
EE 579: Wireless and Mobile Networks

Design & Laboratory

Lecture 7

Amitabha Ghosh

Department of Electrical Engineering

USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by

Bhaskar Krishnamachari and Murali Annavaram.

2

Outline

 Administrative Stuff

 Contiki Internals – Research Papers

 Hands-on with Tmote Sky

3

Project Pitch (10% of Grade)

 Presentations in class on March 11, 2014

 15 min max for each team (2 to 3 students)

 Make slides

 Choose a name for your project

 Email Suvil and me the name of your project and the

names of your team members by March 7, 2014

 Reports due (upload in Blackboard) by Tuesday, March 25,

2014 midnight (after Spring break 17-21st March)

4

Project Pitch (10% of Grade)

 Report Format

 Max 5 pages (including text, images, tables, bibliography, etc.) on

A4/Letter size page, single column, single spacing, at least 10

point font, Times New Roman font

 Report Content

 Summary of your proposal

 Motivation / applications in real life; state-of-the-art

 Preliminary design (pics, tables, etc.), if any

 Evaluation / experimentation / demo plan

 Task breakdown and milestones (who will do what and by when)

5

The Name Contiki

 The Kon-Tiki raft

 Used by Norwegian explorer and writer Thor Heyerdahl in his 1947

expedition across the Pacific Ocean from South America to the

Polynesian islands with minimal resources

 Named after the Inca sun god, Viracocha, whose old name was

“Kon-Tiki”

6

Background: The Arena Project (2000)

 Ice hockey players with wireless sensors

 Bluetooth sensors, camera on helmet (802.11)

 M16C CPU with 20 KB RAM and 100 KB flash ROM

 Spectators with access to sensor readings,

enriching viewing experience

 Transmitted with UDP/IP over an ad hoc

Bluetooth connection

 IwIP (lightweight IP) stack – developed in SICS

for resource-constrained devices

 Lulea Hockey lost 1-4 to Brynas Hockey

 Technology worked, but players did not like to

have a breathing rate sensor in their noses

7

Background: uIP (2001)

 uIP (micro IP) – world’s smallest open source TCP/IP stack

compatible with 8/16 bit micro-controllers

 Developed by Adam Dunkels at SICS

 ~5K code, ~2K RAM

 Smallest configuration: ~3K code, ~128 bytes RAM

 Unusual design choices to reduce resource usage

 Only one packet buffer, used in a half-duplex way (tx, rx in turn)

 Connection management using an array

 RFC and industry compliant

 Cisco, Atmel, and SICS released uIPv6 (2008)

8

IwIP and uIP Today

 Very well-known in the embedded community

 Used in products from 100+ companies

 Covered in several books on embedded systems

 Porting uIP in professional magazines

 Competence specifically required in job postings

 Companies: GE Security, Cisco Systems, Pumpkin, …

9

Contiki OS (2002)

 Contiki – pioneering open source operating system for

sensor networks

 IP networking

 Hybrid threading model, protothreads

 Dynamic loading

 Power profiling – measure network power consumption

 Network shell – makes interaction easier

 Rime stack – makes network programming easier

 Multitasking using C language

 Highly portable – 14 platforms, 5 CPUs

 Small memory footprint targeted for small embedded

processors with networking

 50% of all processors are 8-bit, e.g., MSP430, AVR, ARM7, 6502, ...

10

Original Research Paper

[1] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki – a

Lightweight and Flexible Operating System for Tiny Networked Sensors,”

IEEE Local Computer Networks (LCN), pp. 455-462, November 2004.

