
COVID-19 Risk Estimation using a Time-varying SIR-model
Mehrdad Kiamari

Viterbi School of Engineering,
University of Southern California

Los Angeles, USA
kiamari@usc.edu

Gowri Ramachandran
Viterbi School of Engineering,

University of Southern California
Los Angeles, USA
gsramach@usc.edu

Quynh Nguyen
Viterbi School of Engineering,

University of Southern California
Los Angeles, USA
quynhu@usc.edu

Eva Pereira
Office of the Mayor,
City of Los Angeles
Los Angeles, USA

eva.pereira@lacity.org

Jeanne Holm
Office of the Mayor,
City of Los Angeles
Los Angeles, USA

jeanne.holm@lacity.org

Bhaskar Krishnamachari
Viterbi School of Engineering,

University of Southern California
Los Angeles, USA
bkrishna@usc.edu

ABSTRACT
Policy-makers require data-driven tools to assess the spread of
COVID-19 and inform the public of their risk of infection on an on-
going basis. We propose a rigorous hybrid model-and-data-driven
approach to risk scoring based on a time-varying SIR epidemic
model that ultimately yields a simplified color-coded risk level for
each community. The risk score Γ𝑡 that we propose is proportional
to the probability of someone currently healthy getting infected in
the next 24 hours based on their locality. We show how this risk
score can be estimated using another useful metric of infection
spread, 𝑅𝑡 , the time-varying average reproduction number which
indicates the average number of individuals an infected person
would infect in turn. The proposed approach also allows for quan-
tification of uncertainty in the estimates of 𝑅𝑡 and Γ𝑡 in the form
of confidence intervals. Code and data from our effort have been
open-sourced and are being applied to assess and communicate the
risk of infection in the City and County of Los Angeles.
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1 INTRODUCTION
The ongoing COVID-19 epidemic has forced governments and pub-
lic authorities to employ stringent measures [6, 10], including clos-
ing business and implementing stay-at-home orders, to contain
the spread. When making such decisions, policymakers require
tools to understand in “real-time" how the virus is spreading in
the community, as well as tools to help communicate the level of
risk to citizens so that they can be encouraged to take appropriate
measures and take the public health directives seriously.

One metric that has been found to be useful for authorities to as-
sess the level of containment over time is the effective reproduction
number [7]. The effective reproduction number, 𝑅𝑡 , indicates on
average how many currently susceptible persons can be infected by
a currently infected individual. The epidemic grows if this measure
is above one. It is desirable to keep this value as far below one as
possible over time in order to contain and eventually, hopefully,
eliminate the virus from the community.

While 𝑅𝑡 is meaningful to understand the rate at which the epi-
demic is spreading and has been proposed previously (for example,
see https://rt.live/ ), what has been missing in the public discourse
is a risk metric that is more suitable for communication to a wider
public. One key requirement for such a metric is that it be some-
thing that a citizen could relate to on an individual basis. Another
requirement is that it needs to be easy to communicate to a wide
audience. We address both these requirements in this work and
make the following contributions.

First, we obtain the daily effective reproduction number 𝑅𝑡 of a
time-varying SIR model as well as the corresponding confidence
Interval. The confidence interval reflects uncertainty in both the
parameter of the underlyingmodel and uncertainty in the data itself.
Further, we present the mathematical derivation of the distribution
of 𝑅𝑡 .

Second, we propose a novel risk score Γ𝑡 for a community that is
proportional to the probability that an individual will get infected
in the next 24 hours. We show that the risk score can be calculated
given estimates of four quantities: a) an estimate of 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡), the
most recently reported count of new confirmed infectious cases, b)
an estimate of 𝑅𝑡 as discussed above, c) an estimate of 𝐾 , the ratio
of true infectious cases to the number of confirmed cases, and d) an
estimate of 𝑆 (𝑡), the current number of susceptible individuals in
the community. To make the score more meaningful, we normalize
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the probability of infection by multiplying it by 10,000. Then, a risk
score of 𝑥 is an indication that there is, on average, a chance of 𝑥 in
10,000 of an individual in the community becoming infected in the
next 24 hours. We also propose to convert the numerical risk score,
which has an intuitive meaning as indicated above, to a color-coded
risk level based on suitably chosen thresholds1. We propose the use
of four color-levels to indicate the corresponding risk level from
very low to high: green, yellow, orange, and red.

