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Abstract—We consider a dynamic multichannel access
problem, where multiple correlated channels follow an
unknown joint Markov model and users select the channel
to transmit data. The objective is to find a policy that
maximizes the expected long-term number of successful
transmissions. The problem is formulated as a partially
observable Markov decision process (POMDP) with un-
known system dynamics. To overcome the challenges of
unknown dynamics and prohibitive computation, we apply
the concept of reinforcement learning and implement a
Deep Q-Network (DQN). We first study the optimal policy
for fixed-pattern channel switching with known system
dynamics and show through simulations that DQN can
achieve the same optimal performance without knowing
the system statistics. We then compare the performance
of DQN with a Myopic policy and a Whittle Index-based
heuristic through both more general simulations as well
as real data trace and show that DQN achieves near-
optimal performance in more complex situations. Finally,
we propose an adaptive DQN approach with the capability
to adapt its learning in time-varying scenarios.

Index Terms—Multichannel Access, Cognitive Sensing,
POMDP, DQN, Reinforcement Learning, Online Learning

I. INTRODUCTION

RIOR work [2], [3] has shown that dynamic

spectrum access is one of the keys to improving
the spectrum utilization in wireless networks and
meeting the need for more capacity. In the context
of cognitive radio research, a standard assumption
has been that secondary users may search and
use idle channels that are not being used by their
primary users (PU). While prior work has generally
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assumed a simple independent-channel (or PU ac-
tivity) model, in practice external interference can
cause the channels in wireless networks to be highly
correlated, and the design of new algorithms and
schemes in dynamic multichannel access is required
to tackle this challenge.

We consider in this work a multichannel access
problem with N correlated channels. Each channel
has two possible states: good or bad, and their joint
distribution follow a 2V-states Markovian model.
There is a single user (wireless node) that selects
one channel at each time slot to transmit a packet.
If the selected channel is in the good state, the
transmission is successful; otherwise, there is a
transmission failure. The goal is to obtain as many
successful transmissions as possible over time. As
the user is only able to sense his selected channel
at each time slot, there is no full observation of the
system available. In general, the problem can be for-
mulated as a partially observable Markov decision
process (POMDP), which is PSPACE-hard and the
best known solution for finding the exact solution
requires an exponential computation complexity [4]].
Even worse, the parameters of the joint Markovian
model might not be known a-priori.

We investigate the use of Deep Reinforcement
Learning, in particular, Deep Q learning, from the
field of machine learning as a way to enable learning
in an unknown environment as well as overcome
the prohibitive computational requirements. By in-
tegrating deep learning with Q learning, Deep Q
learning or Deep Q Network (DQN) [5]] can use a
deep neural network with states as input and esti-
mated Q values as output to efficiently learn policies
for high-dimensional, large state-space problems.
We implement a DQN that can find a channel
access policy through online learning. This DQN
approach is able to deal with large systems, and
find a good or even optimal policy directly from
historical observations without any requirement to



know the system dynamics a-priori.

The rest of the paper is organized as follows.
Section [l shows the related work. Section [T for-
mulates the dynamic multichannel access problem
when channels are potentially correlated. Section
presents a Myopic and a Whittle Index-based heuris-
tic to solve this problem. Section [V| presents the
DQN framework. Section presents an optimal
policy study on known fixed-pattern channel switch-
ing, and Section shows through simulations
that DQN can achieve optimal performance. The
evaluation results considering both synthetic and
testbed-based datasets are shown in section [VIIIL
Section introduces an adaptive DQN approach
and, finally, Section [X] concludes our work.

II. RELATED WORK

The dynamic multichannel access problem has
been widely studied. But unlike many decision
making problems, such as vertical handoff [6] and
power allocation [7], that can be modeled as MDP,
the dynamic multichannel problem is modeled as
a POMDP, as channels are generally (two-state)
Markov chains and a user has only partial obser-
vations. Finding an optimal channel access policy
requires exponential time and space complexities.
When channels are independent and identically dis-
tributed (i.i.d.), a Myopic policy has been shown
to be optimal under certain conditions [8], [9]. But
the Myopic policy does not have any performance
guarantee when channels are correlated or follow
different distributions.

