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Abstract—We consider a number of related problem formu-
lations pertaining to adaptive subcarrier allocation in multiuser
Orthogonal Frequency-Division Multiplexing (OFDM) systems,
and prove that they are NP-hard. Thus there exist no known
algorithms that can provide optimal solutions for all instances
of these problems in polynomial time. We further prove that
these problems are hard to approximate in polynomial time.
Finally, we discuss qualitatively the settings under which worst-
case performance is likely to be observed.

I. INTRODUCTION

In multiuser OFDM systems, the frequency band is divided
into a large number of small bands called subcarriers that use
specific frequencies so as to be completely orthogonal to each
other. In every time-slot, each user is assigned a disjoint set of
subcarriers across which the user may spread information for
transmission purposes. Because of its capability of exploit-
ing multi-path fading and spatial/temporal/user diversity to
improve performance, OFDM has become the physical layer
transmission scheme of choice adopted by fourth generation
wireless networks, e.g. cellular networks [1], broadband LANs
[2], to provide high-speed mobile wireless data services.

It has been shown that dynamic subcarrier allocation to
users that utilizes knowledge of channel conditions can signif-
icantly improve system performance. This is a combinatorial
resource allocation problem: in each time-slot, given m users,
n sub-carriers and complete channel knowledge, how to assign
disjoint sets of subcarriers to each user so as to optimize
some system objective. The allocation problem has received
active interest in the research community and has been stud-
ied from two perspectives: schemes that seek to minimize
the amount of transmit power (known as Margin-Adaptive
(MA) approaches [3][4][5][6]) and those that seek to maxi-
mize throughput (known as Rate-Adaptive (RA) approaches
[7][8][5]). Although optimal/near-optimal solutions for single
user OFDM that use water-filling [9] are well known, optimal
resource allocation in multiuser OFDM is still under-explored.
A common theme (elaborated in Section II) across previous
works on this topic is that they propose heuristics that are eval-
uated primarily through simulations. While such results show
heuristics performing under particular simulated settings, it
is important (from both academic and practical perspectives)
to know under what scenarios such heuristics (or indeed any
polynomial time algorithm) may not perform well.

We address this gap in the existing literature by formally
investigating the complexity of subcarrier allocation under

several scenarios, for both power minimization (MA) and rate
maximization (RA). A mathematical formulation of MA and
RA can be found in [5], while in some other papers, slightly
different objectives from the definitions in [5] are adopted.
In this work, we consider two different objectives for power
minimization: (1) minimize overall power consumption (Min-
MA), and (2) minimize the maximal user power consump-
tion (MinMax-MA), as well as two different goals for rate
maximization: (1) maximize overall transmission rate (Max-
RA), and (2) maximize the minimal user transmission rate
(MaxMin-RA).

Our contributions can be summarized as follows :

1) We prove that all these problems, i.e. Min-MA,
MinMax-MA, Max-RA, and MaxMin-RA, are NP-hard,
thus it is impossible to guarantee optimality for any
polynomial time solutions, unless P = NP 1.

2) We prove it is NP-hard to approximate Min-MA and
MinMax-MA problems within factor α,∀α > 1. In
other words, it is impossible for any polynomial time
algorithm to have a guaranteed performance within a
constant-factor of the optimal in the worst case, unless
P = NP .

3) For Max-RA and MaxMin-RA, we show that achieving
an approximation factor of 1

m−1 is NP-hard, where m
is the number of subcarriers.

4) We qualitatively identify the worst-case situations where
heuristics are likely to yield poor quality solutions.

This paper is organized as follows: In Section II we
outline past related work and differentiate our contributions,
system models and constraints. Section III presents the system
model, formal problem formulation, and NP-hardness proof.
In Section IV, we prove the in-approximability for power-
minimization version and hard-to-approximate ratio for rate-
maximization version of our problem. In Section V, we
discuss qualitatively the conditions under which the worst-
case scenarios may arise. Future directions are addressed in
Section VI.

1If P = NP , then a problem is as easy to compute as to verify it.
Consequently, for all the well-known hard NP-complete problems, such
as Traveling Salesman, there would would exist an algorithm which can
guarantee optimal solutions in polynomial computation time. It is generally
conjectured that P ̸= NP . For more details on NP-hardness, see [10].