Third, we have implemented software to estimate the risk level
for any community and released it as open-source. The code re-
quires only time-series data on confirmed new cases, the population
of the community, and an estimate for the ratio of true to confirmed
(detected) COVID-19 positive cases. This software is being used at
USC to process the daily data of communities within Los Angeles
County to estimate and generate maps of risk levels by community.
The block diagram in figure 1 illustrates key elements of our system
design. Our data parser is able to get the raw data from online data
sources, clean them up and store them in machine-friendly (csv
and json) formats. Our code for infection risk calculation uses this
data in conjunction with a time-varying SIR-based Bayesian math-
ematical model to obtain risk estimates and prediction for different
communities. The results are provided in CSV format and can be
used to generate a heatmap-type visualization as well.

The risk scoring model we describe in this work is now being
used by the City of Los Angeles, which in turn is working with the
County of Los Angeles and other partners to develop a publicly
accessible tool that can be used by individuals and communities
to grow awareness and mitigate risk of infection. We believe that
our risk estimation approach will be similarly of value to other
communities around the world.

The rest of the paper is structured as follows: Section 2 reviews
the related work. The novel risk calculation methodology is pre-
sented in Section 3. Section 4 discusses the implementation and
evaluation of the proposed method in Los Angeles County. The key
results are discussed in Section 5. Section 6 concludes the paper.

2 RELATEDWORK
There have been a few recent works studying different transmission
models for COVID-19 such [4] which developed an agent-based
model to reproduce the characteristics of COVID-19 transmission or
[1] which proposed a mobility-based model to measure COVID-19
growth rate ratio for a given day.

As noted above, the calculation of the risk score requires an esti-
mate of𝑅𝑡 . We show how this can be estimated using a time-varying
SIR model, a generalization of the well-known SIR compartmental
model [3, 8] which consists of three states, namely the susceptible
state, the infected state, and the recovered state. While traditionally
this model is assumed to have a interaction rate / infection rate
parameter that is constant, one recent work has used a time-varying
SIR model to recover the time-varying effective reproduction num-
ber [5]. Going beyond that work, we also show how to derive a
confidence interval for 𝑅𝑡 in this work. Further, the authors of [5]
make strong assumptions on the number of susceptible individuals
by approximating it as a constant factor of the entire population.

1Thresholds for categorizing into very low-risk, low-risk, medium-risk, and high-risk
levels are set from a medical perspective.

This assumption may not be accurate when the number of infected
individuals are high compared to the total population of a commu-
nity; we therefore take a more general approach.

Another recent work by Systrom [9] has presented a Bayesian
prediction approach to obtain confidence intervals for 𝑅𝑡 . However,
Systrom’s work builds on [2], where the definition of infection rate
𝑅𝑡 is not based on a time-varying contact rate of the SIR model.
Instead, their approach estimates infection rate probabilistically
based on the number of new cases alone.

We are not aware of prior work that has proposed defining
risk for COVID-19 or other epidemics in terms of an individual’s
probability of infection, which we argue is more meaningful for
communicating risk to the public.

3 METHODOLOGY
Compartmental mathematical models for epidemic spreads includ-
ing the well-known SIR model have been used since the work of
Kermack and McKendrick in 1927 [3]. In the SIR model, each mem-
ber of a given population is in one of three states at any time:
susceptible, infectious, recovered. Any individual that is susceptible
could become infected with some probability when they come into
contact with an infected individual. Any individual that is infectious
eventually recovers (in the context of COVID-19 when applying
the SIR model, note that the category of recovered individuals will
also include removed individuals due to deaths, which could be
modeled as a constant fraction of all individuals in this category).
In the classical SIR model, the number of susceptible individuals
that become infected depends on the rate at which infected and sus-
ceptible individuals encounter each other and this rate is assumed
to be constant. A well-known parameter in the classical SIR model
is called R0, the effective reproductive number, which measures the
average number of infections caused by infectious individuals at
the beginning of the epidemic.
Time-Varying SIRmodel and 𝑅𝑡 : In our work, we have extended
the SIR model to a time-varying model, in which the rate of encoun-
ters and infection probability between individuals in the population
is assumed to be time-varying. This better reflects the reality of our
present epidemic where interventions such as stay-at-home have
been put in place and relaxed and various times and compliance
with recommendations such as wearing masks and maintaining
physical density has also been time-varying. Based on this model,
we are able to define and derive a new approach to calculating a
time-varying version of the effective reproductive number, which
we refer to as 𝑅𝑡 .

