

Lecture 9

Amitabha Ghosh Department of Electrical Engineering USC, Spring 2014

Lecture notes and course design based upon prior semesters taught by Bhaskar Krishnamachari and Murali Annavaram.

Outline

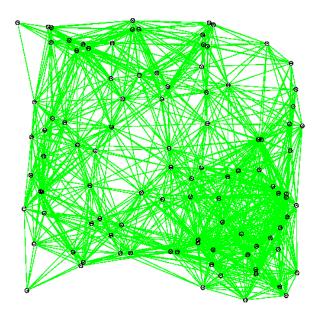
- Administrative Stuff
- Topology Control in Sensor Networks
- Localization in Sensor Networks with Testbed Experiments
 Suvil

chool of Engineer

Why Topology Control?

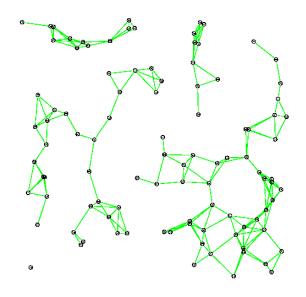
Topology Control: Given a network connectivity graph, compute a subgraph with certain properties: connectivity, low interference etc.

 No topology control: nodes transmit at max power levels



- High energy consumption
- High interference
- Low throughput

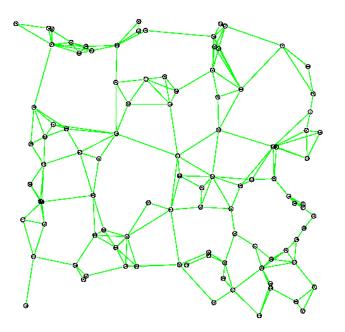
 No topology control: nodes transmit at min power levels



• Network may partition

School of Engineer

An Example



Benefits

- Global connectivity
- Low energy consumption

School of Engineer

- Low interference
- High throughput

Problem

• To find optimal transmission power levels using local information such that network connectivity is maintained.

3-Dimensional Networks

Challenges:

- Is very high density deployment practical in 3D?
- Do 2D algorithms readily extend to 3D?
- Structural restrictions

Applications: Structural Health Monitoring, Marine-life monitoring

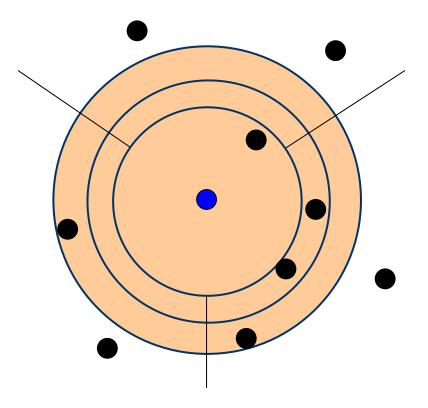
• Under random deployment, node density required to ensure connectivity is prohibitively high in 3D!

Critical Transmission Radius: O((log n/n)^{1/d}) for a unit cube [0,1]^d [Goel '06]

Critical avg. node deg: 15 in 2D vs. 34 in 3D (for n=1000) [Poduri, EmNet'06]

- Many 2D algorithms are not extensible to 3D (e.g. geographic routing)
- Very high complexity
- No ordering of nodes based on angular information in 3D

Can you think of a smart Strategy?



USC Viterbi School of Engineering

Cone-Based Topology Control

2D CBTC

Global connectivity from local geometric constraints [Wattenhofer, Infocom '01] [Li Li, PODC '01, TON '05]

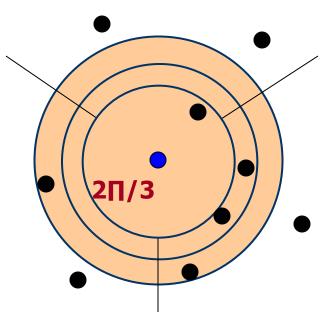
Assumptions

- Maximum Power Graph G=(V, E) is connected
- Assume receivers can determine direction of senders

Main Result

If every node adjusts its power level, such that there exists at least one neighbor at every $2\Pi/3$ sector around itself, then network is connected

- Complexity **O(d log d),** d = avg node deg
- Not (efficiently) extensible to 3D



thool of Engineer

3D Topology Control

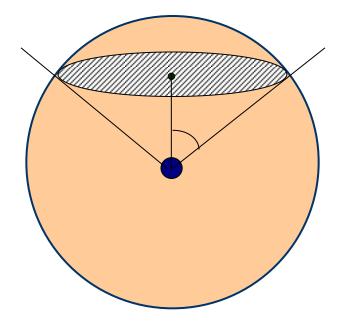
3D CBTC [Bahramgiri, ICCCN'05, Wireless Networks '06]

