

Lecture 4

Amitabha Ghosh Department of Electrical Engineering USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by Bhaskar Krishnamachari and Murali Annavaram.

Outline

- Administrative Stuff
- Presentation by Professor Kyle Konis (kkonis@usc.edu)
- Lab Assignment 1
- Video over Wireless

ichool of Engineeri

Motivation

Mobile Video Traffic Projection

- Over 66% of all mobile data traffic will be from video by 2017
- 7.4 exabytes (EB) out of 11.2 EB (1 EB = 10¹⁸ bytes)

Figures in legend refer to traffic share in 2017.

Source: Cisco VNI Mobile Forecast. 2013

Motivation

Evolution of Smart Devices

- 8.6 billion handheld mobile devices and 1.2 billion M2M by 2017
- 2.7 GB/month by 2017, as compared to 342 MB/month in 2012

Figures in legend refer to traffic share in 2017.

Source: Cisco VNI Mobile Forecast, 2013

Motivation

2G to 3G to 4G and Beyond

- Higher bandwidth, lower latency, increased security
- 4G (2012): only 0.9% connections, but 14% of mobile data traffic
- □ 4G (2017): only 10% connections, but 45% of total traffic

School of Engineerin

Content-Pipe Divide

Content Providers

- Media companies, endusers, operators of CDN and P2P
- Generate content treating the network as simply a means for communication (dumb pipes)

Pipe Providers

- ISPs, equipment & network management vendors, municipalities
- Treat every content equally as simply bits to be transported between nodes (dumb content)

Content Aware Networking

Protocol Fairness

- Rate fair: Each flow gets half the capacity
- Rate-Distortion fair: Flow1 gets more

USC VITERD School of Engineerin

A New Protocol Design Paradigm

- Utilize content characteristics
- Allocate resources based on the optimality criteria that are reflective of the content
- More adaptive and effective network protocols that are ratedistortion fair

Content Aware Video Delivery over 3G WCDMA Networks

Kartik Pandit, Amitabha Ghosh, Dipak Ghosal, and Mung Chiang, "Content Aware Optimization for Video Delivery over WCDMA," *EURASIP Journal on Wireless Communications and Networking*, July 2012. URL: http://anrg.usc.edu/~amitabhg/papers/EURASIP-2012.pdf

chool of Engineer

USC Viterbi School of Engineering

Network Model

Cellular Uplink

- Increasing demand for high data rate
 - EVDO RA (1.8 Mbps), LTE (50 Mbps)
- A single WCDMA cell, with a base station serving all users
- Each user transmits a pre-encoded video upstream
- Videos are encoded as GOP (Group of Pictures) structures

Degrees of Freedom - Control

- Scheduling (send or drop frame)
- Transmission power

Video Model

Group of Pictures (GOP)

Successive frames organized into a repetitive structure

- I frame (intra) coded independently
- P frame (predictive) motion-compensated difference, depends on previous P frame
- B frame (bipredictive) depends on previous and following P/I frames
- Idea: Drop unimportant frames without hurting the quality

GOP: IPBBPBB Directed acyclic graph Arrows indicate dependency

thool of Engineer

Video Model

Scalable Video Coding (H.264)

- Base Layer
- Enhancement Layers
- Each layer requires more resources
- Temporal, Spatial, and Quality scalability

USC Viterbi School of Engineering

Problem Formulation

- Use optimization theory to allocate resources
 Rate
- What do we want to optimize? (Objective function)
 Some measure of video quality (e.g., PSNR, distortion) d(f'_{ij}, f_{ij})
- What are the constraints?
 - Interference (or SINR)
 - Available power

 p_{max}

 γ_{ij}

- What are the variables?
 - Transmit power
 - Scheduling decision

 p_{ij} User i frame j

 $\begin{array}{ll} \theta_{ij} & \mbox{Binary variable: 0 if frame j} \\ & \mbox{of user i is transmitted; 1 if} \\ & \mbox{dropped} \end{array}$

Objective

Maximize PSNR / Minimize Distortion

- PSNR: An objective metric
- Expressed in decibel (dB)
- Good values > 20-30 (range: 0-100)

$$D_i(\Lambda_i) = \sum_{j=1}^n d(f'_{ij}, f_{ij}), \quad \forall i$$

USC Viterbi School of Engineering

Constraints

- SINR signal to interference plus noise ratio
- Achievable rate

$$\sum_{j=1}^{n} d\log\left(1 + c\gamma_{ij}\right)$$

$$\gamma_{ij} = \frac{p_{ij}g_{ii}(1-\theta_{ij})}{\sum_{i'=1,i'\neq i}^{N} p_{i'j'}g_{i'i}(1-\theta_{i'j'}) + \eta_0}$$