II. RELATED WORK

Wong et al. [4] propose a multiuser, multi-subcarrier, bit
and power allocation algorithm, which aims to minimize the
overall power consumption. In their paper, no subcarrier can
be assigned to more than one user, and users are allowed
to use different modulation schemes on different subcarriers
allocated to themselves. The authors adopt a greedy bit
loading algorithm for the single user, multi-subcarrier case,
and propose an iterative search algorithm exploits Lagrangian
Relaxation technique to deal with user-subcarrier assignment
issues. However, this algorithm does not converge rapidly in
general. We refer to their problem formulation in this paper
to as Min-MA. Rhee et al. [11] try to maximize the minimal
user capacity, such that a fixed total power budget is given,
and we refer to this problem as MaxMin-RA. This problem
can be optimally solved when a subcarrier is allowed to be
shared by multiple users, and the authors propose a suboptimal
algorithm in which every subcarrier is allocated with equal
power. Jang et al. [12] try to maximize overall transmission
rate under power constraints. Although the authors allow
multiple users to share a subcarrier, they prove that the system
objective can only be achieved when every subcarrier is
exclusively occupied. We refer to their problem formulation as
Max-RA. Kivanc et al. [3] adopt a similar formulation as [4].
The authors propose a two-step solution: first determine the
number of subcarriers allocated to each user, and then allocate
subcarriers to users in a greedy manner. Thereafter, they
refine their solution quality by using a local search technique.
Kim et al. [5] try to solve both RA and MA problems
with formulations similar to [11] and [4], respectively. The
authors demonstrate the integer linear programming (ILP)
formulation of both problems, and propose two heuristics.
Although using ILP can optimally solve both problems, it is
known that the ILP computing cost grows exponentially with
instance size. By assuming that every subcarrier allocated to
the same user is loaded with same amount of bit, the first
heuristic uses integer relaxation technique to transform the
original ILP to a LP, and the other one is an application
of Vogel’s method [13]. Abrardo et al. [6] study both single
and multi cells versions of the margin adaptive problem. By
assuming that only one transmission format is available to all
users, Alen et al. [14] devise a distributed algorithm aims to
maximize system capacity. They first divide the available sub-
carriers into a set of partitions, and let users contend for these
partitions among themselves. To solve the issue of partition
sharing, i.e. multiple users access the same partition, their
solution includes a conflict resolution mechanism.

To sum up, a rigorous algorithmic hardness proof of Min-
MA, MinMax-MA, Max-RA, and MaxMin-RA is missing in
existing works. All optimal solutions proposed in existing
publications are not guaranteed to be polynomial time, e.g. the
ILP formulation in [5] and [11]. Although some special cases
do have clean polynomial time solutions (e.g. [6] deals with
Min-MA under the assumption that only one transmission
format is available to all users) they are not optimal for the
general case because of the restrictions imposed. In addition,
all heuristics which aim to solve the general case of Min-
MA, MinMax-MA, Max-RA, and MaxMin-RA have been

verified by simulation only, and none of them has a provable
performance bound.

III. NP-HARDNESS OF SUBCARRIER ALLOCATION
PROBLEMS

A. Problem Descriptions

The symbols used in the following equations are summa-
rized in Table I.

Mathematically, we can formulate Min-MA as equation 1:

minimize
∑
ui∈U

∑
sj∈S

fij(rijdij)

subject to:
∑
sj∈S

rijdij ≥ ri,∀ui ∈ U

∑
ui∈U

dij ≤ 1,∀sj ∈ S

rij ∈ Tj ,∀ui ∈ U, sj ∈ S∑
sj∈S

dij ≥ 1,∀ui ∈ U

dij ∈ {0, 1},∀ui ∈ U, sj ∈ S (1)

The formulation of Min-MA can be stated by replacing the
objective with the following one:

minimize maxui∈U{
∑
sj∈S

fij(rijdij)}

Max-RA can be described as equation 2:

maximize
∑
ui∈U

∑
sj∈S

rijdij

subject to:
∑
ui∈U

dij ≤ 1,∀sj ∈ S∑
sj∈S

dij ≥ 1,∀ui ∈ U

dij ∈ {0, 1},∀ui ∈ U, sj ∈ S∑
ui∈U

∑
sj∈S

fij(rijdij) ≤ P (2)

