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Abstract
We present a computational simulation of the single-collateral DAI stablecoin launched by the
MakerDAO project in 2017. At the core of the simulation is a model of cryptocurrency investors
acting as rational Markowitz mean-variance portfolio optimizers, with heterogeneous risk tolerance.
The simulator, called DAISIM, incorporates automated order matching and price update mechanisms
to determine the DAI price. We use the simulator to evaluate how the single-collateral DAI price,
as well as portfolio allocations, vary for a given population of investors as a function of exogenous
parameters such as the price of ETH and various system parameters including stability rate and
transaction fee. DAISIM is being made available as open-source and may be useful in evaluating
other similar projects.
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1 Introduction

A stablecoin [11, 12] is a digital token that is designed to minimize price volatility against a
peg. They are pegged to fiat currencies (most commonly the US Dollar), other assets such
as gold or a basket of assets. By tying the value to an asset, stablecoins aim to mitigate the
high volatility associated with other cryptocurrencies such as Bitcoin. By achieving stability,
these tokens have a higher potential to be utilized as a unit of account, a store of value
and a medium of exchange compared to volatile cryptocurrencies. Various methods have
been developed to stabilize the value of the token. These include backing by fiat currencies,
crypto-assets or using algorithmic stabilization (not backed by any asset).

One of the prominent projects is MakerDAO [6], a decentralized Stablecoin project
on Ethereum blockchain launched in 2017. The Maker smart contract platform offers a
crypto-asset backed Stablecoin called DAI, which has a 1:1 soft peg to the US dollar. The
initial single-collateral DAI on the platform was called ‘SAI’ after transitioning to the
new Maker Protocol with multiple collateral types. SAI officially shutdown in May 2020.
Stability of single-collateral DAI was provided by Collateralized Debt Positions (CDP), Maker
Governance who held the governance token called MKR and incentivized external actors.
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Our goal in this paper is to develop a computational simulation framework for modeling
MakerDAO, to understand how well its underlying mechanism works under different settings.
The simulation model is somewhat parsimonious, trading off some loss in realism in exchange
for computational tractability, insight, and ease of exposition.

The crux of our model is to focus on the population of investors and investigate whether
and when they choose to mint or burn DAI, and when they choose to buy and sell ETH or
DAI. We model the investors using Markowitz’s Optimal Portfolio Theory [4]. Specifically,
we model them as maintaining and updating a portfolio consisting of four assets USD, ETH,
DAI, and cETH (collateralized-ETH, used as collateral deposit to borrow/mint DAI), as
well as a debt instrument (as interest is owed on any DAI that is borrowed), accounting
also for transaction fees, in order to maximize their expected return while minimizing risk.
A weight-parameter characterizes the risk-tolerance of each user. Given a population of
such investors and their preferred allocations, our simulator iteratively updates the price of
DAI and matches buyers and sellers to determine the market clearing or settling price. It
allows us to set and modify various exogenous parameters such as return and risk associated
with various assets and the price of ETH as well as system parameters such as interest rate
(known as stability rate in the MakerDAO ecosystem) and transaction fees, allowing us to
examine how the DAI price depends on these various parameters.

The key contributions of our work are as follows:
We show how to model the MakerDAO ecosystem using optimal portfolio theory to model
investor behavior with respect to relevant assets including USD, ETH, DAI and cETH,
while accounting for transaction fees and the stability rate.
We present our design and implementation of a computational market simulator, DAISIM,
that handles order matching and price updates to determine the DAI price for a given
set of parameters.
We use the simulator to study how the DAI price and DAI supply/demand and portfolio
allocation is affected by various exogenous parameters (such as risk tolerance of investors,
ETH price, mean and covariance of asset returns) and system parameters (such as stability
rate and transaction fees).
The simulator itself is made available as an open-source simulation tool for use by the
research community online at https://github.com/ANRGUSC/DAISIM.

The rest of the paper is organized as follows: in section 2, we describe the basics of
the MakerDAO project with a focus on the simple single-collateral DAI launched in 2017
(extension to multi-collateral DAI is the focus of our future work). In section 3, we briefly
survey the relevant prior work. In section 4, we present our simulation model and how the
simulator is designed. In section 5, we present some illustrative results from the simulator to
show how DAI price and investor decisions are affected by various key parameters. Finally,
we present our conclusions in section 6.

