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ABSTRACT
As IoT deployments grow in scale for applications such as
smart cities, they face increasing cyber-security threats. In
particular, as evidenced by the famous Mirai incident and
other ongoing threats, large-scale IoT device networks are
particularly susceptible to being hijacked and used as bot-
nets to launch distributed denial of service (DDoS) attacks.
Real large-scale datasets are needed to train and evaluate
the use of machine learning algorithms such as deep neu-
ral networks to detect and defend against suchDDoS attacks.
We present a dataset from an urban IoT deployment of 4060
nodes describing their spatio-temporal activity under benign
conditions. We also provide a synthetic DDoS attack genera-
tor that injects attack activity into the dataset based on tun-
able parameters such as number of nodes attacked and dura-
tion of attack.We discuss some of the features of the dataset.
We also demonstrate the utility of the dataset as well as our
synthetic DDoS attack generator by using them for the train-
ing and evaluation of a simplemulti-label feed-forward neu-
ral network that aims to identify which nodes are under at-
tack and when.
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1 INTRODUCTION
Technological evolution has made possible the deployment of large
internet of thing (IoT) systems that are able to connect multiple
different sensors and actuators, allowing them to communicate and
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exchange enormous amounts of data. Such large-scale IoT systems
consisting of thousands of sensor nodes are being proposed, for
example, in the context of smart-city applications ([1], [2], [3]). As
these IoT systems grow in size and complexity, they are increasingly
vulnerable from a Cybersecurity perspective ([4], [5], [6]).

Most significantly, they are liable to be hacked into and hijacked
by malicious entities and then used as part of massive botnets as a
launching ground for distributed denial of service (DDoS) attacks,
potentially affecting millions of end-users ([7], [8], [9], [10], [11],
[12]). A famous example of an IoT-based DDoS attack was the
Mirai botnet, first identified in August 2016 by MalwareMustDie, a
whitehat security research group. Afterward, some of the biggest
DDOS attacks in history were performed by Mirai botnet and its
mutated variants. 400,000 nodes infected by this malware executed
DDoS attacks on websites with a massive peak of 1.1 Tbps data
transfer ([13], [14], [15], [16], [17], [18], [19]).

One of the major steps to defend against such DDoS attacks is
to detect them successfully, as close to real-time as possible. To this
end, security researchers have turned to machine learning tools
such as deep learning networks for DDoS attack detection ([20]).
The latest development in technology (parallel computing, high
computational processing speeds, GPU’s, etc.) have made possible
the vertiginous development of deep neural networks (NN’s) ([21],
[22], [23]), however their performance is very much dependent
on the availability of rich datasets to train them. The training of
NN models will be challenged in the near future as botnet attacks
become increasingly complex and grow in volume infectingmassive
portions of IoT networks. Therefore, it is important to build and
maintain suitable large-scale IoT dataset repositories, useful for
training such models, to allow the research community to stay
ahead of malicious attack developments.

There have been some prior efforts on collecting or creating
synthetic DDoS attack datasets that could be used for training
data-driven deep learning models (e.g., [24], [25], [26], [27], [28],
[29]). However many of these studies either are not specifically
focused on IoT devices (e.g., [30], [31], [32], [33], [34], [35], [36],
[37]), while others present data from a limited number of nodes
(e.g., [38], [39], [40]). Further, while today’s DDoS attacks such
as Mirai are often relatively easy to detect because their traffic
volumes dramatically exceed normal traffic (e.g., [41] reports nearly
100% true positives for an autoencoder-based detection scheme
on the Mirai botnet), we believe that future attacks will be more
cleverly camouflaged so that the traffic generated during the attack
from a given node matches the traffic volume from a benign node.
Thus, beyond datasets that show the behavior of today’s attacks,
there is still a need for large-scale datasets that characterize the
benign activity of real IoT devices, which could be used as a basis
to emulate more challenging future attacks.
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We present in this work first a data set obtained from a real urban
IoT system in a large city consisting of more than 4000 spatially
distributed sensors. The data consists of the binary activity status
of each node at a granularity of 30 seconds over a period of one
month under a benign (non-attacked) setting.