Basic Idea

Each node increases its power level until there is at least one neighbor at every 3D cone of apex angle $2\pi/3$ around it

Limitations

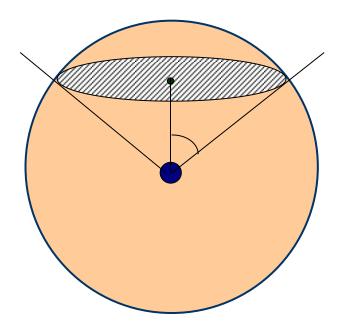
- Assumes directional information
- High time complexity O(d³ log d)



chool of Engineer

Reduce Complexity in 3D

Can you think of a smart strategy to do the power control in 3D with reduced complexity?



Our Approach

Phase 1

 Use Multi-Dimensional Scaling (MDS) to find relative location maps for each node's neighbors when they use P^{max}

Phase 2

Simplify the 3D problem

- Orthographic Projections
 - Convert the 3D problem into similar problems in 2D
- Solve the 2D problems using CBTC and infer about the 3D solution

Solve the 3D problem directly

Use Spherical Delaunay Triangulation (computational geometry tool)

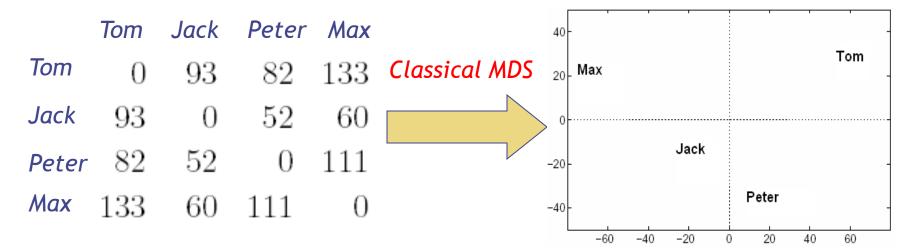
hool of Engineer

Phase I: Multi-Dimensional Scaling

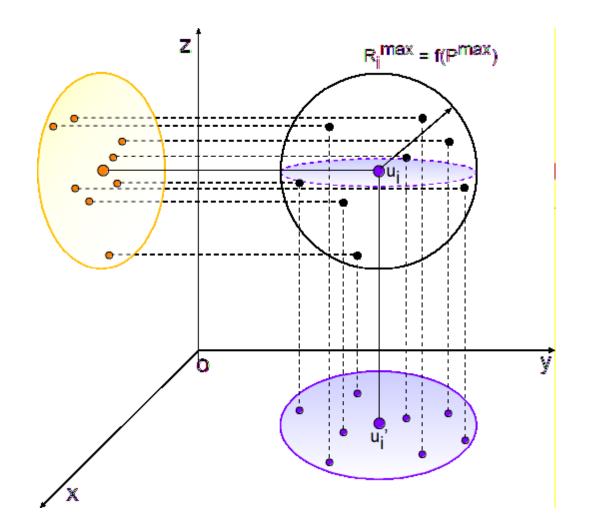
Classical MDS

Input: pairwise distances Output: relative positions

Example: (2D case)



USC Viterbi School of Engineering



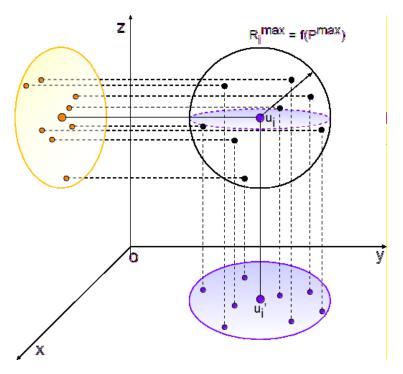
12

USC Viterbi

Algorithm:

1. Each node starts with minimum tx. power

- 2. For a given tx power, project the neighbors on xy, yz, and zx
- 3. Run 2D CBTC on each plane
 - □ If any of the 3 planes do not satisfy the 2∏/3 constraint, increase power to the next level
 - Else STOP, settle with current power
- 4. Go back to Step 2 unless P^{max} is reached.