Similarly, MaxMin-RA can be stated by replacing the objec-
tive in equation 2 with the following one:

maximize minui∈U{
∑
sj∈S

rijdi,j}

B. Proof Strategy

The proof strategy uses a polynomial number of steps
to transform an arbitrary instance of a well known NP-
hard problem to a special case of the problems we are
interested in, i.e. Min-MA, MinMax-MA, Max-RA, MaxMin-
RA. are interested in, i.e. Min-MA, MinMax-MA, Max-RA,
and MaxMin-RA. The process of transforming one instance
to another instance in polynomial time is called polynomial
reduction. If there exists a polynomial time algorithm that
can optimally solve the problem we are interested in, say
Min-MA, then we can always solve the original well known
NP-hard problem in polynomial time by transforming the
solutions provided the algorithm designed for Min-RA, which
contradicts the fact that an NP-hard problem cannot be solved
optimally in polynomial time unless P=NP [10].



TABLE I
DEFINITION OF SYMBOLS

S The set of all subcarriers. S = {si|i = 1, . . . ,m}.
U The set of all users. U = {ui|i = 1, . . . , n}.
ri Transmit rate request of user i.
rij The transmit rate user i loads on subcarrier j.
P Overall power budget of the system.
Si The set of subcarriers that are allocated to user i.

fij(rij) The power for user i to transmit at rate rij on subcarrier j is fij(rij).
dij dij = 1 if sub-carrier j is allocated to user i. Otherwise, dij = 0.
Ti The set of feasible rates allowed on subcarrier i.

C. NP-hardness Proof

We plan to prove the NP-hardness of Min-RA by doing
polynomial reduction from Subset Sum, which is a well-
known NP-hard problem and can be defined as follows:

Definition 1: Subset Sum Given a set of natural numbers
W = {w1, w2, . . .}, and a positive integer V <

∑
wi∈W wi,

does there exist a subset S ∈ W , such that the sum of S
equals to V ?
When we say a Subset Sum instance is satisfiable, it means
there exists a subset S ∈ W such that its sum equals to V . If
such subset S does not exist, we say the input instance cannot
be satisfied. Note that, the answer to Subset Sum is simply
YES or NO.

We refer to the mathematical definition of Min-MA in (1) as
the optimization version of Min-MA, we define the decision
version of Min-MA as follows:

Problem 1: Given a set of n user rate requests, non-
decreasing rate-power functions2 for n users and m sub-
carriers combination, and m > n, does there exist a set
of subcarrier and user assignment with rate allocation on
individual subcarrier, such that the sum of all user’s power
consumption is at most P , every user’s request is satisfied,
and no subcarrier is allocated to more than 1 user?

Although the answers to the optimization version and
decision version of Min-MA are different (While in the
former version, we need specific values for each variables,
the answer to the later case is only YES or NO.), they have
the same hardness in terms of computational complexity[10].
Therefore, if it is not stated specifically, all problems in the
following contents refer to the decision version.

Theorem 1: Min-MA is NP-hard.
Proof: We first demonstrate how to transform an arbitrary

instance of Subset Sum to a special instance of Min-MA
in polynomial time. Consider an arbitrary instance of Subset
Sum, with a set of natural numbers W = {wi}, and a target V .
We construct a corresponding two user Min-MA instance as
follows. For every wi, we construct a subcarrier i with a rate-
power function, which is the same for both users. Specifically,
the power for rate 0 is 0, the power for rate wi is P

|W | , the
power for rate wi +

1
|W | is P , and it is strictly increasing.

2A rate-power function for user i and subcarrier j combination describes
the relation between required transmit power and the rate loaded on subcarrier
j, under user i’s BER constraint. Thus, the influence of channel gain is also
included in this function. An example rate-power function for QAM can be
found in [4].

Fig. 1. An example rate-power curve. (Note: For illustration purpose only.)

An example plot of this constructed rate-power equation is in
Figure 1.

We claim that Subset Sum has a satisfying solution if and
only if Min-MA has an assignment, which can satisfy two
users with rate requests V and (

∑m
i=1 wi − V ) and the total

power consumption is no more than P .
Suppose Subset Sum has a solution such that the sum of

the subset S is exactly V . If we allocate every corresponding
subcarrier in S to one user, all the remaining subcarriers to the
other user, and load every subcarrier with rate wi, then this
assignment would be a satisfying solution to Min-MA. On
the other hand, if S does not exist, then no subset can give
us a sum exactly V . Because every wi is a natural number,
the difference of sum between any subset and V must be no
less than 1. In addition, the largest number of subcarrier a
user can be allocated is |W | − 1. Consequently, one of the
two users has to load at least one of the subcarrier assigned
to him/her with rate higher than wi +

1
|W | , which implies the

maximal individual power consumption higher than P , thus
making the total power consumption also higher than P .