2 MakerDAO – Background

At the heart of the MakerDAO is an autonomous mechanism to allow users to mint the
DAI token. Before the launch of multi-collateral DAI (MCD), single-collateral DAI (SAI)
could only be generated through a Collateralized Debt Position (CDP), a smart contact that
required the user to lock in excess collateral above a minimum ratio called Liquidation Ratio
at which the collateral is subjected to forced liquidation. After MCD, CDPs are now called
“Vaults” but we call them CDPs for brevity. DAI can be used for trading, borrowing, making
payments and more recently, also, saving. Some key statistics of MakerDAO can be found
at [10].

https://github.com/ANRGUSC/DAISIM
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Figure 1 A sample CDP opening and closing transaction assuming that 1 ETH is equal to $150
and the minimum collateralization ratio is 150%.

Prior to the launch of multi-collateral DAI (MCD) in November 2019, DAI could only be
generated through the single-collateral type, ETH1. MCD is now available to users at different
Liquidation Ratios derived as a function of the risk pertaining the underlying collateral type
determined by the Maker Risk Teams and Maker Governance.

After the user chooses a collateral-to-debt ratio (also known as the collateralization ratio)
and the amount of single-collateral DAI they would like to borrow from the CDP, the smart
contract deposits the collateral and returns DAI. The collateral is locked until the outstanding
debt is paid in addition to the CDP Interest Rate (Stability Rate) that has accrued over
time.

A CDP/Vault can be closed at any time once the debt and the CDP Interest Rate
(Stability Rate) are paid. The collateralization ratio of a CDP can also be adjusted while it
is active given that it is collateralized above the liquidation ratio. If a collateral becomes too
risky when collateralization ratio drops to the liquidation ratio, the CDP is automatically
acquired by the system and liquidated. Before MCD, liquidation was executed through a
Liquidity Providing Contract whereas in MCD, an auction mechanism is used for liquidation.
After the debt, Stability Rate and Liquidation Penalty have been recovered, the left-over
collateral is returned to the CDP owner.

2.1 CDP and the Stability Rate
The Stability Rate acts like an interest rate on the loan. It plays a key role in maintaining
stability of DAI through active governance. It is shown in DAI and paid in MKR that is
removed out of circulation upon payment. When the value of DAI is below the Target Price,

1 CDPs/Vaults can result in having more debt versus the value of collateral if there is an abrupt market
crash in ETH. In this case, the collateral i.e ETH is diluted to recapitalize the system by the platform.
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increasing the Stability Rate incentives users to close CDPs. Thus, it removes DAI from
supply and helps restore the peg. Similarly, when the value of DAI is above the Target Price,
decreasing the Stability Rate incentivizes users to open more CDPs. This increases the DAI
supply and helps restore the peg. In addition to the Stability Rate, Debt Ceiling, Liquidation
Ratio and Penalty Ratio are other key risk parameters for CDPs.

3 Prior work

We briefly present some relevant prior works focused on the evaluation of stablecoins, still a
relatively sparse area of research. A broad survey of stablecoins is provided by Clark et al. [1].
Mundt and Minca [9] describe a complementary model of noncustodial stablecoins and explore
different models of the liquidation structure that affects speculator decision-making and then
analytically characterize the stability. Mundt and Minca [8] analyze the effects of deleveraging
feedback effects that cause illiquidity during crises for non-custodial cryptocurrency-backed
stable coins. Mundt et al. [7] propose a framework for relating economic mechanics of
all stablecoins and formulated three classes of models for non-custodial stablecoins, for
which traditional financial models are sparse. Lyons and Natraj [5] examine the efficiency
and working mechanisms of stablecoins in the digital economy. They analyze how price
stabilization functions in the case of stablecoins. Gudgeon et al. [3] investigate the feasibility
of attacking the MakerDAO governance mechanism from a security perspective. Gu and
Kothari [2] discuss a multiagent simulation of a generic asset-backed stablecoin with a focus
on understanding demand dynamics for a stable coin in the face of exogenous price shocks.

Figure 2 Overview of the DAISIM Simulator.