11

Design Features

 Downloading code at run-time

 Portability

 A hybrid of multi-threaded and event-driven system

model

 Next: Comparisons with existing system and Contiki

12

Downloading Code at Run-Time

 Large-scale sensor networks

 Download program code, fix bugs in operational networks

 Reduce the number of bytes and transfer time

 Not feasible to physically collect and reprogram all sensor devices

 Most embedded OS require a complete binary image of

the entire system built and downloaded into each device

 OS, system libraries, actual applications

 Contiki can load/unload individual applications or

services at run-time

 Smaller than entire system image; less energy and transfer time

13

Portability

 Increasing number of different sensor device platforms

 Unifying characteristic of today’s platform is the CPU

architecture

 Memory model without segmentation or memory protection

 Program code stored in reprogrammable ROM, data in RAM

 Contiki provides CPU multiplexing and support for

loadable programs and services

 Other abstractions are better implemented as libraries or services

due to application specific nature of sensor networks

 Provides mechanisms for dynamic service management

14

Problems with Existing Models

 Multi-threaded model

 Often consumes large amounts of memory

 Each thread must have its own stack

 Hard to know a priori how much stack space a thread needs

 Stack must be over-provisioned

 Stack memory allocated and reserved during thread creation

 Requires locking mechanisms for thread concurrency

 Event-driven system

 Essentially a state-driven programming model

 Processes are implemented as event handlers

 All processes share the same stack (event handlers cannot block)

 Locking mechanisms not needed

 Not all programs can be expressed as state machines (e.g.,

crypto); states hard to maintain for programmers

15

Contiki: A Hybrid Model

 Benefits of both event-driven systems and pre-emptible

threads

 An event-driven kernel

 Pre-emptive multi-threading implemented as an

application library

16

Preemptive Multi-Threading

 Implemented as a library on top of event-based kernel

 Library is optionally linked with applications that

explicitly require a multi-threaded model of operation

 Two parts to the library:

 Platform independent part, interfacing with event kernel

 Platform specific part, implementing stack switching and pre-

emption primitives (using timer interrupt)

 Each thread needs a separate stack, and executes on its

own stack until yielded or pre-empted

17

Preemptive Multi-Threading

 Four function APIs for multi-threading library that can be

called from a running thread

 mt_yield()

 mt_post()

 mt_wait()

 mt_exit()

 Two functions to set up and run a thread

 mt_start()

 mt_exec()

18

Other Embedded OS

Next, we will compare a few embedded operating

systems with Contiki, and see how Contiki overcomes

some of the drawbacks of earlier OS

19

Other Embedded OS

 TinyOS – earliest (ASPLOS 2000) open source OS targeting

wireless sensor networks

 Component-based OS from UC Berkeley

 Programmed using NesC language

 Built around a lightweight event scheduler as a set of cooperating

tasks and processes

 Statically linked with the kernel to a complete system image

 Modifying the system is not possible after linking

 Contiki: provides a dynamic structure

 Allowing programs and drivers to be replaced during run-time and

without relinking

20

Other Embedded OS

 Mate [ASPLOS 2002]

 A tiny virtual machine for sensor networks (UC Berkeley)

 VM code can be downloaded at runtime

 Built-in multi-hop routing

 MagnetOS [SIGOPS 2002]

 Uses Java VM to distribute applications across the network

 VM code can be made smaller than native code – reduce energy

consumption during transporting

 But increased energy spent in interpreting code

 Contiki: programs use native code

 Can be used for all types of programs, including low level device

drivers without loss of execution efficiency

21

Other Embedded OS

 SensorWare [MobiSys 2003]

 Abstract scripting language for programming sensors, but target

platforms not as resource constrained as motes

 EmStar [USENIX 2004]

 Designed for less resource constrained systems

 Mantis [WSNA 2003]

 Traditional pre-emptive multi-threaded model

 Reserved thread stack space and locking mechanisms

 Contiki: hybrid of multi-threaded and event-based model

 Reduces the number of kernel-provided abstractions

 Libraries provide them which have full access to hardware

22

System Overview

 A running Contiki system consists of:

 Kernel

 Libraries

 Program loader

 Processes (an application program or a service)

23

System Overview

 A running Contiki system consists of:

 Kernel

 Libraries

 Program loader

 Processes (an application program or a service)

