..., s it

Schoo! of Eng Ineering

EE 579: Wireless and Mobile Networks
Design & Laboratory

Lecture 7/

Amitabha Ghosh
Department of Electrical Engineering
USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by
Bhaskar Krishnamachari and Murali Annavaram.

N < \/itc. i
[] Schoo! of Engineering
Outline

= Administrative Stuff

= Contiki Internals - Research Papers

= Hands-on with Tmote Sky

Project Pitch (10% of Grade)

= Presentations in class on March 11, 2014

= 15 min max for each team (2 to 3 students)
= Make slides

= Choose a name for your project

= Email Suvil and me the name of your project and the
names of your team members by March 7, 2014

= Reports due (upload in Blackboard) by Tuesday, March 25,
2014 midnight (after Spring break 17-215t March)

i, s \fiterb
Schood of Fnrjlr!»{"mg

Project Pitch (10% of Grade)

= Report Format

o Max 5 pages (including text, images, tables, bibliography, etc.) on
A4/Letter size page, single column, single spacing, at least 10
point font, Times New Roman font

= Report Content
o Summary of your proposal
o Motivation / applications in real life; state-of-the-art
o Preliminary design (pics, tables, etc.), if any
o Evaluation / experimentation / demo plan
o Task breakdown and milestones (who will do what and by when)

i, s \fiterb
Schood of F!'\GIF!-"-{"’II’\G

The Name Contiki

= The Kon-Tiki raft

o Used by Norwegian explorer and writer Thor Heyerdahl in his 1947
expedition across the Pacific Ocean from South America to the
Polynesian islands with minimal resources

o Named after the Inca sun god, Viracocha, whose old name was
“Kon-Tiki”

USC Viterbi

Background: The Arena Project (2000)

= Ice hockey players with wireless sensors
o Bluetooth sensors, camera on helmet (802.11)

o M16C CPU with 20 KB RAM and 100 KB flash ROM ﬁ

= Spectators with access to sensor readings,
enriching viewing experience

o Transmitted with UDP/IP over an ad hoc
Bluetooth connection

o IwlP (lightweight IP) stack - developed in SICS
for resource-constrained devices

= Lulea Hockey lost 1-4 to Brynas Hockey

o Technology worked, but players did not like to
have a breathing rate sensor in their noses

USC Viterbi
Schood of Fnrjlr!»{"mg

Background: ulP (2001)

= UulP (micro IP) - world’s smallest open source TCP/IP stack
compatible with 8/16 bit micro-controllers —
o Developed by Adam Dunkels at SICS Application

UDP | TCP

= ~5K code, ~2K RAM
o Smallest configuration: ~3K code, ~128 bytes RAM

IP ICMP

Network

= Unusual design choices to reduce resource usage
o Only one packet buffer, used in a half-duplex way (tx, rx in turn)
o Connection management using an array

= RFC and industry compliant
o Cisco, Atmel, and SICS released ulPv6 (2008)

IwlP and ulP Today)

= Very well-known in the embedded community

= Used in products from 100+ companies

= Covered in several books on embedded systems

= Porting ulP in professional magazines

= Competence specifically required in job postings

= Companies: GE Security, Cisco Systems, Pumpkin, ...

IUSC—“'E‘L'“
Contiki OS (2002) =

= Contiki - pioneering open source operating system for
sensor networks

Q

o o 0o 0o 0 O O

IP networking

Hybrid threading model, protothreads

Dynamic loading

Power profiling - measure network power consumption
Network shell - makes interaction easier

Rime stack - makes network programming easier
Multitasking using C language

Highly portable - 14 platforms, 5 CPUs

= Small memory footprint targeted for small embedded
processors with networking

a

50% of all processors are 8-bit, e.g., MSP430, AVR, ARM7, 6502, ...

e
Original Research Paper :

[1] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki - a
Lightweight and Flexible Operating System for Tiny Networked Sensors,”
IEEE Local Computer Networks (LCN), pp. 455-462, November 2004.