4 Design of the DAISIM Simulator

Considering that the Maker protocol has rapidly evolved in the last few years, this paper
will assume that DAI mentioned in the subsequent sections refers to single-collateral DAI
(SAI) for brevity.
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4.1 System model
Our full system model for the single-collateral DAI ecosystem and our simulator is as shown
in Figure 2. Exogenous inputs to the model include the price of ETH, expected return and
risk (covariance) for USD, ETH, DAI and cETH. System parameters include the Stability
Rate rs and the Transaction Fees β. Additional simulation parameters include the size of
the market n (number of investors), their risk profile (captured by a weight parameter λi for
the ith investor), and parameters pertaining to the price update algorithm employed in the
simulation. The simulator allows investors to buy ETH on an open market as per the current
ETH price PET H ; it allows investors to open and close CDP’s per the current stability rate;
and it allows investors to buy and sell DAI from/to each other in the simulated market. All
these transactions incur a constant transaction fee as specified by β. The simulator takes
care of matching buy/sell orders for DAI and determining the market clearing (settling) price
for DAI PDAI . We describe these mechanisms in more detail below.

4.2 Price Settling Algorithm
The Price Settling Algorithm involves three steps i.e., Asset Optimization Mechanism, Order
Matching Mechanism, and the Price Update Mechanism. We assume n investors each with
an initial asset holdings x and a risk tolerance parameter λ. It is assumed that if λ is low,
then the investor is risk-tolerant, and if it is high, then the investor is risk-averse. For each
of these investors, we use the asset optimization mechanism to find out an optimal portfolio,
xopt and then use the Order Matching Mechanism to verify if all DAI Buy orders, B and the
Sell Orders, S can be met. This mechanism proposes a new asset allocation of xM

i,j for the
asset j ∈ {USD, ETH, DAI, cETH} of the ith investor based on xopt

i,j . Then using the price
update mechanism, we estimate the supply/demand of DAI based on the DAI bought/sold
by the investors to achieve the optimal allocation and then update the DAI price, PDAI .
Table 1 can be referred for the details of different notations and their definitions used in this
paper.

4.2.1 Asset Optimization Mechanism
For the ith investor, consider the vector x = [xi,1, xi,2, xi,3, xi,4] which represents the ith

investor’s holdings in each asset class: USD, ETH, DAI and cETH, respectively. We assume
that the investor collateralizes at a constant safety ratio ρ that is well above the liquidation
ratio of the protocol. Let rs represents the stability rate. Let µ be the vector of expected
return on investment in each of the four assets, and let Σ be the covariance matrix associated
with the value of these assets. Let β be the transaction fee to buy or sell 1 USD worth of
ETH/DAI and Ψ be the overall transaction fee incurred to reach the optimal allocation.
Let δDAI represents the current DAI debt for the investor. This debt corresponds to the
amount of DAI minted from the CDP, and given the fixed collateralization ratio is assumed
to be exactly equal to xi,4

ρ . Then, it is easy to see that an optimal portfolio i.e., xopt for
the ith investor with a total initial investment capital of m = Σx corresponds to one that
maximizes:

xT µ − λxΣxT − xi,4

ρ
rs − Ψ (1)

subject to the constraints:

Ψ =| xi,2 − xint
i,2 + xi,4 − xint

i,4 | · β+ | xi,3 − xint
i,3 | · β (2)

FAB 2021
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xint
i,1 ≥ Ψ, xint

i,2 ≥ 0, xint
i,3 ≥ 0, xint

i,4 ≥ 0 (3)

Σxint = Σx = m (4)

Please note that xint
i,j is an intermediate allocation of the asset j for the ith investor. It

should also be noted that the transaction fees also apply to cETH as we need to buy ETH to
deposit it as collateral. Constraints (2) and (3) ensure that the investors have enough USD
holdings after choosing a portfolio allocation to cover any transaction fees incurred. After
deducting the transaction fees Ψ, the updated asset holdings of the ith investor are given as:

xopt
i,1 = xint

i,1 − Ψ, xopt
i,2 = xint

i,2 , xopt
i,3 = xint

i,3 , xopt
i,4 = xint

i,4 .

Table 1 Notations and Definitions.

