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= Administrative Stuff

= Wireless Links

= GPS and Localization in Sensor Networks

= Open Forum
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Wireless Links |

= Most wireless networking research has used a very simple
binary model for connectivity

Circular radio range with perfect
reception within & zero reception outside



Reality
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Radio Propagation

Receved Power (dBm)
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Basics

= Doppler spread D~ 2 f.*v/c (20-500Hz)
= Coherence time 1. ~ 1/ D,  (2-50 ms)
(

= Delay Spread T, .1 to 1 ns)
= Coherence Bandwidth W_ ~ 1/(2 Ty) (200-2000MHz)

= Fast Fading: low Tc
= Flat Fading: W << W,
= Frequency-selective Fading: W >> Wc



A Simple Model |

= Exponential path loss with log-normal fading:
Pr,dB(d) = Pt,dB - PLgg(d)

PL4g(d) = PLgg(dp) + 10n log,o (d/dy) + X 4g
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Radio Specifics

= The choice of modulation scheme, spread spectrum, error
correction codes, etc. all have a significant effect on

physical layer performance, that is typically measured by
the BER vs. SNR curve

= At the link level we are interested in packets. Can
trivially convert this to a PRR vs. SNR curve



PRR versus SNR
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Putting it Together

sch

= Compose the following figures

o PRR versus SNR
o SNR versus distance
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Transitional Region

Analytical Method to Determine Regions in Wireless Links
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Global Positioning System |

= Atomic clocks on satellites have VERY slow drift
o +/- one second in 10s of thousands of years

= Quartz clocks on ground receiver drift rapidly (relatively)

o If it were not for the time drift, three satellites could triangulate
the spatial location of a receiver

o Due to clock uncertainty, need four satellites

= Sources of error
o Security (selective availability)
o Geometric spread of satellites (narrow - not good, broad - good)
o lonosphere variable delay
o Multipath
o Clock inaccuracies

12
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GPS Sources of Error

Ionospheric effects

Shifts in the satellite orbits

Clock errors of the satellites’ clocks
Multipath effect

Tropospheric effects

Calculation- und rounding errors
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Differential GPS :

= Differential GPS uses signal reception at known locations
to determine corrections to sources of errors

s Reduces error to about 5 m

= Implemented as Wide Area Augmentation System (WAAS)
and implemented by the FAA in North America for flights
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Assisted GPS

= In poor environments (cities
with lots of multipath and
obstructions), it can take
upwards of 12 minutes for
satellite lock wnreected|

signah’-_
o Even when sufficient satellites
are being overheard

o Complex processing is required,
and reception of precise
satellite location

|reflected signals:

= This is slow, expensive



Assisted GPS

= Assisted GPS solves these
problems

o Combines concepts from
differential GPS

o Leverages data backbone
to download precise
orbital data

o Offloads complex
calculations from GPS
receiver / cell processor
onto AGPS receiver

o Rapid and precise time
synchronization

USC Viterbi

chao! of anlr!»{"mg
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Localization

And it's not spherical
either (despite
appearance from
space)

Unfortunately, the earth is not
flat. This would simplify things
substantially.
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Localization Overview

= Localization - To determine the location of objects

= Location information is necessary / useful for many
functions

Q

o o 0O O O

Location stamps

Coherent signal processing
Tracking and locating objects
Cluster formation

Efficient addressing

Efficient querying and routing
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Localization Design Issues |

= What to localize?
o Unknown node vs. reference node
o Mobile vs. static node
o Node localization vs. network localization
o Cooperative vs. non-cooperative nodes

= When to localize?
o Static vs. dynamic

= How well to localize?
o Coarse vs. fine grained

= Where to localize?
o Central server vs. localizing object

= How to localize?

o Technology: RF, IR, Ultrasound, Combination, UWB
o What methodology to use?

19
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Node Localization Approaches |
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= Coarse-grained
o Use minimal information
o Use minimal computation power

= Fine-grained
o Gather and use as much information as possible
o Requires higher computation power

= Trade-off

o Accuracy vs. implementation / computation / cost

20



Coarse-Grained Node Localization

Several techniques provide approximate solutions for node
localization based on the use of minimal information

= Binary proximity
o Location of the closest reference node

= Centroid
o Center of gravity of reference nodes in the radio range

= Geometric constraints
= Approximate point in triangle (APIT)
= |dentifying codes

21
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Approximate Point in Triangle |

@ Relerence node

O Unknown node
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Identifying Codes

Node Locations

Conneclivily Graph

Transmiliers A, F, C, H provide unique 1Ds [or all node locations
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Fine-Grained Node Localization |