10

Design Features |

= Downloading code at run-time
= Portability

= A hybrid of multi-threaded and event-driven system
model

= Next: Comparisons with existing system and Contiki

Downloading Code at Run-Time |

= Large-scale sensor networks
o Download program code, fix bugs in operational networks

= Reduce the number of bytes and transfer time
o Not feasible to physically collect and reprogram all sensor devices

= Most embedded OS require a complete binary image of
the entire system built and downloaded into each device

o 0S, system libraries, actual applications

= Contiki can load/unload individual applications or
services at run-time
o Smaller than entire system image; less energy and transfer time

12

Portability '

= Increasing number of different sensor device platforms

= Unifying characteristic of today’s platform is the CPU
architecture
o Memory model without segmentation or memory protection
o Program code stored in reprogrammable ROM, data in RAM

= Contiki provides CPU multiplexing and support for
loadable programs and services

o Other abstractions are better implemented as libraries or services
due to application specific nature of sensor networks

o Provides mechanisms for dynamic service management

13

Problems with Existing Models |

= Multi-threaded model

o o 0o 0O O O

Often consumes large amounts of memory

Each thread must have its own stack

Hard to know a priori how much stack space a thread needs
Stack must be over-provisioned

Stack memory allocated and reserved during thread creation
Requires locking mechanisms for thread concurrency

= Event-driven system

o o o o

Essentially a state-driven programming model

Processes are implemented as event handlers

All processes share the same stack (event handlers cannot block)
Locking mechanisms not needed

Not all programs can be expressed as state machines (e.g.,
crypto); states hard to maintain for programmers

14

N < it
Contiki: A Hybrid Model |

= Benefits of both event-driven systems and pre-emptible
threads

chao! of anlr!»{"mg

= An event-driven kernel

= Pre-emptive multi-threading implemented as an
application library

15

Preemptive Multi-Threading |

= Implemented as a library on top of event-based kernel

= Library is optionally linked with applications that
explicitly require a multi-threaded model of operation

= Two parts to the library:
o Platform independent part, interfacing with event kernel

o Platform specific part, implementing stack switching and pre-
emption primitives (using timer interrupt)

= Each thread needs a separate stack, and executes on its
own stack until yielded or pre-empted

I . /i
Preemptive Multi-Threading |

chao! of anlr!»{"mg

= Four function APIs for multi-threading library that can be
called from a running thread
o mt_yield()
o mt_post()
o mt_wait()
o mt_exit()

= Two functions to set up and run a thread
o mt_start()
o mt_exec()

17

Other Embedded OS |

Next, we will compare a few embedded operating
systems with Contiki, and see how Contiki overcomes
some of the drawbacks of earlier OS

18

Other Embedded OS

= TinyOS - earliest (ASPLOS 2000) open source OS targeting
wireless sensor networks e
o Component-based OS from UC Berkeley "jqu@S
o Programmed using NesC language e

o Built around a lightweight event scheduler as a set of cooperating
tasks and processes

o Statically linked with the kernel to a complete system image
o Modifying the system is not possible after linking

= Contiki: provides a dynamic structure

o Allowing programs and drivers to be replaced during run-time and
without relinking

19

Other Embedded OS

= Mate [ASPLOS 2002]

o A tiny virtual machine for sensor networks (UC Berkeley)
2 VM code can be downloaded at runtime
o Built-in multi-hop routing

= MagnetOS [SIGOPS 2002]

o Uses Java VM to distribute applications across the network

o VM code can be made smaller than native code - reduce energy
consumption during transporting

o But increased energy spent in interpreting code

= Contiki: programs use native code

o Can be used for all types of programs, including low level device
drivers without loss of execution efficiency

20

Other Embedded OS

= SensorWare [MobiSys 2003]

o Abstract scripting language for programming sensors, but target
platforms not as resource constrained as motes

= EmStar [USENIX 2004]

o Desighed for less resource constrained systems

= Mantis [WSNA 2003]

o Traditional pre-emptive multi-threaded model
o Reserved thread stack space and locking mechanisms

= Contiki: hybrid of multi-threaded and event-based model
o Reduces the number of kernel-provided abstractions
o Libraries provide them which have full access to hardware

21

System Overview |

= A running Contiki system consists of:
Kernel

Libraries

Program loader

d
d
d
o Processes (an application program or a service)

System Overview |

= A running Contiki system consists of:

o Kernel

o Libraries

o Program loader

o Processes (an application program or a service)

= Process - defined by an event handler and an optional

poll handler function

o Process state is held in private memory; kernel keeps track of a
pointer to the state

o Share the same address space and do not run in different
protection domains

o Can be replaced at run-time

o Interprocess communication is done by posting events

23

USC Viterbi

School of Engineering

System Overview

= Contiki system is partitioned into two parts at compile
time, and is specific to the deployment

o Core
ROM
- Loaded programs \\\\\w o Programs are first
k\\ \ \ stored in EEPROM,
Loaded program and then

o Core is compiled \ \ \ % programmed into
into a single binary &\\\\ﬂ\\ the code memory
image, and is stored | |
in the devices prior | Communication service : RAM

to deployment ; Language run-time | ANAANNANNNANNNRNNNNNNY

Loaded program

Communication service

o Core is generally not Program loader M

modified after i Kernel |

Kernel

deployment |

24

e
Kernel Architecture |

= Consists of a lightweight event scheduler

o Dispatches events to running processes and periodically calls
processes’ polling handlers

o Program execution is triggered by events, or by polling mechanism
o Event handlers may use internal mechanism to achieve preemption

