
EE 579: Wireless and Mobile Networks
Design & Laboratory

Lecture 6

Amitabha Ghosh
Department of Electrical Engineering

USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by
Bhaskar Krishnamachari and Murali Annavaram.

2	

Outline

¾  Administrative Stuff

¾  Summer Internship Announcement

¾  Wireless Sensor Networks Overview

¾  Contiki Operating System

¾  Hands-on with Tmote Sky (Hello World, Broadcast)

3	

Summer Internship
¾  Startup looking for good students with expertise in

application, middleware, and engineering solutions for
mobile platforms

¾  Possibility of grant/funding to develop some engineering
solutions, for example, connecting different health
monitoring sensors to mobile platforms

¾  Contact: Professor Raghu Raghavendra
(raghu@vsoe.usc.edu)

4	

Summer Internship
¾  Profile I

q  Independently design and develop mobile applications for Android
platforms

q  Integrate health monitoring sensors to mobile platforms
q  Implement complex and responsive user interfaces and utilizing

native frameworks for animations

5	

Summer Internship
¾  Profile II

q  Web-based software development experience
q  Experience with Java web framework such as Spring, Grails
q  Knowledge of front-end Web technologies

ú  HTML, CSS, Javascript, AngularJS, Node.js, Backbone.js

q  Understanding of data modeling and database technologies
(MySQL and Mongo DB)

q  Experience with REST design concepts
q  Familiarity with version control and configuration management
q  Ability to work independently with little guidance

¾  Profile III
q  Interest in doing engineering work to integrate various sensors for

health monitoring to mobile platform

6	

¾  The “many - tiny” principle: wireless networks of
thousands of inexpensive miniature devices capable of
computation, communication and sensing

¾  For smart spaces, environmental monitoring, battlefield

applications...

Berkeley Mote

From Pister et al., Berkeley Smart Dust Project

PC104 Sensor

Sensor Networks: The Vision

7	
From Pister et al., Berkeley Smart Dust Project

Berkeley Dust Mote

Tomorrow’s Devices

8	

From Manges et al., Oak Ridge National Laboratory, Instrumentation and Controls Division

ORNL Telesensor Chip

Tomorrow’s Devices

9	

GNOMES (Rice)

MICA 2 Mote (Berkeley) WINS (Rockwell)

MANTIS Nymph (Colorado)

WSN Devices

10	

Basic WSN Hardware

11	

Moteiv Tmote Sky

12	

Tmote Sky Features

¾  2.4 GHz, 250 Kbps IEEE 802.15.4 CC2420 radio, range:
tens of meters

¾  MSP430 microcontroller, 10 KB RAM, 48 KB flash

¾  1 MB external flash

¾  USB programming using NesC/TinyOS/Contiki

¾  On-board Humidity, Temperature, and Light Sensors

¾  Power consumption @ 3V: mcu + radio: ~20 mA, mcu
alone: ~2 mA, standby: 20 µA

13	

•  Seismic Sensing and Actuation
•  Structural Condition Monitoring

From CENS

Applications of Interest

14	

•  Monitoring ecosystems and
species habitats

From Berkley Intel Lablet: Great Duck Island (greatduckisland.net)

Applications of Interest

15	

•  Contaminant Flow
•  Chemical Leaks
•  Forest Fires
•  Emergency Response

Images from Google

Applications of Interest

16	

•  Target Tracking

From 29 Palms Demo, UC Berkley and others

Applications of Interest

17	

WSN Companies

18	

WSN Companies

19	

WSN Companies

20	

¾  Unattended, ad-hoc deployment
¾  Energy scarcity

q  Radio communication is 100 to 10000 times more expensive than
computational processing

¾  Large Scale: thousands of nodes (millions?!)
¾  Distributed data
¾  Heterogeneous capabilities
¾  Faulty/failed nodes, noisy measurements
¾  Dynamic, uncertain environment
¾  Potentially demanding real-time constraints

Challenges

21	

Contiki OS
¾  Open source - BSD license

q  Multitasking using C programming language

¾  Developed by Adam Dunkels at the Swedish Institute of
Computer Science
q  Version 1.0 released in March 2003
q  Version 2.7 released November 15, 2013

¾  Highly portable
q  Tmote Sky, JCreate, TelosB, Atmel Raven, MicaZ, …
q  Simulators: Cooja, MSPsim, AvoraZ, netsim
q  Native platform

¾  Actively developed
q  17 developers from SICS, SAP, Cisco, NewAE, TU

22	

Contiki as a Research Theme
¾  Exploring successful computer science abstractions and

mechanisms for sensor networks
q  Dynamic module loading and linking [ACM SenSys 2006]
q  File System [IEEE/ACM IPSN 2009]
q  Multi-threaded programming [EmNets 2004]
q  Java, scripting, … [ACM SenSys 2006, …]
q  Interactive network shell
q  IP networking for low-power embedded systems [ACM/Usenix

MobiSys 2003, ACM SenSys 2007, ACM SenSys 2008]

¾  Pursuing new abstractions
q  Protothreads [ACM SenSys 2006]
q  Low-power radio networking [ACM SenSys 2007]
q  Power profiling [EmNets 2007]
q  Novel communication primitives