= Ranging-based

o Use of estimation theory

= Pattern matching
o Many versions

= Ecolocation

= Sequence-based localization

25



Ranging-Based |

= Ranging
o Using signal strength (RSS) - meter level accuracy

o Using time difference of arrival (TDoA) - cm level accuracy over
short distances

= Position estimation in a Least Squares problem
o Find (x,y) to minimize the squared error

n

Z (d(x,y) . d;neasured)2

1=1

= Angle of Arrival (AoA) techniques can also be used in
conjunction with ranging

26



Time Difference of Arrival

Transmuitter

Receiver

Distance = (T, —T,) . V,
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Pattern Matching |

= E.g., RADAR

= Requires pre-training of signal strength measurements at
different places in the environment

s Create database

= Search through the database for the closest matching
pattern

= Highly dependent on environmental features

28
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Wireless Sensor Networks
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= Collection of low-power embedded wireless devices that
are each capable of computation, communication, and

sensing

Sensors
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User Reset (optional
ptional) Total Solar
Button Button Radiation ™

10-pin expansion
connector P P

connector
USB Transmit LED

uss
Connector & i L L e e
i ol

Internal
Antenna

USB Receive LED

SMA

Microcontroller
LEDs Radio Antenna

JTAG Digital switch
connector Isolating USB from Conr_ler.tor
microcontroller (optional)
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Localization
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7 = Low cost alternatives to
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Ecolocation |

= Unknown node initiates localization process
o Sends out a localization request

= Reference nodes in the radio range send response packets
= Measure signal strength of received packets (RSSI)

= Rank reference nodes based on RSSI values

o Ranks can be written as a set of constraints on the location of the
unknown node

= The locations of reference nodes with respect to the grid
points can also be written as distance constraints

31



Location Constraints |

= Relationship between distances of a pair of reference
nodes with respect to the unknown node
o N reference nodes => n(n-1)/2 constraints (A constraint set)

Location Constraint Set for A
{dg <dc, dg <dp, dg < dg,
dc < dp, dc < dg,
dp < dg}

Redundancy in the constraint set

32
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Location Constraints

A—>—B

B:1 C2 D:3 E:4 F:5

R4 Ro < Ry R3s < Ry Ri <Ry | Ry < Ry
R3i< Ro | R4e <Ra | Rs < R2
R4 < R3 | R < R3

Rs < Ry
\
1 if R; < Rj
Constraints on the unknown Moxa(i,j)= 0 if Ri=R;
node w.r.t. the reference nodes 1 ifR > R.
1 J

Constraints on the reference nodes ;
d poi C
w.r.t. each of the grid points axXa
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Ecolocation |

= For each grid point in the space, compare RSSI constraints
with distance constraints

= Grid point with the highest matched constraints is the
location estimate

o If more than one grid point have highest matching, their centroid
is the location estimate

34
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Multipath Effects
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Location Constraints: Looking Closely

1
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RF Channel and Ecolocation |

= RF Channel

Multipath fading and shadowing
Causes errors in RSSI measurements
Leads to errors in reference node ranks

a
a
a
o Leads to violation of location constraints

Height of bar is probability of reception




RF Channel and Ecolocation |

= RF Channel

o Multipath fading and shadowing

o Causes errors in RSSI measurements

o Leads to errors in reference node ranks
o Leads to violation of location constraints

= Ecolocation

o Location estimate accuracy depends on the number of violated
constraints

o Helped by inherent redundancy in constraint set (analogous to
error control coding)

o Constraint tolerance to RF channel errors up to difference in path
loss

38



Ecolocation Results

Location estimate for 123456789
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Ecolocation Results

Location estimate for 123456789

USC Viterbi
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Location esitmate for 123745968
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Indoor Tracking
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Indoor Tracking Error
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Outdoor Experiment
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Outdoor Experiment Error
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Sequence-Based Localization |

= Unknown node initiates localization process
o Sends out a localization request

= Reference nodes in the radio range send response packets
o Packets contain ref. node location coordinates

= Unknown node measures the RSSI and ranks the reference
nodes based on RSSI values

o Ranks of reference nodes are written as an ordered sequence
called “location sequence”

= The reference node coordinates and the RSSI-based
location sequence are used to estimate the unknown
node’s location

46



Location Sequence

USC Viterbi
School of Engineering

= The ordered sequence of distance ranks of reference
nodes from a given location

4‘D

\ 4

E

Location Sequence for A
BCDE
1234

Locations
closer to 1
(da < dg)

A
o

Locations
equidistant
from 1 and 2 B

(da = dg) ®

4

Locations
closer to 2
(dg < dp)