D. Implications

In the above proof, we have demonstrated that every Subset
Sum instance can be transformed to a two-user instance
of Min-MA, that both users experience the same channel
conditions. Because the transformed instances are only a
subset of Min-MA and it is NP-hard already, a more general
case, i.e. more than two users and users may experience
different channel conditions with respect to the the same
subcarrier, must also be NP-hard. In addition, because the
maximal user’s transmit power also exceeds P if and only if
overall power exceeds P , MinMax-MA is NP-hard as well.



Fig. 2. An example rate-power curve of a constructed subcarrier in Max-RA.

In some papers, like [15], it is assumed that every subcarrier
has to be allocated with equal power for Min-MA. In the
above proof, the optimal solution for the transformed instance
loads every subcarrier with identical power. Therefore, even
Min-MA with extra identical rate constraint, it is still NP-hard.
In other words, loading identical power on each subcarrier
does not help reduce computational complexity.

The decision version of Max-RA can be stated as:

Problem 2: Given a system power budget P , non-
decreasing rate-power functions for n users and m subcar-
riers combination, and m > n, does there exist a set of
subcarrier and user assignment with power allocation on
individual subcarrier, such that the overall transmit rate is
at least R, power budget P is honored, and no subcarrier is
allocated to more than 1 user?

Consider the rate-power functions of the transformed Max-
RA instance have the following properties: (1) the power for
rate 0 is 0, (2) the power for rate R

|W | − 1 is wi − 1
|W | , (3)

the power for rate R
|W | is wi, (4) the power for rate R+1

|W |
is

∑m
i=1 wi − 1, (5)

∑m
i=1 wi = P , and (6) they are strictly

increasing. An example of these functions is plotted in Figure
2. Consequently, a line by line similar proof as above can
show that Max-RA is NP-hard. With similar reasoning as
MinMax-MA is NP-hard, it is straightforward to demonstrate
MaxMin-RA is NP-hard.

Although all the above conclusions are made for the single
cell situation, i.e. all users are served by the same base station,
since the multi-cell scenario is a superset of single cell setting,
multi-cell versions of Min-MA, MinMax-MA, Max-RA and
MaxMin-RA are also NP-hard.

Because the above proof does not require convexity of
rate-power functions, even if the rate-power functions are
continuous and convex, as used in [3], [11] and [4], the NP-
hardness conclusion for Min-MA, MinMax-MA, Max-RA and
MaxMin-RA still holds. Moreover, since we do not assume
the continuity of rate-power functions used in the proof, both
continuous and discrete version of these problems are NP-
hard.

IV. IN-APPROXIMABILITY AND PERFORMANCE BOUND

A. Proof Strategy

We first state the definition of α-Approximation Algorithm.

Definition 2: If we denote the optimal solution and the
solution generated by a α-approximation algorithm of an
optimization problem as OPT and SOL, respectively, then
the ratio SOL

OPT is always no more than α for a minimization
problem, and no less than α for a maximization problem.

In short, the constant factor α is a guaranteed performance
bound for the solutions generated by an approximation algo-
rithm.

The strategy we use in the following proof is called gap
introducing reduction [16]. The basic idea is, we first do
polynomial reduction to transform an arbitrary instance of
Subset Sum to a special case of problems of interest. If there
exists an polynomial time approximation algorithm for our
problems, then we can use it to determine the solutions of
Subset Sum problem in polynomial time, which leads to a
contradiction.

B. In-approximability Proof

Theorem 2: Achieving an approximation ratio α, ∀α > 1
for Min-MA is NP-hard.

Proof: The process of doing polynomial reduction to
transform an arbitrary instance of Subset Sum to Min-MA
is line by line similar as prior proof, except that the power
for rate wi +

1
|W | is αP for all rate-power functions. Again,

these rate-power functions are strictly increasing.
We claim that Subset Sum has a satisfying solution if and

only if a polynomial time α−approximation algorithm of Min-
MA generates an solution with total power consumption at
most αP .

