)  

Optimizes sending rates 

across flows in its own class 

originating from its own DC 

One 

centralized 

entity 

One 

per 

class 

One per 

class, per DC 
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Three-Tier Design 

Message-passing 

Message-passing 

Message-passing 
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0 

Three-Tier Decomposition 

Message-Passing 

Inner loop 

faster 

Outer loop 

slower 
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Please take a look at the following links: 

 

1. http://gurmeet.net/puzzles/ 

2. http://www.dcg.ethz.ch/members/roger/puzzles/ 

3. http://research.microsoft.com/en-

us/um/people/leino/puzzles.html 

4. (Lateral Thinking Puzzles) 

http://www.thecourse.us/students/lateral_thinking.htm 

 

Puzzles 

http://gurmeet.net/puzzles/
http://www.dcg.ethz.ch/members/roger/puzzles/
http://www.dcg.ethz.ch/members/roger/puzzles/
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://research.microsoft.com/en-us/um/people/leino/puzzles.html
http://www.thecourse.us/students/lateral_thinking.htm
http://www.thecourse.us/students/lateral_thinking.htm

