
EE 579: Wireless and Mobile Networks

Design & Laboratory

Lecture 7

Amitabha Ghosh

Department of Electrical Engineering

USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by

Bhaskar Krishnamachari and Murali Annavaram.

2

Outline

 Administrative Stuff

 Contiki Internals – Research Papers

 Hands-on with Tmote Sky

3

Project Pitch (10% of Grade)

 Presentations in class on March 11, 2014

 15 min max for each team (2 to 3 students)

 Make slides

 Choose a name for your project

 Email Suvil and me the name of your project and the

names of your team members by March 7, 2014

 Reports due (upload in Blackboard) by Tuesday, March 25,

2014 midnight (after Spring break 17-21st March)

4

Project Pitch (10% of Grade)

 Report Format

 Max 5 pages (including text, images, tables, bibliography, etc.) on

A4/Letter size page, single column, single spacing, at least 10

point font, Times New Roman font

 Report Content

 Summary of your proposal

 Motivation / applications in real life; state-of-the-art

 Preliminary design (pics, tables, etc.), if any

 Evaluation / experimentation / demo plan

 Task breakdown and milestones (who will do what and by when)

5

The Name Contiki

 The Kon-Tiki raft

 Used by Norwegian explorer and writer Thor Heyerdahl in his 1947

expedition across the Pacific Ocean from South America to the

Polynesian islands with minimal resources

 Named after the Inca sun god, Viracocha, whose old name was

“Kon-Tiki”

6

Background: The Arena Project (2000)

 Ice hockey players with wireless sensors

 Bluetooth sensors, camera on helmet (802.11)

 M16C CPU with 20 KB RAM and 100 KB flash ROM

 Spectators with access to sensor readings,

enriching viewing experience

 Transmitted with UDP/IP over an ad hoc

Bluetooth connection

 IwIP (lightweight IP) stack – developed in SICS

for resource-constrained devices

 Lulea Hockey lost 1-4 to Brynas Hockey

 Technology worked, but players did not like to

have a breathing rate sensor in their noses

7

Background: uIP (2001)

 uIP (micro IP) – world’s smallest open source TCP/IP stack

compatible with 8/16 bit micro-controllers

 Developed by Adam Dunkels at SICS

 ~5K code, ~2K RAM

 Smallest configuration: ~3K code, ~128 bytes RAM

 Unusual design choices to reduce resource usage

 Only one packet buffer, used in a half-duplex way (tx, rx in turn)

 Connection management using an array

 RFC and industry compliant

 Cisco, Atmel, and SICS released uIPv6 (2008)

8

IwIP and uIP Today

 Very well-known in the embedded community

 Used in products from 100+ companies

 Covered in several books on embedded systems

 Porting uIP in professional magazines

 Competence specifically required in job postings

 Companies: GE Security, Cisco Systems, Pumpkin, …

9

Contiki OS (2002)

 Contiki – pioneering open source operating system for

sensor networks

 IP networking

 Hybrid threading model, protothreads

 Dynamic loading

 Power profiling – measure network power consumption

 Network shell – makes interaction easier

 Rime stack – makes network programming easier

 Multitasking using C language

 Highly portable – 14 platforms, 5 CPUs

 Small memory footprint targeted for small embedded

processors with networking

 50% of all processors are 8-bit, e.g., MSP430, AVR, ARM7, 6502, ...

10

Original Research Paper

[1] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki – a

Lightweight and Flexible Operating System for Tiny Networked Sensors,”

IEEE Local Computer Networks (LCN), pp. 455-462, November 2004.