Suppose the input instance of Subset Sum has a solution
such that the sum of the subset S is exactly V , then we know
the optimal solution for the transformed instance of Min-MA
is no more than P . Consequently, an α−approximation algo-
rithm of Min-MA will generate a solution that the objective
value is at most αP .

On the other hand, if the input instance of Subset Sum
does not have a satisfying solution, then we know no subset
in W can have sum equal to V . Because every wi is a natural
number, the difference between the sum of any subset and
V must be no less than 1. In addition, the largest number of
subcarrier a user can be allocated is |W | − 1. Consequently,
one of the two users has to load at least one of the subcarrier
assigned to him/her with rate higher than wi+

1
|W | . Therefore

the minimum overall transmit power consumption for the
transformed instance is higher than αP , which implies the
solution provided by an α−approximation algorithm must
also be higher than αP .

In sum, by doing polynomial reduction to transform an
arbitrary instance of Subset Sum to a Min-MA instance,
we can determine the satisfiability of Subset Sum by using
a polynomial time α−approximation algorithm of Min-MA
as follows: whenever the objective value generated by the
α−approximation algorithm is no more than αP , we know
the input instance of Subset Sum has a satisfying solution;
otherwise, the input instance of Subset Sum cannot be satis-
fied.

For Max-RA, we have a different conclusion:
Theorem 3: Achieving an approximation ratio 1

m−1 for
Max-RA, where m is the number of available subcarriers,



is NP-hard.
Proof: Consider the polynomial reduction of Theorem 2

with the following changes for every rate-power function: (1)

the power for rate
αR− R+1

|W |−1

|W | is wi − 1
|W | , (2) the power for

rate R
|W | is wi, (3) the power for rate R+1

|W | is
∑m

i=1 wi, (4) the
power for rate 0 is 0, and (5) all these rate-power functions
are strictly increasing.

We claim that Subset Sum has a solution if and only if an
α−approximation algorithm of Max-RA gives a solution with
overall transmit rate at least αR.

Suppose Subset Sum has a satisfying solution such that the
sum of a subset S is exactly V , then we know the optimal
solution for the transformed Max-RA instance is no less than
R. Consequently, an α−approximation algorithm of Max-RA
will give a solution where the overall transmit rate is no less
than αR.

If the input Subset Sum instance does not exist a satisfying
solution, then no subset in W can give us a sum exactly V .
Because every wi is a natural number, the difference between
sum of any subset and the target value V must be no less than
1. In addition, the largest number of subcarrier a user can be
allocated is |W |−1, and the highest power budget a user can
have is

∑
wi − 1. Consequently, one of the two users has to

load one of the subcarrier assigned to him/her with power at
most wi − 1

|W | . On the other hand, the other user can load at
most one of the sub-carrier allocated to him/her with power
no higher then

∑
wi − 1, thus the overall transmit rate these

two users can achieve must be less than αR, and so is the
output of the α−approximation algorithm.

In short, if an α−approximation algorithm of Max-RA
generates a solution with overall transmit rate no less than
αR for the transformed instance, then we know the input
Subset Sum instance has a satisfying solution; otherwise, there
exists no subset in W such that its sum equals to V . Thus, we
always can use a polynomial time α−apprixmiation algorithm
of Max-RA to determine the satisfiability of any instance of
Subset Sum in polynomial time, which is a contradiction.

Note that, due to the non-decreasing property of every

rate-power function, we need
αR− R+1

|W |−1

|W | > 0, which implies
α > R+1

(|W |−1)R . When the input instance is large, i.e. |W | is
large, this value approaches 1

|W |−1 = 1
m−1 , thus completes

the proof.

C. Implications

Because approximating Min-MA within the factor α,∀α >
1 is NP-hard, it is impossible for any polynomial time algo-
rithm designed for Min-MA to have a guaranteed performance
bound, if P ̸= NP . In other words, every polynomial time
algorithm designed for Min-MA may generate arbitrarily
far from optima solutions, unless P = NP . For Max-RA,
because of the hard-to-achieve approximation ratio 1

m−1 ,
where m is the number of available subcarriers, no polynomial
time algorithm can have an approximation ratio tighter or
equal to 1

m−1 , unless P = NP .
In the proof of Theorem 2, we notice that the maximal

user’s transmit power also exceeds αP if and only if the
overall power exceeds αP , thus achieving an approximation
ratio α, ∀α > 1 for MinMax-MA, is NP-hard as well. On the

other hand, in the proof of Theorem 3, the minimal user’s
transmit rate also exceeds αR if and only if the overall rate
exceeds αR, thus achieving an approximation ratio 1

m−1 for
MaxMin-RA, is NP-hard as well.