To make the dataset useful for training machine learning tools
for DDoS detection, we need to augment it through synthetic attack
emulation. Therefore, in addition to the raw (benign) activity data,
we also provide a dedicated script that generates attacks in the
proposed dataset synthetically. Our script allows the setting of
multiple parameters: number of nodes to be processed, total attack
duration, attack ratio, starting time of the attack; and each particular
node is equipped with a time-stamp and an output that varies
binary between 0 (no attack) and 1 (attacked node). To illustrate
the utility of our dataset and attack emulator, we design, train,
and implement a simple supervised feed-forward NN model to
detect malicious attacks utilizing the provided dataset. We make the
dataset and the attack emulation script along with our illustrative
NN model available as an open-source repository online at https:
//github.com/ANRGUSC/Urban_IoT_DDoS_Data.

The paper is structured as follows: section 2 presents the original
dataset and some statistics about it. The attack and defense mecha-
nism are presented in section 3. Finally, we conclude the paper in
section 4.

2 ORIGINAL AND BENIGN ACTIVITY
DATASETS

The original data has been collected from the activity status of real
event-driven IoT nodes deployed in an urban area1. The original
dataset contains three main features, the node ID, the location of
the node in Latitude and Longitude, and a timestamp of the activity
status of the IoT node. A record has been added to the original
dataset whenever the activity status of a node changes. The raw
dataset has 4060 nodes with one month worth of data.

Having a record of each node whenever the status of that node
changes provides a bias towards the information of nodes that
have more activity changes during the day. In order to overcome
this issue, we also provide a script that takes the original dataset
and generates a new benign activity dataset showing the activity
status for each node every 𝑡𝑠 seconds. In this way, all nodes in the
benign activity dataset will have the same number of records. The
script can generate a customized benign dataset by providing the
beginning and ending date, the number of IoT nodes, and the time
step, i.e., 𝑡𝑠 .

2.1 Dataset Statistics
In this subsection, some statistics of the datset are presented to
illustrate the dataset’s properties.

Figure 1 presents the mean number of active nodes versus the
time of the day on one particular day of the dataset. As we can see,
up to 65% of the nodes get activated around the middle of the day,
but by midnight only about 20% of the nodes are active.

Figure 2 shows the mean correlation between pairs of 500 ran-
domly selected nodes in the dataset, in terms of their activity versus
1The source of this data has been anonymized for privacy and security reasons.

Figure 1: Active Nodes Percentage vs Time

Figure 2: Nodes Activity Mean Correlation vs Distances

their distance. For this purpose, the pair distances between the
nodes are calculated using Euclidean distance. The Pearson corre-
lation has been used to calculate the correlation between nodes’
activity in the onemonthworth of data. Then, the distances between
nodes have been split into 1000 bins, and the average correlation for
the nodes whose pair distances fall in the bin boundaries has been
calculated for each bin. As we can see, generally, the farther the
nodes are, their correlation will be lower (dropping from a mean
correlation of about 0.4 for nodes that are very close to each other
to values around 0.1 or below for distances greater than 10 units).

Next, we present some statistics that show how long nodes tend
to remain active or inactive. Figure 3 shows a histogram of the
mean active time for all nodes as well as the mean inactive time, for
both the day time (8 AM to 8 PM) and nighttime (8 PM to 8 AM).
Figures 3a and 3c show the active mean time for the day and night,
respectively. Figures 3b and 3d show the inactive mean time for the
day and night, respectively. As we can see in these figures, both
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(a) Histogram of mean activity time per node - From 8 AM to 8
PM

(b) Histogram of mean inactivity time per node - From 8 AM to
8 PM

(c) Histogram of mean activity time per node - From 8 PM to 8
AM

(d) Histogram of mean inactivity time per node - From 8 PM to
8 AM

Figure 3: Histograms of mean activity and inactivity time per node

mean active times and mean inactive times tend to be higher in the
nights compared to the days.