Notations Definitions
n Number of investors participating in DAISIM
x Investor’s initial asset’s holdings
xi,j Initial investment of ith investor in the asset j;

j ∈ {USD, ETH, DAI, cETH}
λi Risk tolerance parameter of ith investor
xopt

i,j Optimal asset allocation for the ith investor for asset j

as suggested by the Asset Optimization Mechanism
B Total outstanding buy order
S Total outstanding sell order
xM

i,j Actual asset allocation for the ith investor for asset j

given by Order Matching Mechanism
ρ Safety ratio
rs Stability rate
µ Vector of expected return on investment in each

of the four assets
Σ Covariance matrix associated with the value of the assets
β Transaction fee to buy or sell 1 USD worth of ETH/DAI
δDAI Current DAI debt for the investor
m Initial investment capital
xint

i,j Intermediate allocation of the asset j for the ith investor.
Dov

i DAI bought/sold by ith investor to achieve optimal allocation
PET H Price of ETH provided by the price oracle
PDAI Price of DAI determined by the price settling algorithm
Dom

i DAI Bought by ith investor in Order Matching Mechanism
Dcdp

i DAI to be minted/returned by ith investor to achieve optimal cETH allocation
πj Mean asset holdings for investors j; j ∈ {USD, ETH, DAI, cETH}

4.2.2 Order Matching Mechanism

We assume that the market doesn’t have any external source of DAI, thus we need to
make sure that the total DAI in the market is fixed during the course of the Price Settling
Algorithm. Let order value, Dov

i = xopt
i,3 − xi,3 denote the amount of DAI the ith investor

needs to buy/sell in order to reach its optimal allocation. Let B denote the total outstanding
buy order, and S represents the total outstanding sell order in the market.
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B =
∑

min(Dov
i , 0) (5)

S =
∑

max(Dov
i , 0) (6)

If B > S i. e. buy orders exceed sell orders, then all the sell orders can easily be met
whereas when S > B all buy orders can easily be met. In case all buy and sell orders cannot
be met, the buy/sell order of an ith investor is achieved in proportion to their Dov

i value.
The different possible scenarios of the Order Matching Mechanism can be illustrated with
the help of the following examples:

▶ Example 1. Assume we have 4 investors with the following order values.
Dov

1 = 100 , Dov
2 = 120 , Dov

3 = −130 , Dov
4 = −190

Total Buy orders, B = 220
Total Sell orders, S = 320
Since S > B, We can meet all buy orders, but not all sell orders.
Total DAI Bought in Market = 220
Investor 3 sells 130/320 ∗ 220 = 89.375
Investor 4 sells 190/320 ∗ 220 = 130.625
Let Dom

i denotes the DAI bought by ith investor in the Order Matching Mechanism. Thus,
Dom

1 = 100, Dom
2 = 120, Dom

3 = −89.375, Dom
4 = −130.625

▶ Example 2. Assume we have 4 investors with the following order values.
Dov

1 = 500 , Dov
2 = 120 , Dov

3 = −130 , Dov
4 = −190

Total Buy orders, B = 620
Total Sell orders, S = 320
Since B > S, We can meet all sell orders.
Total DAI Sold in Market = 320
Investor 1 buys 500/620 ∗ 320 = 258.06
Investor 2 buys 120/620 ∗ 320 = 61.93
Dom

1 = 258.06, Dom
2 = 61.93, Dom

3 = −130, Dom
4 = −190

At the end of the Order Matching Mechanism, we have xM
i,1 = xi,1 − Ψ, xM

i,2 = xopt
i,2 ,

xM
i,3 = xi,3 + Dom

3 , xM
i,4 = xopt

i,4 . The transaction fees in this step of the algorithm is,

Ψ = | xM
i,2 − xi,2 + xM

i,4 − xi,4 | · β+ | xM
i,3 − xi,3 | · β

4.2.3 Price Update Mechanism
It is evident from the above discussion that the Asset Optimization Mechanism estimates
the market’s demand for DAI whereas the Order Matching Mechanism tries to fulfill the
demand keeping total DAI in the market constant. The Price Update Mechanism updates
PDAI based on the supply and demand of DAI in the market. We assume that DAI minted
by CDPs as another indicator for PDAI . Let Dcdp

i = (xopt
i,4 −xi,4)∗PET H

PDAI ∗ρ be the DAI to be
minted/returned by ith investor to achieve optimal cETH allocation.

n∑
i=1

(Dov
i − Dcdp

i ) ≥ 0 ⇒ High Demand

n∑
i=1

(Dov
i − Dcdp

i ) < 0 ⇒ High Supply

If we are in a high demand zone, we raise the price, else we reduce it. At the end of each
iteration we fix the asset allocation xi,j = xM

i,j .