25

Kernel Architecture |

= Consists of a lightweight event scheduler

o Dispatches events to running processes and periodically calls
processes’ polling handlers

o Program execution is triggered by events, or by polling mechanism
o Event handlers may use internal mechanism to achieve preemption

= Supports two kinds of events

o Asynchronous - deferred procedure calls, enqueued and dispatched
to the target process sometime later

o Synchronous - immediately schedules the target process

26

Kernel Architecture |

= Consists of a lightweight event scheduler

o Dispatches events to running processes and periodically calls
processes’ polling handlers

o Program execution is triggered by events, or by polling mechanism
o Event handlers may use internal mechanism to achieve preemption

= Supports two kinds of events

o Asynchronous - deferred procedure calls, enqueued and dispatched
to the target process sometime later

o Synchronous - immediately schedules the target process

= Provides a polling mechanism
o Scheduling high priority events in-between asynchronous events

o Used by processes operating near the hardware; uses a single
shared stack for all process execution
27

Services |

= A service is a process that implements functionality that
can be used by other processes - form of shared library,

e.g. ,
o Communication protocol stacks
o Sensor device drivers

o Sensor data handling algorithms

= Dynamically replaced at run-time and must be dynamically
linked; special mechanisms, internal state

= Application programs use a stub library to communicate
with the service
o Catches the process ID

28

I - /it b
[° Sdnelof Srmeey
Libraries

= Kernel only provides the most basic CPU multiplexing and
event handling features

= Rest of the system is implemented as libraries that are
optionally linked with programs

o Implemented as services and dynamically replaced at run-time

= Linking in three different ways:

o Statically linked with libraries that are part of the core (often-
used parts), e.g., memcpy ()

o Statically linked with libraries that are part of loadable programs
(rarely used parts), e.g., atoi ()

o Programs can call services implementing a specific library

29

Communication Support |

SC Viterbi

= Implemented as a service to enable run-time replacement

= Being a service, multiple communication stacks can be
loaded simultaneously

o Evaluate and compare different stacks

= Processes headers and noplcation == COTMUicatr \l
ication = o
posts a synchronous i §
event Fiu::uuting_;F protocol 1 Routing protocol 2
A [}
Y Y Y
- Appllcatlon program aCtS Device driver 1jl Device driver 2 A

on the packet contents o Hardware ! |

30

Communication Stacks

= Two communication stacks in Contiki

o ulP-TCP/IP
o Rime - low overhead

= Applications can use either
or both, or none

= UlP can run over Rime

= Rime can run over ulP

Application

Application

USC Viterbi
School of Engineering

Application

Application

ulP

AN

3
r

Rime

Ethernet ‘

Low-power
radio

31

i, s \fiterb
Schood of anlr!-ﬁ{".ng

ulP Stack

= Processes open TCP or UDP connections
0 tcp connect ()
0 tcp listen()

0 udp new ()

= Tcpip_event posted when new connection arrives, new
data arrives, connection is closed, etc.

= Return packet is sent when process returns

= TCP connections periodically polled for data

= UDP packets sent with uip udp packet send()

32

ulP Stack APls |

= [wo APIs

o The “raw” ulP event-driven API
o Protosockets - sockets-like programming based on protothreads

= Event-driven APl works well for small programs
o Explicit state machines

= Protosockets work better for larger programs
o Sequential code

33

School of Engineering

Rime: The Name

= Rime frost - composed of many thin layers of ice

= Syllable rime - last part of a syllable
o Communication formed by putting many together

34

USC Viterbi

Rime: “Sockets” for Sensor Networks

Before Contiki/Rime

Network/transport/application/

CTP

MAC
ETX/le

Link

Flush

Trickle

Application 1

Deluge

VRR

AODV

GRE
‘ RBP ‘ S4
Application 2
Franl-cshaﬂ AT

SCP

| B-MAC |/

S-MAC

TR1001

CC1100

hn | ZigBee |
CC2420

35

Rime: “Sockets” for Sensor Networks

With Rime

Application 1

Application 2

Rime

TS

802.15.4 X-MAC

6lowpan
IPv6

TSMP

36

T
Rime: “Sockets” for Sensor Networks

With Rime

Application 1 Application 2

Rime

o=

Chameleon modules

e
Chameleon / Rime |

= Separating packet headers from protocol logic

= Rime - a set of communication primitives
o Lightweight layering - primitives built in terms of each other
o Compose simple abstractions to more complex ones