11

Design Features

 Downloading code at run-time

 Portability

 A hybrid of multi-threaded and event-driven system

model

 Next: Comparisons with existing system and Contiki

12

Downloading Code at Run-Time

 Large-scale sensor networks

 Download program code, fix bugs in operational networks

 Reduce the number of bytes and transfer time

 Not feasible to physically collect and reprogram all sensor devices

 Most embedded OS require a complete binary image of

the entire system built and downloaded into each device

 OS, system libraries, actual applications

 Contiki can load/unload individual applications or

services at run-time

 Smaller than entire system image; less energy and transfer time

13

Portability

 Increasing number of different sensor device platforms

 Unifying characteristic of today’s platform is the CPU

architecture

 Memory model without segmentation or memory protection

 Program code stored in reprogrammable ROM, data in RAM

 Contiki provides CPU multiplexing and support for

loadable programs and services

 Other abstractions are better implemented as libraries or services

due to application specific nature of sensor networks

 Provides mechanisms for dynamic service management

14

Problems with Existing Models

 Multi-threaded model

 Often consumes large amounts of memory

 Each thread must have its own stack

 Hard to know a priori how much stack space a thread needs

 Stack must be over-provisioned

 Stack memory allocated and reserved during thread creation

 Requires locking mechanisms for thread concurrency

 Event-driven system

 Essentially a state-driven programming model

 Processes are implemented as event handlers

 All processes share the same stack (event handlers cannot block)

 Locking mechanisms not needed

 Not all programs can be expressed as state machines (e.g.,

crypto); states hard to maintain for programmers

15

Contiki: A Hybrid Model

 Benefits of both event-driven systems and pre-emptible

threads

 An event-driven kernel

 Pre-emptive multi-threading implemented as an

application library

16

Preemptive Multi-Threading

 Implemented as a library on top of event-based kernel

 Library is optionally linked with applications that

explicitly require a multi-threaded model of operation

 Two parts to the library:

 Platform independent part, interfacing with event kernel

 Platform specific part, implementing stack switching and pre-

emption primitives (using timer interrupt)

 Each thread needs a separate stack, and executes on its

own stack until yielded or pre-empted

17

Preemptive Multi-Threading

 Four function APIs for multi-threading library that can be

called from a running thread

 mt_yield()

 mt_post()

 mt_wait()

 mt_exit()

 Two functions to set up and run a thread

 mt_start()

 mt_exec()

18

Other Embedded OS

Next, we will compare a few embedded operating

systems with Contiki, and see how Contiki overcomes

some of the drawbacks of earlier OS

19

Other Embedded OS

 TinyOS – earliest (ASPLOS 2000) open source OS targeting

wireless sensor networks

 Component-based OS from UC Berkeley

 Programmed using NesC language

 Built around a lightweight event scheduler as a set of cooperating

tasks and processes

 Statically linked with the kernel to a complete system image

 Modifying the system is not possible after linking

 Contiki: provides a dynamic structure

 Allowing programs and drivers to be replaced during run-time and

without relinking

20

Other Embedded OS

 Mate [ASPLOS 2002]

 A tiny virtual machine for sensor networks (UC Berkeley)

 VM code can be downloaded at runtime

 Built-in multi-hop routing

 MagnetOS [SIGOPS 2002]

 Uses Java VM to distribute applications across the network

 VM code can be made smaller than native code – reduce energy

consumption during transporting

 But increased energy spent in interpreting code

 Contiki: programs use native code

 Can be used for all types of programs, including low level device

drivers without loss of execution efficiency

21

Other Embedded OS

 SensorWare [MobiSys 2003]

 Abstract scripting language for programming sensors, but target

platforms not as resource constrained as motes

 EmStar [USENIX 2004]

 Designed for less resource constrained systems

 Mantis [WSNA 2003]

 Traditional pre-emptive multi-threaded model

 Reserved thread stack space and locking mechanisms

 Contiki: hybrid of multi-threaded and event-based model

 Reduces the number of kernel-provided abstractions

 Libraries provide them which have full access to hardware

22

System Overview

 A running Contiki system consists of:

 Kernel

 Libraries

 Program loader

 Processes (an application program or a service)

23

System Overview

 A running Contiki system consists of:

 Kernel

 Libraries

 Program loader

 Processes (an application program or a service)

 Process – defined by an event handler and an optional

poll handler function

 Process state is held in private memory; kernel keeps track of a

pointer to the state

 Share the same address space and do not run in different

protection domains

 Can be replaced at run-time

 Interprocess communication is done by posting events

24

System Overview

 Contiki system is partitioned into two parts at compile

time, and is specific to the deployment

 Core

 Loaded programs

o Core is compiled

into a single binary

image, and is stored

in the devices prior

to deployment

o Core is generally not

modified after

deployment

o Programs are first

stored in EEPROM,

and then

programmed into

the code memory

25

Kernel Architecture

 Consists of a lightweight event scheduler

 Dispatches events to running processes and periodically calls

processes’ polling handlers

 Program execution is triggered by events, or by polling mechanism

 Event handlers may use internal mechanism to achieve preemption

26

Kernel Architecture

 Consists of a lightweight event scheduler

 Dispatches events to running processes and periodically calls

processes’ polling handlers

 Program execution is triggered by events, or by polling mechanism

 Event handlers may use internal mechanism to achieve preemption

 Supports two kinds of events

 Asynchronous - deferred procedure calls, enqueued and dispatched

to the target process sometime later

 Synchronous - immediately schedules the target process

27

Kernel Architecture

 Consists of a lightweight event scheduler

 Dispatches events to running processes and periodically calls

processes’ polling handlers

 Program execution is triggered by events, or by polling mechanism

 Event handlers may use internal mechanism to achieve preemption

 Supports two kinds of events

 Asynchronous - deferred procedure calls, enqueued and dispatched

to the target process sometime later

 Synchronous - immediately schedules the target process

 Provides a polling mechanism

 Scheduling high priority events in-between asynchronous events

 Used by processes operating near the hardware; uses a single

shared stack for all process execution

28

Services

 A service is a process that implements functionality that

can be used by other processes – form of shared library,

e.g.,

 Communication protocol stacks

 Sensor device drivers

 Sensor data handling algorithms

 Dynamically replaced at run-time and must be dynamically

linked; special mechanisms, internal state

 Application programs use a stub library to communicate

with the service

 Catches the process ID

29

Libraries

 Kernel only provides the most basic CPU multiplexing and

event handling features

 Rest of the system is implemented as libraries that are

optionally linked with programs

 Implemented as services and dynamically replaced at run-time

 Linking in three different ways:

 Statically linked with libraries that are part of the core (often-
used parts), e.g., memcpy()

 Statically linked with libraries that are part of loadable programs
(rarely used parts), e.g., atoi()

 Programs can call services implementing a specific library

30

Communication Support

 Implemented as a service to enable run-time replacement

 Being a service, multiple communication stacks can be

loaded simultaneously

 Evaluate and compare different stacks

 Processes headers and

 posts a synchronous

 event

 Application program acts

 on the packet contents

31

Communication Stacks

 Two communication stacks in Contiki

 uIP – TCP/IP

 Rime – low overhead

 Applications can use either

 or both, or none

 uIP can run over Rime

 Rime can run over uIP

32

uIP Stack

 Processes open TCP or UDP connections
 tcp_connect()

 tcp_listen()

 udp_new()

 Tcpip_event posted when new connection arrives, new

data arrives, connection is closed, etc.