A particularly innovative aspect of our model is that it is a
Bayesian model that allows the incorporation of various sources
of uncertainty in the model, including uncertainty in the actual
numbers of infected individuals (due to not every infected individ-
ual having been tested, as studies [2] have shown), uncertainty in
recovery times, and uncertainty in the choice of parameters for
de-noising the empirical data. This allows us to generate not only
an estimate of 𝑅𝑡 , but also quantify confidence in the estimate from
a rigorous statistical perspective.

In this section, we elaborate upon the SIR model in detail. The
SIR model is one of the simplest and the most well-known epidemic
model [3, 8] where each person belongs to one of the following three
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Figure 1: Overview of Our System.

states: the susceptible state, the infected state, and the recovered
state. Regarding the susceptible state, individuals have not had the
virus yet. However, they may get infected in case of being exposed
to an infected individual. As far as the infected state is concerned,
a susceptible person has the virus after being exposed to infected
individuals. Finally, a person enters the recovered state in case of
either the individual gets healed or dies. One important point about
this model is that a recovered person will not be a susceptible one
anymore. This is how the model is constructed, as in most cases it
appears that COVID-19 has an extremely low re-infection rate, at
time of writing this paper.

The SIR model follows the following differential equations:

𝑑𝑆 (𝑡 )
𝑑𝑡

= −𝛽 𝑆 (𝑡 )𝐼 (𝑡 )
𝑁

𝑑𝐼 (𝑡 )
𝑑𝑡

= 𝛽
𝑆 (𝑡 )𝐼 (𝑡 )

𝑁
− 𝜎𝐼 (𝑡 )

𝑑𝑅 (𝑡 )
𝑑𝑡

= 𝜎𝐼 (𝑡 )

(1)

where 𝑆 (𝑡), 𝐼 (𝑡), and 𝑅(𝑡) respectively represent the number of
susceptible, infected, and recovered people in a population size of
𝑁 at time 𝑡 . Regarding the parameter 𝜎 , it is the recovery rate after
being infected and is equal to 1

𝐷�
where 𝐷𝐼 represents the average

infectious days. Parameter 𝛽 is known as the effective contact rate,
i.e. the average number of contacts an individual have with others
is 𝛽 .

In analyzingwhether any pandemic is contained, it is very crucial
to obtain parameter 𝛽 . We next show that how we can derive 𝛽
from the aforementioned differential equations.

3.1 Obtaining 𝛽𝑡 and 𝑅𝑡 for the SIR Model
In the SIR model, we can express the number of susceptible individ-
uals in terms of population size and the number of infected persons
as 𝑆 (𝑡) ≈ 𝑁 − 𝐼 (𝑡). By replacing 𝑆 (𝑡) with 𝑁 − 𝐼 (𝑡) in the second
differential equation of (1), we would have

𝑑𝐼 (𝑡 )
𝑑𝑡

= 𝛽

�
𝑁 − 𝐼 (𝑡 )

�
𝐼 (𝑡 )

𝑁
− 𝜎𝐼 (𝑡 ) . (2)

We can rewrite (2) as follows:

𝑑𝐼 (𝑡 )
(𝛽 − 𝜎)𝐼 (𝑡 ) − V

#
𝐼 2 (𝑡 )

= 𝑑𝑡 . (3)

By taking definite integral from time 𝑡1 to 𝑡2 and assuming 𝛽 to be
constant in this time interval, we would have„ C2

C1

𝑑𝐼 (𝑡 )
(𝛽 − 𝜎)𝐼 (𝑡 ) − V

#
𝐼 2 (𝑡 )

=

„ C2

C1
𝑑𝑡 (4)

which leads to
1

𝛽 − 𝜎

�
log

𝐼 (𝑡2)
𝛽 − 𝜎 − V

#
𝐼 (𝑡2)

− log
𝐼 (𝑡1)

𝛽 − 𝜎 − V

#
𝐼 (𝑡1)

�
= 𝑡2 − 𝑡1 (5)

One can easily check (5) has a unique solution for 𝛽 due to the
fact that term 1

𝛽−𝜎 and log term have monotonic behaviors.
An epidemic happens in case of increase in the number of in-

fected individuals, i.e. 𝑑𝐼 (𝑡 )
𝑑𝑡

¡ 0, or consequently

𝛽

�
𝑁 − 𝐼 (𝑡 )

�
𝐼 (𝑡 )

𝑁
− 𝜎𝐼 (𝑡 ) > 0. (6)

In the early stage of an epidemic, almost everyone are susceptible
except very few cases. Therefore, 𝑁 − 𝐼 (𝑡) ≈ 𝑁 and as a result,
condition (6) would turn into 𝛽

𝜎 ¡ 1.
The variable𝑅 ,

𝛽
𝜎 is defined as the effective reproduction number.