23	

24	

Features
¾  Multitasking kernel

¾  Preemptive scheduling

¾  Managed memory allocator

¾  Protothreads

¾  TCP/IP networking, including IPv6

25	

Coffee File System [IPSN 2009]
¾  Flash-based file system
¾  open(), read(), seek(), write(), close()
¾  Constant memory complexity
¾  Very lightweight

q  5 Kb ROM
q  < 0.5 Kb RAM

¾  Very fast
q  More than 92% of raw flash throughput

26	

Interactive Shell
¾  Network debugging, performance tuning

¾  Leverage UNIX-style pipelines

¾  Network commands

¾  Direct serial connection, or over Telnet/TCP

¾  A generic interface for higher level applications
q  Automated interaction, scripting

27	

Power Profiling [EmNets 2007]
¾  Software-based

q  Zero-cost hardware
q  Zero-effort deployment

¾  Good accuracy, low overhead

¾  Enables network-scale energy profiling

¾  Enables energy-aware mechanisms

28	

Linear Current Draw

29	

Rime: Communication Primitives
¾  Makes implementation of sensor network mechanisms

easier

¾  A set of protocols
q  Data collection
q  Data dissemination
q  Unicast multi-hop routing
q  Single-hop bulk transfer
q  …

30	

Contiki IP Architecture

31	

Run Contiki on Hardware
¾  Contiki has a build system that is intended to make it

easy to run Contiki directly on hardware

¾  Build system is same across different hardware platforms,
so that the build commands are familiar when switching
hardware

¾  Comprises a set of makefiles
q  Base makefile: contiki/Makefile.include!
q  Platform makefiles in

ú  contiki/platform/*/Makefile.platform!
ú  contiki/cpu/*/Makefile.cpu!

32	

Getting Started
¾  Step 1: Download Instant Contiki

q  Contiki development environment – single-file download
q  Ubuntu Linux virtual machine with all development tools,

compilers, and simulators installed
q  www.contiki-os.org/start.html

¾  Step 2: Download VMWarePlayer
q  www.vmware.com/go/downloadplayer

¾  Step3: Start Instant Contiki

q  Open the Instant Contiki folder and execute
q  instantContiki2.6.vmx !
q  Wait for the virtual Ubuntu Linux to boot up

33	

Getting Started
¾  Step 4: Log in to Instant Contiki

q  Username: user!
q  Password: user!

¾  Step 5: Compile and run “Hello World” on native platform
q  cd contiki-2.x!
q  cd examples/hello-world!
q  make TARGET=native!
q  ./hello-world.native!
q  Should print “Hello, world” on your screen and continue to hang –

hit ctrl+c to quit

34	

Run Contiki on Hardware
¾  Step 1: Open a terminal, go to the code directory

q  cd contiki/examples/hello-world!

¾  Step 2: Compile Contiki and the application
q  Compile Hello World for our hardware platform
q  Also compiles the entire Contiki system (take some time)
q  make TARGET=sky hello-world!

¾  Step 3: Upload Contiki to the hardware
q  Done with the special %.upload maketarget
q  make hello-world.upload!

¾  Step 4: Check the serial port
q  make login!

35	

Contiki Mote Shell
¾  An interactive on-mote shell that provides a set of

commands for interacting with the system

¾  Can be accessed over a serial USB connection, or over a
network using Telnet

¾  Run over a USB serial connection
q  Compile and upload the shell
q  cd contiki-2.x/examples/sky-shell!
q  make sky-shell.upload!

¾  To connect over the USB port
q  make login!
q  Next, we will try a few shell commands

36	

Contiki Mote Shell
¾  To get a list of available commands

q  help!
!

¾  Try other commands
q  sense | senseconv!
q  power | powerconv!
q  ls!
q  format!
q  echo test | write file!
q  ls!
q  read file!
q  nodeid!
q  blink 10!
q  reboot!

37	

The Power Command
¾  Prints the current power profile from Contiki’s software-

based power profiler

¾  For decimal digit output
q  power | binprint!
q  Example output
!12 236 0 37421 0 4 0 380 0 0 0 380 0!

¾  Output of power command can be used to compute an
estimate of the mote’s power consumption by multiplying
the time with pre-measured current draw metrics

38	

Run Contiki in Cooja Simulator
¾  Cooja – a network simulator

¾  Nodes can be either of three classes
q  Emulated nodes – entire hardware of each node is emulated

(slower but allows precise inspection of the system behavior)
q  Cooja nodes – contiki code for the node is compiled and executed

on the simulation host
q  Java nodes – behavior of the node must be re-implemented as a

Java class

¾  A single Cooja simulation may contain a mixture of nodes
from any class

39	

Run Contiki in Cooja Simulator
¾  Open a terminal window and go to the Cooja directory

q  cd contiki/tools/cooja!
q  ant run!
q  Wait for Cooja to start

¾  When Cooja first starts, it will first compile itself (takes
some time)

40	

Comparison

Tiny OS
¾  Event-driven OS with

multitasking
¾  Completely non-blocking
¾  Programs are built out of

software components
¾  Tasks are non-preemptive

and run in FIFO order
¾  Static linking
¾  Written in NesC

(Networked Embedded
Systems C)

Contiki OS
¾  Event-driven OS with

multitasking
¾  Optional preemptive

multitasking
¾  Dynamic linking
¾  Written in C