 Process – defined by an event handler and an optional

poll handler function

 Process state is held in private memory; kernel keeps track of a

pointer to the state

 Share the same address space and do not run in different

protection domains

 Can be replaced at run-time

 Interprocess communication is done by posting events

24

System Overview

 Contiki system is partitioned into two parts at compile

time, and is specific to the deployment

 Core

 Loaded programs

o Core is compiled

into a single binary

image, and is stored

in the devices prior

to deployment

o Core is generally not

modified after

deployment

o Programs are first

stored in EEPROM,

and then

programmed into

the code memory

25

Kernel Architecture

 Consists of a lightweight event scheduler

 Dispatches events to running processes and periodically calls

processes’ polling handlers

 Program execution is triggered by events, or by polling mechanism

 Event handlers may use internal mechanism to achieve preemption

26

Kernel Architecture

 Consists of a lightweight event scheduler

 Dispatches events to running processes and periodically calls

processes’ polling handlers

 Program execution is triggered by events, or by polling mechanism

 Event handlers may use internal mechanism to achieve preemption

 Supports two kinds of events

 Asynchronous - deferred procedure calls, enqueued and dispatched

to the target process sometime later

 Synchronous - immediately schedules the target process

27

Kernel Architecture

 Consists of a lightweight event scheduler

 Dispatches events to running processes and periodically calls

processes’ polling handlers

 Program execution is triggered by events, or by polling mechanism

 Event handlers may use internal mechanism to achieve preemption

 Supports two kinds of events

 Asynchronous - deferred procedure calls, enqueued and dispatched

to the target process sometime later

 Synchronous - immediately schedules the target process

 Provides a polling mechanism

 Scheduling high priority events in-between asynchronous events

 Used by processes operating near the hardware; uses a single

shared stack for all process execution

28

Services

 A service is a process that implements functionality that

can be used by other processes – form of shared library,

e.g.,

 Communication protocol stacks

 Sensor device drivers

 Sensor data handling algorithms

 Dynamically replaced at run-time and must be dynamically

linked; special mechanisms, internal state

 Application programs use a stub library to communicate

with the service

 Catches the process ID

29

Libraries

 Kernel only provides the most basic CPU multiplexing and

event handling features

 Rest of the system is implemented as libraries that are

optionally linked with programs

 Implemented as services and dynamically replaced at run-time

 Linking in three different ways:

 Statically linked with libraries that are part of the core (often-
used parts), e.g., memcpy()

 Statically linked with libraries that are part of loadable programs
(rarely used parts), e.g., atoi()

 Programs can call services implementing a specific library

30

Communication Support

 Implemented as a service to enable run-time replacement

 Being a service, multiple communication stacks can be

loaded simultaneously

 Evaluate and compare different stacks

 Processes headers and

 posts a synchronous

 event

 Application program acts

 on the packet contents

31

Communication Stacks

 Two communication stacks in Contiki

 uIP – TCP/IP

 Rime – low overhead

 Applications can use either

 or both, or none

 uIP can run over Rime

 Rime can run over uIP

32

uIP Stack

 Processes open TCP or UDP connections
 tcp_connect()

 tcp_listen()

 udp_new()

 Tcpip_event posted when new connection arrives, new

data arrives, connection is closed, etc.

 Return packet is sent when process returns

 TCP connections periodically polled for data

 UDP packets sent with uip_udp_packet_send()

33

uIP Stack APIs

 Two APIs

 The “raw” uIP event-driven API

 Protosockets – sockets-like programming based on protothreads

 Event-driven API works well for small programs

 Explicit state machines

 Protosockets work better for larger programs

 Sequential code

34

Rime: The Name

 Rime frost – composed of many thin layers of ice

 Syllable rime – last part of a syllable

 Communication formed by putting many together

35

Rime: “Sockets” for Sensor Networks

Before Contiki/Rime

36

Rime: “Sockets” for Sensor Networks

With Rime

37

Rime: “Sockets” for Sensor Networks

With Rime

Chameleon modules

38

Chameleon / Rime

 Separating packet headers from protocol logic

 Rime – a set of communication primitives

 Lightweight layering – primitives built in terms of each other

 Compose simple abstractions to more complex ones

 Chameleon modules

 Header construction / parsing done separate from communication

stack

39

Chameleon / Rime

40

Rime: Lightweight and Layered

 A set of communication abstractions (in increasing

complexity)

