RSS measurement

From Contiki
Revision as of 18:55, 13 November 2014 by Nitin (Talk | contribs) (Created page with " Back to Contiki Tutorials __TOC__ == Introduction == This tutorial helps you to understand how to measure Radio Signal Strength (RSS) received by a ...")

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Back to Contiki Tutorials


This tutorial helps you to understand how to measure Radio Signal Strength (RSS) received by a TMOTE Sky.

Generic Template for Creating Application on Contiki

AUTOSTART_PROCESSES(struct process &);

PROCESS_THREAD(name, process_event_t, process_data_t)

----Initialization of required variables----


---Set of C statements---




RSS Measurement Program on the Tmote Sky!

Step 1

Using the opened terminal window compile and upload the Sensor Acquisition program on the Tmote Sky.

make TARGET=sky savetarget (This save the target for any future compilations)
make sensor-acq.upload (This will upload the code on the Tmote Sky)
make login (This will enable us to view the output. If permission error occurs, use sudo command at the beginning)

See the following link for troubleshooting -

Step 2

Press the reset button on the Tmote Sky. The following message will appear on the terminal window

Temperature=28.04 C (6764)
Humidity=73.20% (2259)
Light=38.26 lux (94)

Values inside the round brackets (ex 6764, 2259 and 94) are the actual sensor values and the calibrated values can be obtained by performing calculations on these sensor values. You can find the calculations at

Step 3

Press Ctrl-C to quit.


static struct collect_conn tc;

PROCESS(example_collect_process, "RSS Measurement");
static void
recv(const rimeaddr_t *originator, uint8_t seqno, uint8_t hops)
  static signed char rss;
  static signed char rss_val;
  static signed char rss_offset;
  printf("Sink got message from %d.%d, seqno %d, hops %d: len %d '%s'\n",
     originator->u8[0], originator->u8[1],
     seqno, hops,
     (char *)packetbuf_dataptr());
    rss_val = cc2420_last_rssi;
        rss=rss_val + rss_offset;
printf("RSSI of Last Packet Received is %d\n",rss);
static const struct collect_callbacks callbacks = { recv };
PROCESS_THREAD(example_collect_process, ev, data)
  static struct etimer periodic;
  static struct etimer et;

  collect_open(&tc, 130, COLLECT_ROUTER, &callbacks);

  if(rimeaddr_node_addr.u8[0] == 1 &&
     rimeaddr_node_addr.u8[1] == 0) {
    printf("I am sink\n");
    collect_set_sink(&tc, 1);

  /* Allow some time for the network to settle. */
  etimer_set(&et, 120 * CLOCK_SECOND);

  while(1) {

    /* Send a packet every 1 seconds. */
    if(etimer_expired(&periodic)) {
      etimer_set(&periodic, CLOCK_SECOND * 1 );
      etimer_set(&et, random_rand() % (CLOCK_SECOND * 1));


    if(etimer_expired(&et)) {
      static rimeaddr_t oldparent;
      const rimeaddr_t *parent;
    if(rimeaddr_node_addr.u8[0] != 1 ) {
      packetbuf_set_datalen(sprintf(packetbuf_dataptr(),"%s", "Fight On") + 1);
      collect_send(&tc, 15);

      parent = collect_parent(&tc);
      if(!rimeaddr_cmp(parent, &oldparent)) {
        if(!rimeaddr_cmp(&oldparent, &rimeaddr_null)) {
          printf("#L %d 0\n", oldparent.u8[0]);
        if(!rimeaddr_cmp(parent, &rimeaddr_null)) {
          printf("#L %d 1\n", parent->u8[0]);
        rimeaddr_copy(&oldparent, parent);

  } //end of while

} //end of process thread

Understanding the Code

etimer_set(&et, CLOCK_SECOND * 2);

This will set the timer to repeat the iterations every 2 seconds.


We need to activate light_sensor for measuring the light intensity and sht11_sensor for the measurement of temperature and humidity.

val = sht11_sensor.value(SHT11_SENSOR_TEMP);

Here we are capturing the actual sensor value.

s = ((0.01*val) - 39.60);

We need to calibrate the sensor values by doing some calculations. You can find the calculations here:


After we are done with the calculations, we need to deactivate the sensors.

Back to Contiki Tutorials

Edited by : Nitin