School of Engineer

Lemma 1:

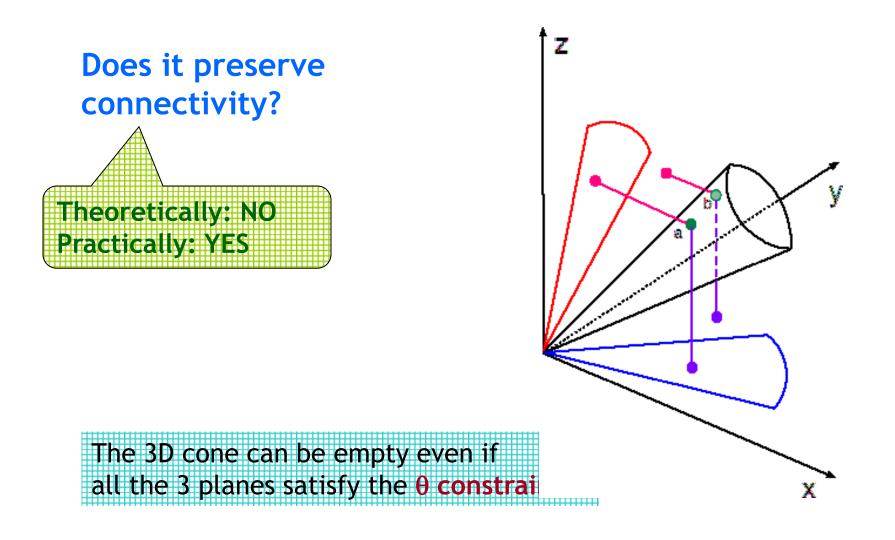
Consider the projections of a node u_i 's neighbor on the three planes: xy, yz, and zx.

If there exists at least one empty sector of angle θ in any one of the planes, then there exists an infinite number of empty 3D cones with apex angle θ around u_i .



14

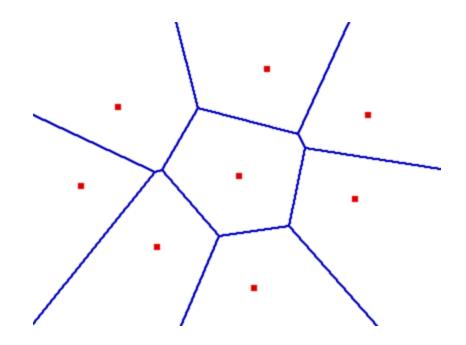
School of Engineer



USC Viterb

Voronoi Diagrams

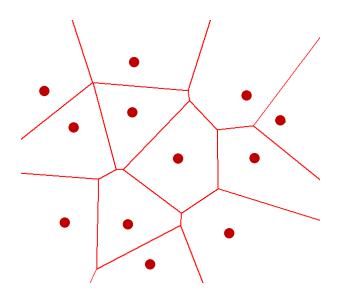
Given N points in 2D, a Voronoi diagram tessellates the plane into N convex polygons, such that any point within a polygon is closest to the site (given point) that lies in that polygon

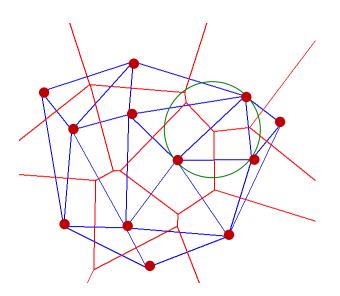


School of Engineeri

Delaunay Triangulation

Dual of Voronoi diagram Empty circumcircle property of DT

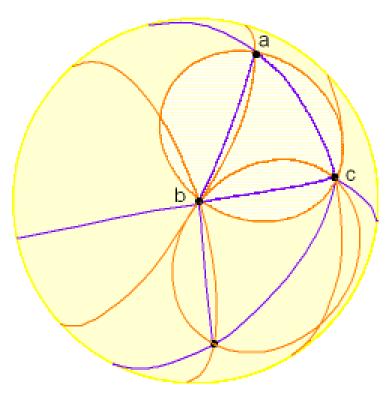




USC Viterbi School of Engineering

Spherical Delaunay Triangulation

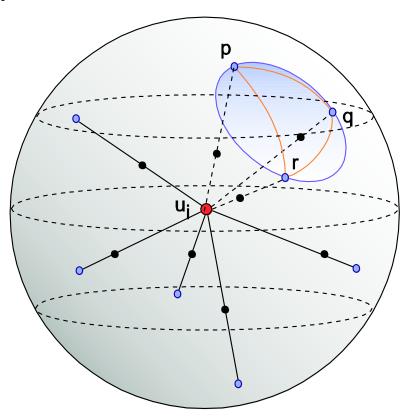
• When we do the DT on the surface of a sphere



