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ABSTRACT
This short paper summarizes our recent/ongoing works [2–4] on
detecting DDoS attacks in IoT systems. In our studies, we conducted
a thorough examination of using machine learning to detect Dis-
tributed Denial of Service (DDoS) attacks in large-scale Internet
of Things (IoT) systems. Unlike prior works and typical DDoS at-
tacks that focus on individual nodes transmitting high volumes
of packets, we explored the more sophisticated and advanced fu-
ture attacks that use a large number of IoT devices while hiding
the attack by having each node transmit at a volume that mimics
benign traffic. We introduced innovative correlation-aware archi-
tectures that consider the correlation between the traffic of IoT
nodes and compare the effectiveness of centralized and distributed
detection models. Through extensive analysis, we evaluated the
proposed architectures using five different neural network mod-
els trained on a real-world IoT dataset of 4060 nodes. Our results
showed that the combination of long short-term memory (LSTM)
and transformer-based models with the correlation-aware architec-
tures offer superior performance, in terms of F1 score and binary
accuracy, compared to the other models and architectures, espe-
cially when the attacker conceals its actions by following benign
traffic distribution on each transmitting node. Furthermore, we
investigated the performance of heuristics for selecting a subset
of nodes to share their data in resource-constrained scenarios for
correlation-aware architectures.
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1 INTRODUCTION
Denial of Service (DoS) attacks are a form of cyberattack in which
the attacker aims to disrupt the normal functioning of a victim
server, hindering legitimate users from accessing its system. This
is achieved by overwhelming the server with an excessive amount
of traffic, making it unavailable[7]. Distributed Denial of Service
(DDoS) attacks are a type of cyberattack in which the attacker
leverages a network of compromised devices, often referred to as
"zombies," to launch a coordinated attack on a victim server. The
use of multiple devices significantly increases the scale and impact
of the attack, making it much more difficult for the victim server to
defend against[6]. The most prevalent type of DDoS attack takes
place at the transport layer, where the attacker floods the victim
server with as many packets as possible through methods such as
UDP flooding and SYN flooding. There are also DDoS attacks that
target the application layer, where the attacker aims to overload the
victim server by sending slow, but steady requests that consume
all of its resources. These slow-rate DDoS attacks occur when the
attacker sends data to the victim server at a very slow pace, but at a
rate that is sufficient to prevent the connection from timing out[8].

The Mirai botnet is one of the most well-known DDoS attacks
that leverages Internet of Things (IoT) devices. This botnet infects
thousands of IoT devices, directing an overwhelming amount of net-
work traffic, in the order of Terabits per second (Tbps), towards the
victim server, causing widespread disruption and affecting millions
of end-users [5].

Given the growing and dangerous threat posed by DDoS attacks,
our recent work investigates the use of machine learning (ML)
techniques as a means to prevent such attacks. One of the major
limitations of existing research on DDoS detection mechanisms is
that they rely on the assumption that the packet volume transmit-
ted from IoT nodes or the packet flow timing during an attack is
significantly (orders of magnitude) higher than the benign traffic
from these nodes. While these differences in traffic properties can
provide a significant advantage to ML models in detecting DDoS
attacks, our recent studies [2–4] take a forward-looking approach
and consider the possibility of more sophisticated attacks in which
the attacker can mimic the behavior of benign IoT traffic. With
the vast number of IoT devices currently available, attackers can
potentially take control of millions of these devices and launch an
attack by sending fewer packets with timing similar to benign traf-
fic, making it more difficult to distinguish the attack from normal
behavior.

This abstract summarizes and covers our findings in our re-
cent/ongoing works [2–4].
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2 DDOS ATTACK DETECTION MECHANISM
To simulate futuristic DDoS attacks, in our works [3, 4], we intro-
duce a parameter called “𝑘” that allows for the adjustment of traffic
volume during the attack. The real urban IoT dataset introduced
in [2] records the binary activity of each device and has been en-
hanced in our other work [3] by incorporating the packet volume
transmitted by each device at each timestamp. Our work is based on
the observation that real urban IoT benign traffic can be modeled as
a (truncated) Cauchy distribution, which aligns with prior findings
that Ethernet traffic exhibits similar characteristics [1].

In our latest work [4], we proposed four different architectures
for training neural network models for IoT devices. These architec-
tures take into account the use of correlation information among
the IoT devices and the choice between a centralized model for all
nodes or individual models for each device. The four architectures
are named as follows: multiple models with correlation (MM-WC),
multiple models without correlation (MM-NC), one model with
correlation (OM-WC), and one model without correlation (OM-NC).
The architectures with correlation information (MM-WC and OM-
WC) provide each IoT node access to not only its own packet volume
but also that of other nodes. To further evaluate the performance
of these architectures, we have considered five different types of
neural network models: multi-layered perceptron (MLP), convolu-
tional neural networks (CNN), long short-term memory (LSTM),
transformer (TRF), and autoencoders (AEN). Through extensive
analysis [4], we aimed to determine the best architecture and neural
network model for detecting DDoS attacks on IoT devices.

The results of our simulations [4] demonstrated that utilizing
the correlation information among the nodes plays a crucial role in
detecting DDoS attacks, especially when the attacker is attempting
to conceal the attack by mimicking benign traffic packet volume
distribution. Our findings showed that the architecture of MM-WC
MM-WC in combination with LSTM neural network model is the
most effective in detecting DDoS attacks. Additionally, OM-WC
architecture combined with the TRF neural network model also
performs exceptionally well, comparable to the MM-WC/LSTM
model. However, we prefer the MM-WC/LSTM model due to its
resilience to the single point of failure.

Given the vast number of IoT devices that can be utilized in
DDoS attacks, using the correlation information of all nodes results
in a substantial amount of features that the neural network models
must learn. To address this challenge, in our latest work [4] we have
explored methods for actively selecting the nodes to consider for
the correlation information in training the neural network models.
Our analysis has considered three methods: a) Pearson correlation
of the IoT nodes’ activity behavior, b) Euclidean distance of the IoT
nodes, and c) SHapley Additive exPlanations (SHAP) for identifying
the most relevant features. Our findings indicated that actively
selecting the nodes for both training and prediction using Pearson
correlation results in satisfactory performance in terms of binary
accuracy and F1 score for detecting DDoS attacks, with a slight
decrease compared to utilizing the correlation information of all
nodes.

3 CONCLUSION AND FUTUREWORK
In this study, we presented a summary of our recent/ongoing stud-
ies [2–4] in which we evaluated various architectures and neural
network models for detecting DDoS attacks on IoT nodes. Our
results showed that the MM-WC/LSTM model outperforms the
other models. Additionally, we explored different techniques for
actively selecting nodes to share their information. Our findings
suggest that using Pearson correlation to select the nodes results in
a reasonable level of accuracy in detecting DDoS attacks, compared
to using information from all nodes. In future work, we plan to
design a robust model to handle the case where information from
IoT nodes is lost during transmission for training the correlation-
aware architectures. Furthermore, we aim to formulate a policy for
blocking flagged malicious IoT nodes while taking into account the
importance of these nodes to end-users and avoiding the risk of
false-positive flags and loss of access.
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