 Single-hop broadcast (broadcast)

 Single-hop unicast (unicast)

 Reliable single-hop unicast (runicast)

 Best-effort multi-hop unicast (multicast)

 Hop-by-hop reliable multi-hop unicast (rmh)

 Best-effort multi-hop flooding (netflood)

 Reliable multi-hop flooding (trickle)

 Hop-by-hop reliable data collection tree routine (collect)

 Hop-by-hop reliable mesh routing (mesh)

 Best-effort route discovery (route-discovery)

 Single-hop reliable bulk transfer (rudolph0)

 Multi-hop reliable bulk transfer (rudolph1)

41

Rime: Lightweight and Layered

 Each module is fairly

simple

 Compiled code 114-598 bytes

 Complexity handled

through layering

 Modules are implemented in

terms of each other

 Not a fully modular

framework

 Full modularity typically gets

very complex

 Rime uses strict layering

http://contiki.sourceforge.net/docs/2.6/

examples.html

http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html
http://contiki.sourceforge.net/docs/2.6/examples.html

42

An Example

 We will go through an example Contiki program step-by-

step to see the structure of the code and different data

structures used

 This example program opens a UDP broadcast connection

and sends one packet every second

43

An Example

#include “contiki.h”

#include “contiki-net.h”

/* All Contiki programs must have a process */

PROCESS(example_program_process, “Example process”);

/* To make the program send a packet every second, we use an event timer */

static struct etimer timer;

/* Implement the process. It is run whenever an event occurs, and the

parameters “ev” and “data” will be set to the event type and any data that may

be passed

*/

PROCESS_THREAD(example_program_process, ev, data){

struct etimer {

 struct timer timer;

 struct etimer *next

 struct process *p; }

44

An Example

/* Declare the UDP connection. This must be declared static, otherwise the

contents may be destroyed, because the process runs as protothreads, which do

not support stack variables

*/

static struct uip_udp_conn *c;

/* Start the process */

PROCESS_BEGIN();

/* Create the UDP connection to port 4321. We don’t want to attach any special

data to the connection, so pass it a NULL

*/

c = udp_broadcast_new(UIP_HTONS(4321), NULL);

struct uip_udp_conn {

 uip_ipaddr_t ripaddr;

 uint16_t lport;

 uint16_t rport;

 uint8_t ttl;

 uip_udp_appstate_t

 appstate;

}

45

An Example

/* Loop forever */

while(1) {

 /* Set a timer that wakes up once every second */

 etimer_set(&timer, CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 /* To send a UDP packet, we must call upon the uIP TCP/IP stack to call us

(Hollywood principle: “Don’t call us, we’ll call you.”) Use the function

tcpip_poll_udp() to tell uIP to call us, and then wait for the uIP event to come

 */

 tcpip_poll_udp(c);

 PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

 uip_send(“Hello”, 5);

}

PROCESS_END();

}

46

An Example

#include “contiki.h”

#include “contiki-net.h”

PROCESS(example_program_process, “Example process”);

static struct etimer timer;

PROCESS_THREAD(example_program_process, ev, data){

 static struct uip_udp_conn *c;

 PROCESS_BEGIN();

 c = udp_broadcast_new(UIP_HTONS(4321), NULL);

 while(1) {

 etimer_set(&timer, CLOCK_SECOND);

 PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

 tcpip_poll_udp(c);

 PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

 uip_send(“Hello”, 5);

 }

 PROCESS_END();

}