Constraints

- Set of dropped frames for user i Λ_i
- Required rate to transmit the selected frames $R_i(\Lambda_i)$
- Achievable rate under SINR
- Constraint: Required rate should be <= achievable rate</p>

Optimization Formulation

- Content-Aware Distortion-Fair Optimization (CADF)
 - Minimize the sum of distortions over a GOP for all videos subject to SINR constraints

- An NP-hard problem (MINLP)
- Can solve efficiently using heuristics

A Sample Result

 Frame-level distortion: Comparison of CADF scheme with Foschini-Miljanic scheme

USC Viterbi School of Engineering

QAVA: Quota Aware Video Adaptation

Jiasi Chen, Amitabha Ghosh, Josphat Magutt, and Mung Chiang, "QAVA: Quota Aware Video Adaptation," ACM CoNEXT, pp. 121--132, Nice, France, December 2012.

URL: http://anrg.usc.edu/~amitabhg/papers/CoNEXT-2012.pdf

USC Viters

Motivation: The Conflict

- Emerging Trends
 - Video traffic becoming dominant (>66% by 2017)
 - Usage-based pricing becoming prevalent
 - AT&T wireless (Jan 2012): \$30/\$50 for 3/5 GB (baseline) + \$10 per GB
 - Verizon Wireless (July 2011): \$30/\$50/\$80 for 2/5/10 GB (baseline) + \$10 per GB
- Can the user consume more content without worrying about the wallet?
- Is every bit needed for everyone at all times?

QAVA: Graceful Tunable Tradeoff

Modular Architecture

Modular Architecture

Adaptively choose the right bit rates

Online Stream Selection: An Example

Budget = 3

Goal: Maximize total utility (video quality)

Offline Optimal: v11, v22 Total utility: 1+4 = 5 Total cost: 1+2 = 3 Online Greedy: v12, v21 Total utility: 2+2 = 4 Total cost: 2+1 = 3

Problem Formulation

Maximize the sum of utilities of all the selected videos, subject to

- Exactly one version of each request is granted
- Total cost of all the selected versions must be within budget

 $\underset{x_{ij} \in \{0,1\}}{\text{maximize}}$

subject to

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} u_{ij} x_{ij}$$
$$\sum_{j=1}^{M_i} x_{ij} = 1, \quad \forall i$$
$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} c_{ij} x_{ij} \leq B,$$

Online Multi-Choice Knapsack Problem

- B: Budget
- N: # of videos requested
- M_i : # of versions of video i
- u_{ij} : Utility of version j of video i
- c_{ij} : Cost of version j of video i
- x_{ij} : 1 if version j of video i is selected; 0 otherwise

JSC Viterk

Evaluation: Video Profiler from MOS

Videos

- 20 diverse H.264 clips
- Resolution 640 x 480
- Duration 20 sec
- □ Each video encoded at 100, 150, 200, 300, Kbps

MOS: Mean Opinion Score (subjective video quality metric)

- Shown to 20 participants on iPhone4 held at ~50 cm
- Participants rated in 1-5 MOS scale
 - 1: very good (imperceptible distortion)
 - 5: very annoying

Results

Results: Overall QAVA Benefit

- 1430 video requests randomly generated over 30 days
- Video duration normally distributed with mean 30 sec and s.d. 5 sec

QAVA user can watch all videos at low budget

Benefit of QAVA decreases for sufficiently large budget

Non-QAVA user cannot watch all videos below 11 GB quota

Implementation on Android

Goals

- Understand consumption behavior of real people
- Understand user-perception of video quality
- Evaluate the algorithm
- Fun to run a trial involving real people

Princeton Trial

Set Up

- 15 volunteers with Android phones
- ~500 videos encoded at 25 Kbps granularity (100 Kbps 500 Kbps)

Android App Screenshots

1 1		(; •	🗎 🔒 6:57 PM
QAVA			
		0	1
Videos	My Stats	Settings	About

Video Categories (scrollable)

Around The World	Beatles	
Big Bang Theory	Bryan Adams	
cartoon	choreography	
Christmas	classical music	
Phil Collins	comedy	
computer	dance	
Pink Floyd	Friends	
funny	Lady Gaga	
hiphop	kittens	
time lapse	John Lenon	
Lifehacker	Michael Jackson	
misc	music	
news	random	
Rihanna	Shakira	
SNL	snow	
soccer	table tennis	
Taylor Swift	tech news	
TED Talks	television	