Rank order between two reference
nodes is defined by the perpendicular
bisector between them.
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Location Sequence |

= Location sequences are unique to each region
= All locations in a region have the same location sequence

= One-to-one mapping with centroid of the region they
represent

48



Feasible Location Sequences
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RF Channel and Location Sequence

= RF Channel

o Multipath fading and shadowing

o Causes errors in RSS|I measurements

o Leads to errors in reference node ranks

o Leads to corruption of location sequences

= Location Sequence Robustness

o But rank ordering based on RSSI values offers some protection

o Rank order of two reference nodes | and j is tolerant to errors in RSSI
measurements for up to difference in path loss

o Low density of location sequences ensures that many infeasible
sequences to a single feasible sequence

50



Localization Procedure |

= Construct the location sequence table

o Contains all feasible location sequences for the area in the radio
range of the unknown node

o Maps each location sequence to the corresponding region’s
centroid

= Determine the location sequence of the unknown node
location
o Using RSSI measurements of response packets
o This sequence is a corrupted version of the true response

= Search in the location sequence table for the nearest (in
terms of rank order) feasible sequence
o The centroid it points to is the location estimate
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Distance Between Sequences |

From Statistics
Let X = {x;}, Y = {y,} be two location sequences (x; and y, ranks, 1 <i <n)

1. Spearman’s rank order 6> (x;=y,)’
. . = _ i=1
correlation coefficient: ~=1- n( —1)

2. Kendall’'s Tau: ;- (n.—n,)
\/nc +nd +ntx\/nc+nd +nzy

n.: number of concordant pairs, ny: number of discordant pairs,

nt,: number of ties in x, nt,: number of ties in y.

Concordant Pair: Discordant Pair: Tie:
X; <X =>y, <yor X; < X, =>y,>Yyor N X = X
Xj = X ==Y =Y, Xj = X ==Y <Y, Ny Yi =Y

Distance calculation is a O(n?) operation.
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How Many Feasible Sequences? |

= If there are n reference nodes in the radio range of the
unknown node

Combinatorially: Actually:
O(n") Only O(n%)

Theorem: The maximum number of unique location sequences
due to n reference nodes is

4 2
n——2n3+7i—2n+1
2 2
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How Many Feasible Sequences?

USC Viterbi
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Feasible and Infeasible Sequences

Sequence space of size O(n")

Feasible sequence space of size O(n*)
Corruption due to RF channel non-idealities

USC Viterbi
Schood of anlr!»{"mg
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SBL Nuts and Bolts |

= Location sequence table construction
o Used tools from computational geometry
o Uses double-connected linked lists for optimality
o O(n’log n) time and O(n?) space optimally

= Searching through it
o O(n®) time for a naive search
o Smarter table lookup can be used for lower operational complexity

= Not bad!

o Typically n <= 15 (not much gain for n > 15, already 19321 regions).
Assume n = 10

o If the unknown node is an IPAQ (300 MHz, 128 MB)
o Location sequence table construction: ~milliseconds, ~ 32 KB
o Searching through it: ~milliseconds
o Total: ~ 10s of milliseconds, ~ 32 KB
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Performance Study

Schoot of Eng

RF Channel Parameters Node Deployment Parameters

o
[$ 04
o o

S oS
~
o

o

N w
o

= N W A O O N
o o
o

o
-
o

Average location error (% of D)

oo
)2
o
¥

Average location error (% of D)

B (log scale).

Higher path loss exponent n Lower Higher # of ref. nodes n
:> Location _ _
Lower Standard Deviation o Error Higher ref. node density f

D,: Average inter-reference node distance, = 35% of the radio range

57



e
f WEETIng

Performance Study

Unknown node location in Localization Space
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indoor Experiment: Office Building
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Network Localization |

f Engineering

s Different from node localization
o Few reference nodes and several networked unknown node

= Several approaches
o Constraint satisfaction / optimization (centralized)
o Joint estimation using ranging estimates (centralized)
o Multi-hop distance estimation (distributed)
o Iterative localization (distributed)
o Potential fields (distributed)
o Multi-dimensional scaling (MDS) (centralized)
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Iterative Localization

(0,10) 1. (5,25/3)
P (10,10)
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Open Forum |

Nitish: WSN internship, Germany, Univ. of Braunschweig,
pressure sensors (Dr. Sandor Fekete), deployed on the
floor and walk down, play the piano, Wiselib

Abhishek: proximity detection with smartphone app

Hithesh: application for blind people, grabbing objects
using intensity of vibration

Rohit: remote control of your laptop using phone app,
video download

Onuk: maximize goodput while increasing fairness
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