It is a useful metric to determine epidemic growth. In case of having
𝑅 ¡ 1, the epidemic is growing exponentially while 𝑅 � 1 indicates
the epidemic is contained and will decline and die out eventually.

For discrete-time cases such as daily reporting on number of
infected cases, the time-variant effective contact rate 𝛽𝑡 , which
represents the contact rate for time slot 𝑡 can be derived by solving
the following equation:

1
𝛽C − 𝜎

�
log

𝐼 (𝑡 + 1)
𝛽C − 𝜎 − VC

#
𝐼 (𝑡 + 1)

− log
𝐼 (𝑡 )

𝛽C − 𝜎 − VC
#
𝐼 (𝑡 )

�
= 1 ∀𝑡 . (7)

Therefore, the time-variant effective reproduction number would
be defined as 𝑅𝑡 ,

𝛽C
𝜎 . Since it is difficult to write a closed form

solution for 𝛽𝑡 in (7), we take a simpler approximation to 𝛽𝑡 by
considering the following which is based on (2)

𝛽C ≈
𝜎𝐼 (𝑡 ) +

�
𝐼 (𝑡 + 1) − 𝐼 (𝑡 )

�
�
1 − � (C )

#

�
𝐼 (𝑡 )

. (8)

Then, we estimate 𝑅𝑡 as
𝛽C
𝜎 .

3.2 Obtaining the Confidence Interval for 𝑅𝑡
Since there is uncertainty about parameter 𝐷𝐼 (or equivalently 𝜎)
and the number of infected cases 𝐼 (𝑡), we now provide the deriva-
tion of confidence interval for parameter 𝑅𝑡 . Regarding modeling
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the ambiguity in the number of the infected cases, we present the
uncertainty about the actual number of infected cases as a factor
of reported ones, i.e. 𝐼𝑟𝑒𝑝 (𝑡) , 1

𝐾
𝐼 (𝑡), and 𝐾 is a constant greater

than 1. The main intuition behind this factor is due to taking into
account the following two phenomena, namely lack of sufficient
number of tests (specially in the beginning of the pandemic) and
asymptomatic cases (mild infections which might not even be no-
ticed). To derive the confidence interval, we need to first find the
marginal distribution of 𝑅𝑡 . By considering 𝑓𝐷 (𝑑) and 𝑓𝐾 (𝑘) as the
probability distribution function (pdf) for parameters 𝐷𝐼 and 𝐾 ,
respectively, the joint pdf of these parameters would be

𝑓�� (𝑑, 𝑘) = 𝑓� (𝑑) 𝑓 (𝑘) (9)

due to the independence of 𝐷𝐼 and 𝐾 . We can derive the probability
distribution function of 𝑅𝑡 by performing the following transfor-
mation on parameters 𝐷𝐼 and 𝐾 and introducing auxiliary variable
𝑍 :

𝑍 , 𝐾 , 𝑅C =
1

1 −  �A4? (C )
#

�
1 +𝐷�

𝐼A4? (𝑡 + 1) − 𝐼A4? (𝑡 )
𝐼A4? (𝑡 )

�
. (10)

Since the transformation of (𝑍, 𝑅𝑡 ) to (𝐷𝐼 , 𝐾) is one-to-one, we
have

𝐾 = 𝑍 , 𝐷� =
𝑅C (1 − 𝑍𝑎C ) − 1

𝑏C
, (11)

where 𝑎𝑡 ,
𝐼A4? (𝑡 )
𝑁

and 𝑏𝑡 ,
𝐼A4? (𝑡+1)−𝐼A4? (𝑡 )

𝐼A4? (𝑡 ) , the joint pdf of 𝑍
and 𝑅𝑡 would be 𝑓𝑍,𝑅C (𝑧, 𝑟 ) = |𝐽 |𝑓𝐷,𝐾 (𝑑, 𝑘) with

𝐽 ,

�
m3
mI

m3
mA

m:
mI

m:
mA

�
. (12)

By substituting the corresponding values of parameters and the
Jacobian, we have:

𝑓/�’C (𝑧, 𝑟 ) = | 1 − 𝑧𝑎C
𝑏C

|𝑓� ( 𝑟 (1 − 𝑧𝑎C ) − 1
𝑏C

) 𝑓 (𝑧) . (13)

The marginal pdf of 𝑅𝑡 can be obtained by taking integral of (13)
over parameter 𝑧, i.e.