Note that, in the proof of Theorem 2, the optimal solution
for the transformed instance loads every subcarrier with
identical rate. Therefore, for Min-MA and MinMax-MA with
extra identical rate constraint, such as [5], they are still
impossible to achieve a constant factor bound α,∀α > 1,
unless P = NP . Similarly, the variant of Max-RA and
MaxMin-RA, which require every subcarrier assigned to the
same user to be loaded with equal power, cannot have an
approximation ratio of 1

m−1 , if P ̸= NP .
Using a similar reasoning as in prior section, multi-cell

version of Min-MA and MinMax-MA cannot be approximated
within the factor α,∀α > 1, and multi-cell version of Max-
RA and MaxMin-RA cannot be approximated within the factor

1
m−1 , if P ̸= NP .

By observing the above proofs, we notice that the most
challenging part of dealing with the above subcarrier allo-
cation problems is how to optimally Allocate disjoint set of
Subcarriers to users (We refer this problem to as AS.). Note
that, even if the optimal number of subcarriers that each
user gets assigned is known, it still does not help reduce
algorithmic difficulty of MA and RA related problems. If AS
can be solved optimally in polynomial time, then adopting
water-filling policy, which can be accomplished in polynomial
time, can solve the whole problem optimally. More specifi-
cally, there are two issues make AS difficult to handle: (1)
no subcarrier can be shared, and (2) every user’s request
needs to be honored. If the first assumption, i.e. exclusive
subcarrier usage, is relaxed, then using convex programming
can achieve optimality of Min-MA in polynomial time [11].
If the second assumption, i.e. every rate request is satisfied, is
relaxed, then using dynamic programming, which is pseudo-
polynomial time, can always solve Min-MA optimally [17]. In
addition, many fully polynomial time approximation scheme
(FPTAS) designed for Multi-choice Knapsack [16] can be
applied directly and the approximation factor can be arbitrarily
close to 1 at the expense of running time [17].

Again, even the convexity and/or continuity of rate-power
functions are assumed, the hard-to-approximate factors stated
above still hold.

V. WORST CASE SCENARIOS

Because of the NP-hardness and in-approximability con-
clusions, it will be helpful to understand when a polynomial
time algorithm may perform undesirably.

By observing the proofs of Theorem 2 and 3, we notice
that while the rate difference between point A and B in
Figure 1 is small, the power difference between these two
points is large, the same holds true in Figure 2. There are
couple of situations which may make a rate-power function
have drastic increase. First, when the number of available
coding/modulation schemes are fixed, the highest rate that
can be supported is fixed. Therefore, the rate-power function
beyond the maximum support rate directly jumps to infinite
power for this subcarrier. Alternatively, if the power that can
be loaded onto a subcarrier is fixed, then it will also lead to



a rate-power function that has drastic increase. In addition,
when deep fading occurs, the rate-power function also has a
steep increase in power. In general, if an algorithm allocates
an improper subset of subcarriers to a user, and this user is
forced to operate in the steep increase region, then the system
objective will be deteriorated drastically. In other words, the
impact of imperfect AS solutions can be largely amplified by
rate-power functions which have steep increase region.

The following situations may lead to undesirable solution
quality for every polynomial algorithm:

• The number of users are close to the number of
available subcarriers. Because subcarriers cannot be
shared by multiple users, the number of subcarriers a
user can get is small. Thus, the system objective is highly
influenced by the solution quality of AS generated by
algorithms. However, AS is NP-hard by itself, which
implies every polynomial time algorithm may perform
poorly in this situation.

• Users’ requests are close to system capacity. In
practice, only a fixed number of coding/modulation
schemes are available. If sum of users’ requests is close
to the highest possible rate that can be supported by
the system, then the system objective will be highly
related to the solution quality of AS. Therefore, any non-
optimal user-subcarrier assignment may lead to degraded
system performance. Note that, the situation when most
subcarriers are in deep fading has the same effect as high
users’ requests.