 Return packet is sent when process returns

 TCP connections periodically polled for data

 UDP packets sent with uip_udp_packet_send()

33

uIP Stack APIs

 Two APIs

 The “raw” uIP event-driven API

 Protosockets – sockets-like programming based on protothreads

 Event-driven API works well for small programs

 Explicit state machines

 Protosockets work better for larger programs

 Sequential code

34

Rime: The Name

 Rime frost – composed of many thin layers of ice

 Syllable rime – last part of a syllable

 Communication formed by putting many together

35

Rime: “Sockets” for Sensor Networks

Before Contiki/Rime

36

Rime: “Sockets” for Sensor Networks

With Rime

37

Rime: “Sockets” for Sensor Networks

With Rime

Chameleon modules

38

Chameleon / Rime

 Separating packet headers from protocol logic

 Rime – a set of communication primitives

 Lightweight layering – primitives built in terms of each other

 Compose simple abstractions to more complex ones

 Chameleon modules

 Header construction / parsing done separate from communication

stack

39

Chameleon / Rime

40

Rime: Lightweight and Layered

 A set of communication abstractions (in increasing

complexity)

 Single-hop broadcast (broadcast)

 Single-hop unicast (unicast)

 Reliable single-hop unicast (runicast)

 Best-effort multi-hop unicast (multicast)

 Hop-by-hop reliable multi-hop unicast (rmh)

 Best-effort multi-hop flooding (netflood)

 Reliable multi-hop flooding (trickle)

 Hop-by-hop reliable data collection tree routine (collect)

 Hop-by-hop reliable mesh routing (mesh)

 Best-effort route discovery (route-discovery)

 Single-hop reliable bulk transfer (rudolph0)

 Multi-hop reliable bulk transfer (rudolph1)

41

Rime: Lightweight and Layered

 Each module is fairly

simple

 Compiled code 114-598 bytes

 Complexity handled

through layering

 Modules are implemented in

terms of each other

 Not a fully modular

framework

 Full modularity typically gets

very complex

 Rime uses strict layering

http://contiki.sourceforge.net/docs/2.6/

examples.html

http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html

42

An Example

 We will go through an example Contiki program step-by-

step to see the structure of the code and different data

structures used

 This example program opens a UDP broadcast connection

and sends one packet every second

43

An Example

#include “contiki.h”

#include “contiki-net.h”

/* All Contiki programs must have a process */

PROCESS(example_program_process, “Example process”);

/* To make the program send a packet every second, we use an event timer */

static struct etimer timer;

/* Implement the process. It is run whenever an event occurs, and the

parameters “ev” and “data” will be set to the event type and any data that may

be passed

*/

PROCESS_THREAD(example_program_process, ev, data){

struct etimer {

 struct timer timer;

 struct etimer *next

 struct process *p; }

44

An Example

/* Declare the UDP connection. This must be declared static, otherwise the

contents may be destroyed, because the process runs as protothreads, which do

not support stack variables

*/

static struct uip_udp_conn *c;

/* Start the process */

PROCESS_BEGIN();

/* Create the UDP connection to port 4321. We don’t want to attach any special

data to the connection, so pass it a NULL

*/

c = udp_broadcast_new(UIP_HTONS(4321), NULL);

struct uip_udp_conn {

 uip_ipaddr_t ripaddr;

 uint16_t lport;

 uint16_t rport;

 uint8_t ttl;

 uip_udp_appstate_t

 appstate;

}

45

An Example

/* Loop forever */

while(1) {

 /* Set a timer that wakes up once every second */

 etimer_set(&timer, CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 /* To send a UDP packet, we must call upon the uIP TCP/IP stack to call us

(Hollywood principle: “Don’t call us, we’ll call you.”) Use the function

tcpip_poll_udp() to tell uIP to call us, and then wait for the uIP event to come

 */

 tcpip_poll_udp(c);

 PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

 uip_send(“Hello”, 5);

}

PROCESS_END();

}

46

An Example

#include “contiki.h”

#include “contiki-net.h”

PROCESS(example_program_process, “Example process”);

static struct etimer timer;

PROCESS_THREAD(example_program_process, ev, data){

 static struct uip_udp_conn *c;

 PROCESS_BEGIN();

 c = udp_broadcast_new(UIP_HTONS(4321), NULL);

 while(1) {

 etimer_set(&timer, CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 tcpip_poll_udp(c);

 PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

 uip_send(“Hello”, 5);

 }

 PROCESS_END();

}