𝑓’C (𝑟 ) =

„
𝑓/�’C (𝑧, 𝑟 )𝑑𝑧 =

„
| 1 − 𝑧𝑎C

𝑏C
|𝑓� ( 𝑟 (1 − 𝑧𝑎C ) − 1

𝑏C
) 𝑓 (𝑧)𝑑𝑧.

(14)
Remark 1: Based on statistical experiments, one reasonable

assumption regarding the pdf of parameters𝐷𝐼 and𝐾 is that both of
them have Gaussian distributions. By considering 𝐷𝐼 ∼ N(𝜇𝐷 , 𝜎2

𝐷
)

and 𝐾 ∼ N(𝜇𝐾 , 𝜎2
𝐾
), the pdf of 𝑅𝑡 can be simplified as

𝑓𝑅C (𝑟 ) =

„ 1
0C

−∞
(𝛽0 + 𝛽1𝑧)𝐶

q
2𝜋𝜎2

𝑐𝜙𝜇2 ,𝜎2
2
(𝑧)𝑑𝑧

+
„ ∞

1
0C

(−𝛽0 − 𝛽1𝑧)𝐶
q

2𝜋𝜎2
𝑐𝜙𝜇2 ,𝜎2

2
(𝑧)𝑑𝑧,

(15)

where𝜙𝜇2 ,𝜎2
2
(.) indicates the pdf of a normal distribution with mean

𝜇𝑐 and variance 𝜎2
𝑐 while

𝛽0 ,
1
𝑏𝑡
, 𝛽1 ,

−𝑎𝑡
𝑏𝑡

,

𝛼0 ,
( 𝑟−1
𝑏C

− 𝜇𝐷 )2

2𝜎2
𝐷

+
𝜇2
𝐾

2𝜎2
𝐾

, 𝛼1 ,
(− 𝑟𝑎C

𝑏C
) ( 𝑟−1

𝑏C
− 𝜇𝐷 )

𝜎2
𝐷

− 𝜇𝐾

𝜎2
𝐾

,

𝛼2 ,
( 𝑟𝑎C
𝑏C

)2

2𝜎2
𝐷

+ 1
2𝜎2
𝐾

, 𝜇𝑐 ,
−𝛼1
2𝛼2

, 𝜎2
𝑐 ,

1
2𝛼2

, 𝐶 ,
𝑒
−(𝛼0− U1

4U2
)

2𝜋𝜎𝐷𝜎𝐾
.

(16)

By taking integral through using change of parameters, (15) can be
rewritten as follows

𝑓𝑅C (𝑟 ) = −2𝐶𝛽1𝜎
2
𝑐 𝑒

−
( 1
0C

−‘2 )2

2f2
2 +𝐶

q
2𝜋𝜎2

𝑐 (𝛽1𝜇𝑐 + 𝛽0)Φ𝜇2 ,𝜎2
2
( 1
𝑎𝑡

)

+𝐶
q

2𝜋𝜎2
𝑐 (−𝛽1𝜇𝑐 − 𝛽0) (1 − Φ𝜇2 ,𝜎2

2
( 1
𝑎𝑡

)),
(17)

where Φ𝜇2 ,𝜎2
2
(.) represents the cumulative distribution function

(cdf) of a normal distribution with mean 𝜇𝑐 and variance 𝜎2
𝑐 .

The confidence interval would belong to (𝑅𝑡 − 𝛿, 𝑅𝑡 + 𝛿) where
𝑅𝑡 , E[𝑅𝑡 ] =

fl
𝑟 𝑓𝑅C (𝑟 )𝑑𝑟 and 𝛿 can be derived by satisfying

P( |𝑅𝑡 − 𝑅𝑡 | ≤ 𝛿) =
fl 𝑅C+𝛿
𝑅C−𝛿 𝑓𝑅C (𝑥)𝑑𝑥 = 1 − 𝜖 for some small 𝜖 ¡ 0.