• Users experience high variance of channel gain. When
the variance of channel gain is high, some deep fading
subcarriers may be utilized by imperfect user-subcarrier
assignment. Thus, system objectives depend on quality of
AS, which implies the risk of poor system performance
again. The same observation also applies to the scenario
that some subcarriers have high gains, but remaining
subcarriers are in deep fading for all users, i.e. there is
a lack of multi-user diversity.

• Frequency diversity is low. Because every user request
needs to be honored, if some users experience deep fad-
ing on every subcarrier, i.e. there is a lack of frequency
diversity, then any subcarrier-user assignment that is
different from optimal ones may lead to tremendous
deterioration of system objective.

Note that, although we have shown the in-
approximable/hard-to-approximate conclusions, it does
not necessarily mean that algorithms will always perform
terribly in the above scenarios. But at the same time, we
are arguing that the optimal solutions cannot be guaranteed
by any polynomial time algorithm. Every polynomial time
algorithm is likely to perform poorly under these challenging
conditions, where the worst case solution quality may be far
away from optimum.

VI. CONCLUSIONS

We rigorously demonstrate the NP-hardness of a family of
subcarrier allocation problems. More importantly, we show
the fundamental limits of all polynomial time algorithms: for
Min-MA and MinMax-MA, every polynomial time algorithm
may perform arbitrarily far from optimal solutions, unless

P = NP ; for Max-RA and MaxMin-RA, no polynomial time
algorithm can have a guaranteed approximation ratio better
than 1

m−1 , where m is the number of available subcarriers,
unless P = NP . We also identify qualitatively the worst case
scenarios where all polynomial time algorithm may generate
poor solution quality.

ACKNOWLEDGMENT

This work was supported in part by NSF through grants
numbered CNS-0347621 and CNS-0627028, and through
funding from Sprint.

REFERENCES

[1] IEEE, “802.16: Worldwid interoperability for microwave access
(wimax),” December 2001.

[2] ——, “802.11g: Lan/man standards committee,” June 2003.
[3] D. Kivanc, G. Li, and H. Liu, “Computationally efficient bandwidth

allocation and power control for ofdma,” IEEE Trans. on Wireless
Communications, vol. 2, 2003.

[4] C. Wong and R. Cheng, “Multiuser ofdm with adaptive subcarrier, bit,
power allocation,” IEEE JSAC, vol. 17, no. 10, October 1999.

[5] I. Kim, I. Park, and Y. Lee, “Use of linear programming for dynamic
subcarrier and bit allocation in multiuser ofdm,” IEEE Trans. on
Vehicular Technology, 2006.

[6] A. Abrardo, A. Alessio, P. Detti, and M. Moretti, “Radio resource alllo-
cation problems for ofdma celluar systems,” Computers and Operating
Research, vol. 36, 2009.

[7] M.Bohge, J. Gross, and A. Wolisz, “A new optimization model for
dynamic power and sub-carrier allocations in packet-centric ofdma
cells,” Proc. Of 11th International OFDM-Workshop, August 2006.

[8] Z. Shen, J. Andrews, and B. Evans, “Adaptive resource allocation
in multiuser ofdm systems with proportional rate constraints,” IEEE
Transactions on Wireless Communications, vol. 4, November 2005.

[9] T. Cover and J. Thomas, “Elements of information theory,” 1991.
[10] J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley, 2006.
[11] W. Rhee and J. Cioffi, “Increase in capacity of multiuser ofdm system

using dynamic subsubcarrier allocation,” Proceedings of VTC, 2000.
[12] J. Jang and K. Lee, “Transmit power adaptation for multiuser ofdm

systems,” IEEE JSAC, vol. 21, 2003.
[13] J. Campello, “Discrete bit loading for multicarrier modulation systems,”

Stanfor Univ. Ph.D. dissertation, 1999.
[14] T. Alen, A. Madhukumar, and F. Chin, “Capacity enhancement of a

multi-user ofdm system using dynamic frequency allocation,” IEEE
Proc. of WCNC 2003, 2003.

[15] G. Li and H. Liu, “Downlink radio resource allocation for multi-cell
ofdma system,” IEEE Trans. on Wireless Communications, vol. 5, 2006.

[16] V. Vazirani, Approximation algorithms. Springer, 2003.
[17] R. Cohen and L. Katzir, “Computational analysis and efficient algo-

rithms for micro and macro ofdma scheduling,” IEEE Proc. of Infocom,
2008.