Spherical triangles, and spherical caps

Phase II: SDT

 Construct a SDT by projecting the node locations on the surface of a sphere



Phase II: SDT

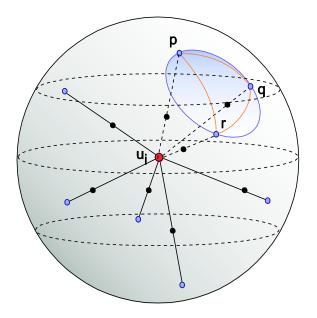
Algorithm: SDT

1. Each node starts with minimum tx. Power

- 2. For a given tx. power, project the neighbors on the spherical surface
- 3. Construct Delaunay triangulation on the surface of the sphere
- 4. Calculate the area of the (empty) spherical caps
- 5. If any cap area is > $2.7 R^2$
 - Increase the power to next level; go to Step 2
- 6. Else
 - Stop, settle down with current power level

Lemma 2

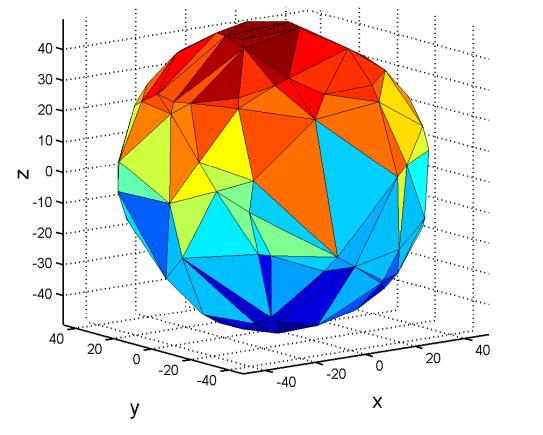
If none of the spherical caps have a surface area greater than **2.7**R², the network is at least one-connected.



ichool of Engineeri

O(d log d)

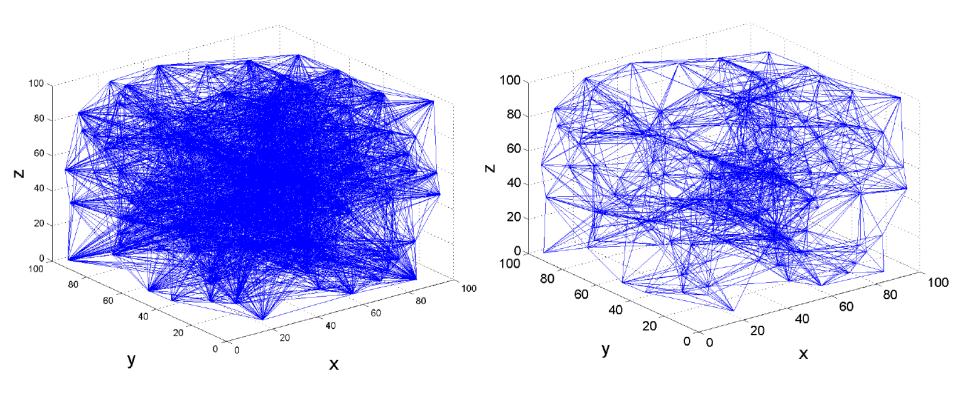
Visualization of SDT in Matlab



School of Engineering

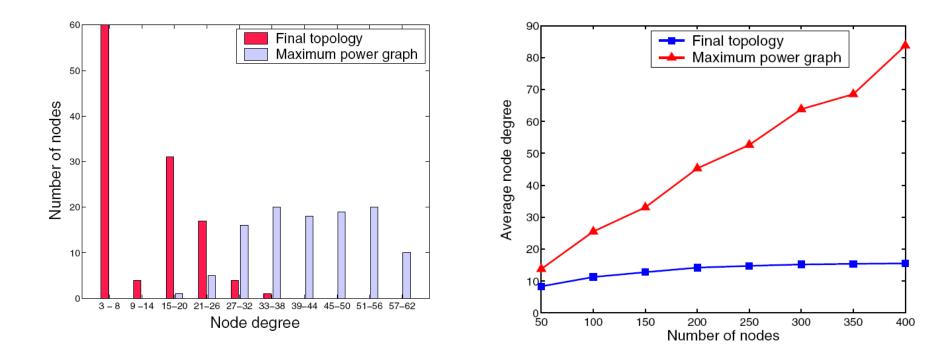
Simulation Results

Maximum power graph vs. Graph after topology control



Simulation Results

 Average node degree and how it scales with topology control



USC Viterbi School of Engineering

Simulation Results

Comparison of complexity