3.3 Estimating the Risk Score
We propose a novel risk score metric for a given community that
is proportional to the probability of someone in that community
becoming infected in the next time period (typically, 24 hours). The
risk score can be derived as the average number of people in that
community that are likely to get infected in the next 24 hours by
the currently infectious people divided by the current number of
susceptible individuals. We further normalize this probability by
multiplying by 10,000, so that a score of 1 implies a 1 in 10,000
chance of getting infected, a score of 2 implies a 2 in 10,000 chance
of getting infected, and so on. Mathematically, the risk score is
defined as follows:

Γ𝑡 =
𝐼 (𝑡) · 𝑅𝑡
𝐷𝐼 · 𝑆 (𝑡)

· 10000 ≈
𝐾 · 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡) · 𝑅𝑡

𝑁
· 10000, (18)

where 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡) indicates the most recently reported count of
new confirmed infectious cases, 𝐾 refers to the ratio of true cases
to reported cases, 𝑅𝑡 is the time-varying reproduction number, and
𝑁 is the total population size of the community. The approximation
follows from the fact that 𝐼𝑟𝑒𝑝,𝑛𝑒𝑤 (𝑡) is approximately equal to
𝐼 (𝑡 )
𝐷� ·𝐾 and 𝑆 (𝑡) the number of susceptible people in the community
is approximately equal to 𝑁 in the early stages of the epidemic.
Confidence intervals for the risk score Γ𝑡 could be obtained numeri-
cally using a similar process as described for 𝑅𝑡 accounting also for
uncertainty in 𝐾 . Note that since 𝐾 may not be known for a given
community, it may be helpful to use the following normalized form
of the risk score: ΓC

𝐾
, which is still proportional to the probability of

infection for an individual.

3.4 Color-coded Risk Levels
To further simplify the presentation of the risk score to a wider
audience, we propose to classify the risk levels into four color-coded
levels: (Green, Yellow, Orange, Red). The risk level is determined
by evaluating the normalized risk score ( Γ

𝐾
) with respect to three

pre-specified threshold levels 𝜃1, 𝜃2, 𝜃3, such that when Γ
𝐾

� 𝜃1 the
risk level is green, when 𝜃1 ≤ Γ

𝐾
� 𝜃2 the risk level is yellow, when

𝜃2 ≤ Γ
𝐾

� 𝜃3 the risk level is orange, and when Γ
𝐾

≥ 𝜃3 the risk
level is red.
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Figure 2: The left and right plots respectively represent the estimated effective reproduction number 𝑅𝑡 and the risk score Γ𝑡
over time for the entire county of LA considering E[𝐷𝐼 ] = 7.5,𝑉𝑎𝑟 [𝐷𝐼 ] = 9, E[𝐾] = 3, and𝑉𝑎𝑟 [𝐾] = 0.44. The gray area represents
the 95% confidence interval in the estimates.

Figure 3: Estimate of risk score Γ𝑡 over time for four representative communities in LA County: Boyle Heights, Glendale, East
LA, and Norwalk. Regarding the settings, we considered the following E[𝐷𝐼 ] = 7.5, 𝑉𝑎𝑟 [𝐷𝐼 ] = 9, E[𝐾] = 3, and 𝑉𝑎𝑟 [𝐾] = 0.44.
Our approach also yields uncertainty in the estimate, as shown in the form of confidence intervals (in gray).

4 IMPLEMENTATION AND EVALUATION IN
LOS ANGELES COUNTY

The software for data collection, infection rate estimation and pre-
diction has already been implemented and made available as open-
source software (at the following repository: https://github.com/
ANRGUSC/covid19_risk_estimation). The software is written in
Python using standard data processing libraries such as NumPy
and SciPy.

4.1 Data Sources
We have acquired COVID-19 case data from the LA County’s
Department of Public Health using a Python-based data parser
we wrote (open-sourced at the following link: https://github.com/
ANRGUSC/lacounty_covid19_data). We have been updating this

repository regularly with the latest data every day since mid-march
and also making available plots of the number of cases, number
of fatalities, top 6 communities with the large number of cases,
infection rate for the entire LA County, and the top 9 commu-
nities with the highest infection rate at the following link: http:
//anrg.usc.edu/www/covid19.html.

The following data sources are used for the infection rate and
prediction:

• The COVID-19 case information was collected through LA
County’s daily press releases (Accessible through the follow-
ing website:
http://publichealth.lacounty.gov/media/Coronavirus/).

• Recovery information provided by the World Health Orga-
nization.

https://github.com/ANRGUSC/covid19_risk_estimation
https://github.com/ANRGUSC/covid19_risk_estimation
https://github.com/ANRGUSC/lacounty_covid19_data
https://github.com/ANRGUSC/lacounty_covid19_data
http://anrg.usc.edu/www/covid19.html
http://anrg.usc.edu/www/covid19.html
http://publichealth.lacounty.gov/media/Coronavirus/
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