= Chameleon modules

o Header construction / parsing done separate from communication
stack

38

Chameleon / Rime |

Application data

All packet attributes /

Application 2

Application 3

Deal W|th communlcatlon here

‘unmw |||||| mj|

Application data
All packet attributes

Chameleon

Application data

gp ket he d9r froPac

More pacF

ket attributes

Confine b|t-IeveI headaches here

802.15.4

Eit-packet header

39

i, s \fiterb
Schood of Fnrjlr!»{"mg

Rime: Lightweight and Layered

= A set of communication abstractions (in increasing
complexity)

Q

c o 0o 0o o0 o0 o0 o0 o0 o0 o

Single-hop broadcast (broadcast)

Single-hop unicast (unicast)

Reliable single-hop unicast (runicast)
Best-effort multi-hop unicast (multicast)
Hop-by-hop reliable multi-hop unicast (rmh)
Best-effort multi-hop flooding (netflood)
Reliable multi-hop flooding (trickle)
Hop-by-hop reliable data collection tree routine (collect)
Hop-by-hop reliable mesh routing (mesh)
Best-effort route discovery (route-discovery)
Single-hop reliable bulk transfer (rudolph0)
Multi-hop reliable bulk transfer (rudolph1)

40

Rime: Lightweight and Layered

= Each module is fairly
Si m p[e http://contiki.sourceforge.net/docs/2.6/

. examples.html
o Compiled code 114-598 bytes

mesh

= Complexity handled outediscovery
through layering collect |
_ .
o Modules are implemented in ‘ runicast ‘ multihop ‘ netflood ‘
terms of each other ~__ %
trickle unicast

= Not a fully modular

framework broadcast
I
o Full modularity typically gets MAC

|
Radio

very complex
o Rime uses strict layering

http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html

IEEEE——————————————————————— it
An Example
= We will go through an example Contiki program step-by-

step to see the structure of the code and different data
structures used

= This example program opens a UDP broadcast connection
and sends one packet every second

42

An Example |

#include “contiki.h”

#include “contiki-net.h”

/* All Contiki programs must have a process */
PROCESS (example program process, “Example process”);

/* To make the program send a packet every second, we use an event timer */

static struct etimer timer; struct etimer {

struct timer timer;

struct etimer *next

struct process *p; }

/* Implement the process. It is run whenever an event occurs, and the
parameters “ev” and “data” will be set to the event type and any data that may
be passed

*/

PROCESS THREAD (example program process, ev, data) {

-y

An Example

iterbi
r 1reeary ng

schoo! of Eng

/* Declare the UDP connection. This must be declared static, otherwise the
contents may be destroyed, because the process runs as protothreads, which do

not support stack variables
*/

static struct uip udp conn *c;

/* Start the process */
PROCESS BEGIN() ;

struct ulp udp conn {
uip ipaddr t ripaddr;
uintlo t lport;
uintl6 t rport;
uint8 t ttl;
uip udp appstate t

appstate;
}

/* Create the UDP connection to port 4321. We don’t want to attach any special

data to the connection, so pass it a NULL

*/

c = udp broadcast new (UIP HTONS (4321), NULL);

44

EE————————————————————— A
An Example :

/* Loop forever */
while (1) {
/* Set a timer that wakes up once every second */
etimer set (&timer, CLOCK SECOND) ;
PROCESS WAIT EVENT UNTIL (etimer expilred(&timer));

/* To send a UDP packet, we must call upon the ulP TCP/IP stack to call us
(Hollywood principle: “Don’t call us, we’ll call you.”) Use the function
tcpip_poll_udp() to tell ulP to call us, and then wait for the ulP event to come

*/
tcpip poll udp(c);
PROCESS WAIT EVENT UNTIL (ev == tcplp event);
uip send(“Hello”, 5);
}
PROCESS END () ;

}

45

An Example

#include “contiki.h”

#include “contiki-net.h”

PROCESS (example program process, “Example process”);

static struct etimer timer;

PROCESS THREAD (example program process, ev, data) {

static struct uip udp conn *c;

PROCESS BEGIN () ;

c = udp broadcast new (UIP HTONS (4321), NULL);

while (1) {
etimer set (&timer, CLOCK SECOND) ;
PROCESS WAIT EVENT UNTIL (etimer expired(&timer));
tcpip poll udp(c);
PROCESS WAIT EVENT UNTIL(ev == tcpip event);
uip send(“Hello”, 5);

}

PROCESS END () ;

46