FAB 2021
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Figure 3 Investor Asset Holdings vs. rs.

5 Simulation Results

We present here some results illustrating the DAISIM Market simulation model which allows
us to show the impact of various parameters on the investors’ optimal portfolio. Purely as an
illustrative example, we assume that the return rates on the four assets i.e., [USD, ETH,DAI,
cETH] are given by µ = [0.08, 0.22, 0.18, 0.16] and that their covariance matrix is given as
follows:

Σ =


0.04 0 0 0

0 0.64 0.048 0.36
0 0.048 0.09 0.015
0 0.36 0.015 0.25

 (7)

These parameters have been chosen arbitrarily for illustration, but intuitively encode the
following assumptions. The returns and variance in increasing order are USD < cETH <

DAI < ETH. Returns on USD is assumed to be uncorrelated with other assets while DAI
is weakly correlated with ETH and cETH. ETH and cETH are relatively highly correlated
with each other.

5.1 Baseline parameters and portfolio

Considering our baseline model with parameters n = 10, πUSD = $1000, πDAI = $1000, πeth

= $0, πceth = $0, rs = 0.06, β = 0.01, we analyze how does the transaction fee β, Stability
Rate rs and risk preference λ affect the PDAI and the optimal portfolio of an investor. We
fix λ = 0.01 for a risk-averse investor and λ = 0.003 for a risk-tolerant investor.

In a population of n investors with 2 possible risk values i.e., λ ∈ {0.003, 0.01}, we have
2n different risk profiles for n investors. When n = 10, we have 210 = 1024 different risk
profiles for an investor population. Also, when we fix λ for a single investor, we have 512
different risk profiles for the remaining 9 investors. In each of these 512 risk profiles, we find
the assets bought or sold by the investor and we call the mean of this value as Mean Asset
Change. For example, Mean cETH Change (∆ cETH) refers to the mean cETH bought or
sold by an investor when we change λ for the other 9 investors. Mean DAI Settling Price is
also similarly defined.
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Figure 6 Mean PDAI vs. rs & β.

5.2 Investor Assets

In this section, we describe how does risk preference λ, transaction fee β & stability rate rs

impact an investor’s asset allocation. In Figure 3, we analyze the impact of change in rs

on the distribution of an investor’s assets. It is observed that once the value of rs increases
from 0.02 to 0.1, the distribution of different assets (shown in different colors) changes. An
increase in rs makes it costlier to open a CDP and therefore disincentivizes an investor from
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Figure 7 Relationship b/w PDAI & PET H .

holding cETH. At the same time, as β remains constant, the cost of holding ETH remains the
same. It is evident from Figure 3 that an investor reduces its cETH holdings and increases
its ETH holdings as rs increases. This is because holding ETH becomes cheaper and more
profitable given its high return rate.

5.2.1 Impact of Risk Preference
A risk-tolerant investor is more likely to invest in ETH as compared to a risk-averse investor
given that ETH is the riskiest asset. In Figures 4a through 4j, we make the following
observations,

In Figures 4a, 4b the cETH holdings of a risk-tolerant investor quickly reach 0. It appears
that a risk-tolerant investor is very sensitive to β.
In Figures 4c, 4d, we see that a risk-tolerant investor invests in the riskiest asset i.e., ETH,
while a risk-averse investor doesn’t invest in ETH at all. For the risk-tolerant investor as
β increases, we observe that ETH holdings first increase and then decrease. We believe
that an investor prefers to convert its cETH to ETH as it offers a better return rate but
once its cETH holdings reach 0, the taxation from β comes into the picture which causes
a decline in ETH Holdings.
In Figures 4e, 4f, we see that a risk-tolerant investor prefers to hold DAI vs. a risk-averse
investor that wants to minimize total DAI held. At lower β’s an investor is very sensitive
to the risk parameters of other n − 1 investors.
In Figures 4g, 4h, we see that the cETH holdings of a risk-tolerant investor are also very
sensitive to rs. And from Figures 4i, 4j, we see that a risk-tolerant investor holds more
ETH than a risk-averse investor.