3 ATTACK AND DEFENSE MECHANISM
This section presents how synthetic DDoS attacks are generated
on the IoT nodes. Furthermore, here we define the training dataset
features and also the detection mechanism.

3.1 Generating Attack Dataset
In this paper, we synthetically generate a DDoS attack on the IoT
nodes by setting all attacked nodes to an active status for the du-
ration of the attack. Note that this approach to attack generation
is more coarse-grained than providing the volume of packets or
packets generated with specific content and destinations during an
attack. We plan to incorporate the generation of such additional
fine-grained information during the attacks in the near-future. But

even by focusing on activity status only, we are effectively emulat-
ing more challenging futuristic DDoS attacks that may be hard to
detect from a single node’s traffic.

A script is provided that can be used for generating attacks over
the dataset. Three parameters can be set in generating the attacks:
the start time of the attack, the duration of the attack, and the
percentage of the nodes that go under attack. In our experiments,
we used one week’s worth of dataset for generating attacks. The
attacks are started at 2 AM on each day of the week over all of the
nodes with durations of 1, 2, 4, 8, 16 hours.

3.2 Generating Training Dataset
Given the attacked dataset, a labeled training dataset will be gener-
ated by calculating the mean activity time of the IoT nodes in the
specified time windows. Note that, in the script provided for this
paper, one could set the desired time windows for generating the
training features. In this paper, we considered a list of 12 different
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Table 1: Mean accuracy and recall for the NN detection
model

Mean Accuracy Mean Recall
Training Dataset 0.94 0.93
Testing Dataset 0.88 0.84

time windows, namely as 1, 10, 30, minutes and 1, 2, 4, 8, 16, 24, 30,
36, 42, 48 hours, to calculate the mean activity time of the nodes.

3.3 Defense Mechanism
We train a feed-forward neural network to detect the DDoS attack
on the IoT nodes based on their collective activity status over time.
As noted before, detecting attacks based on activity status alone is
more challenging than approaches based on measuring fine-grained
traffic volumes or flow-level information.

The model we have trained is a simple binary classification
to show a sample usage of the presented dataset. In this neural
network, we have an input layer with 12 neurons. The input layer
is followed by one hidden layer with 8 neurons and ReLU activation.
A dropout of 20% and batch normalization is also used at the end
of the hidden layer. The output is a single neuron with the Sigmoid
activation function. In this experiment, we randomly selected 20
IoT devices nodes to generate attacks. We are training 20 different
models for each IoT node using its data alone, each with different
weights but all having the same architecture. The neural network
model is trained for 500 epochs for each node to detect the attacked
time slots in the dataset. We used one week’s worth of data as
the training dataset and another week as the testing dataset. Note
that this is a simple approach that will not take into account any
correlations in the data across different nodes, so there is scope
for further improvement by developing more complex models that
integrate the inputs from multiple IoT devices.

Table 1 present the mean recall and accuracy of the 20 models
trained for detecting DDoS attacks. Figures 4 and 5 show the true
attack attack (T), attack predictions true positive (TP) and false
positives (FP) mean over all nodes vs time, for both training and
testing dataset. In these figures we used the attack duration of 16
hours. As we can see, the attacked nodes are being detected very
well in the training dataset with a few FP. On the other hand, we
are getting around 84% recall on the testing dataset with a little bit
more FP.

4 CONCLUSION
We have presented a new spatio-temporal dataset describing the
activity of a 4060-node event-based urban IoT deployment. We have
also provided a script to create a benign dataset out of the original
dataset to reduce bias toward nodes with more activity. We have
shown some statistical analyses on the dataset to illustrate some
its key properties. We have also presented a synthetic DDoS attack
generator to generate attacks using the dataset, and illustrate the
training and evaluation of a feed-forward neural network using the
dataset as a way to detect such attacks. We hope that the dataset and
tools we have provided are helpful to the community to undertake
various types of research related to large-scale event-driven IoTs,
including DDoS attack detection.

Figure 4: Training Dataset Attack Prediction vs Time

Figure 5: Testing Dataset Attack Prediction vs Time
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