5.2.2 Impact of Transaction Fee
In Figures 4a, 4b we see that as β goes up, the mean cETH change decreases. In Figure 4e,
4f we see that as we increase β, the absolute mean DAI Change also reduces to 0. Similarly,
an investor is also less likely to buy/sell ETH. These trends are easy to explain because a
transaction fee on buying/selling of any asset is similar to a tax. A higher β disincentivizes
an investor from buying and selling assets.

FAB 2021
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In Figure 6b, we see that as β increases from 0.01 to 0.14 with πUSD = $325 & πDAI =
$300, mean PDAI first decreases and then increases. An increase in β has two side effects
i.e., reduction in DAI demand and reduction in DAI supply. We believe that, when DAI
demand reduces more than DAI supply we see a decrease in PDAI and when DAI supply
reduces more than DAI demand we see an increase in PDAI .

5.2.3 Impact of Stability Rate
In Figures 4g, 4h we see that as rs increases from 0.02 to 0.1, with all parameters matching
the baseline, the mean cETH change for an investor decreases because it becomes costlier to
open a CDP for minting DAI. In Figures 4i, 4j it is also seen that the mean ETH change for
an investor increases initially and then flattens out. The Stability Rate rs doesn’t affect the
mean ETH change directly but as rs increases, it becomes prohibitively expensive to hold
cETH, and as a result, the investor converts its cETH to ETH which causes an increase in
mean ETH change. As all of the cETH is converted to ETH, a further increase in rs does
not affect the mean ETH change. Also, a change in rs does not directly affect an investor’s
willingness to buy/sell DAI.

5.3 DAI Settling Price
In this section we analyze the impact of stability rate rs, transaction fee β, mean USD
holdings for the investor population πUSD, mean DAI holdings for the investor population
πDAI , price of ETH PET H and investor risk preference on the DAI Settling Price PDAI .

5.3.1 Impact of mean DAI and USD holdings
In Figure 5a, we see that as πDAI in the market increases, PDAI decreases because an increase
in DAI supply while keeping the demand constant drives down PDAI . Similarly in Figure
5b, we see that as πUSD in the market increases PDAI increases because as investors have
more money to spend, they want to invest more in stable assets such as DAI. An increase in
demand for DAI while keeping supply constant drives up the PDAI .

5.3.2 Impact of Investor Risk Preference
In Figure 5c, as we increase the percentage of risk-tolerant investors in the market, PDAI

increases. As a risk-tolerant investor prefers to hold more DAI than a risk-averse investor, we
can say that a risk-tolerant investor has a tendency to buy DAI and a risk-averse investor has
a tendency to sell DAI. As we increase the number of risk-tolerant investors in the market,
two things occur. Firstly, with more risk-tolerant investors we have more investors with a
higher DAI demand which increases the total DAI demand in the market. Secondly, with
less risk-averse investors we have fewer investors willing to sell DAI which reduces the total
DAI supply in the market. These two factors are sufficient to drive up PDAI .

5.3.3 Impact of stability rate
In Figure 6a, we see that as rs increases from 0.02 to 0.1, with πUSD = $325 & πDAI =
$300, mean PDAI increases. This is because with an increase in rs, people are less likely
to open a CDP to mint DAI which reduces the DAI supply keeping DAI demand constant.
This directly leads to an increase in PDAI .
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5.3.4 Impact of ETH price
In Figure 7a, we observe how PDAI changes as we perform the market simulation over
multiple days with an external ETH price feed. We observe that the PDAI closely mirrors
the changes in PET H . From Figure 7b we see that the PDAI is highly correlated to PET H .
We also observe that PDAI varies slightly with large PET H changes showing that the PDAI

is resistant to rapid PET H changes.

6 Conclusions

We have presented DAISIM, the first open-source computational simulation of the single-
collateral DAI stablecoin from MakerDAO. The simulation models investors as rational
portfolio optimizers and simulates DAI trading on a market to determine the DAI price as
a function of various relevant parameters. In future work this simulation could be used to
develop automated mechanisms to steer or control the price of DAI by modifying relevant
control parameters. We also plan to extend DAISIM to handle the newer multi-collateral
version of DAI that has been introduced more recently.
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