When channels are independent but may follow
different Markov chains, the dynamic multichannel
access problem can be modeled as a Restless Multi-
armed bandit problem (RMAB). A Whittle Index
policy is introduced in [10] and shares the same
simple semi-universal structure and optimality result
as the Myopic policy. Numerical results are also
provided showing that the Whittle Index policy can
achieve near-optimal performance when channels
are nonidentical. But the Whittle Index approach is
not applicable when channels are correlated, which
is the focus of our work.

In recent years, some works began to focus on
the more practical and complex problem where both
the system statistics is unknown and the channels
are correlated. Q-learning is widely used as it is a
model-free method that can learn the policy directly

via online learning. The authors in [11] apply Q-
learning to design channel sensing sequences, while
in [12] it is shown that Q-learning can also take
care of imperfect sensing. All these works assume
the system state is fully observable and formulate
the problem as an MDP, which significantly reduces
the state space. On the contrary, our problem falls
into the framework of POMDP because of the limit
of the partial observation, and its large state space
makes it impossible to maintain a simple look-up Q
table to update Q values. New methods able to find
approximations of Q-values are required to solve the
large space challenge.

Reinforcement learning, including Q learning, has
been integrated with advanced machine learning
techniques to tackle difficult high-dimensional prob-
lems [13]—[15]. In 2013, Google DeepMind used a
deep neural network, called DQN, to approximate Q
values in Q learning that overcomes the limitation of
the traditional look-up table approach, and provide
an end-to-end approach to allow an agent to learn
a policy from its observations. To the best of our
knowledge, ours is the first study and implementa-
tion of DQN in the field of dynamic multi-channel
access.

III. PROBLEM FORMULATION

Consider a dynamic multichannel access problem
where there is a single user dynamically choosing
one out of N channels. At the beginning of each
time slot, a user selects one channel to sense and
transmit a packet. If the channel quality is good,
the transmission succeeds and the user receives a
positive reward (+1), else the user transmission fails
and there is a negative reward (—1). The objective
is to design a policy that maximizes the expected
long-term reward.

To model correlation across channels, the whole
system is described as a 2V-state Markov chain.
Formally, let the state space of the Markov chain
be S = {si,...,s,n}. Each state s; (i € {1,...,2"})
is a length-N vector [s;y, ..., siy], where s;; is the
binary representation of the state of channel k: good
(1) or bad (0). The transition of the Markov chain
is denoted as P. Since the user can only sense one
channel at the beginning of each time slot, the full
state of all channels is not observable. However, the
user can infer a distribution over the system state
according to his sensing decisions and observations.



Thus, the dynamic multichannel access problem
falls into the general framework of POMDP. Let
Q1) = [ws, (1), ..., s, (1)] represent the belief vector
maintained by the user, where ws,(¢) is the con-
ditional probability that the system is in state s;
given all previous decisions and observations. Given
the sensing action a(r) € {l,.., N} representing
which channel to sense at time slot 7, the user
can observe the state of channel a(t), denoted as
o(t) € {0,1}. Then, based on this observation, the
user can update the belief vector at time slot ¢,
denoted as Q(t) = [@s, (), ..., Ds, (1)]. The belief
of each possible state @, (f) is updated as follows:

wg (DL (s (1)=1)
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where 1(.) is the indicator function.

Combining the newly updated belief vector Q(r)
for time slot ¢t with the system transition matrix P,
the belief vector for time slot # + 1 can be updated
as Q(t + 1) = Q(r)P.

A sensing policy 7 : Q(t) — a(t) is a function
that maps the belief vector Q(¢) to a sensing action
a(t) at each time slot ¢. Given a policy 7, the long-
term reward considered in this paper is the expected
accumulated discounted reward over infinite time
horizon, defined as Er[X72, ¥~ Ry ()I(D)],
where 0 < y < 1 is a discounted factor, 7(€(r))
is the channel sensing action at time ¢ given belief
vector €(r), and Ryqq)(t) is the corresponding
reward. Our objective is to find a sensing policy
m* that maximizes the expected accumulated dis-
counted reward over infinite time

7 = argmax Bx[ ) 7'~ Re(ae (0)|Q(1)]
v/

=1

a(t) =k,o(t)=1
UA)S[(I) =

a(t) = k,0(t) = 0

As the dynamic multichannel access problem is
a POMDP, the optimal sensing policy 7* can be
found by considering its belief space and solving
an augmented MDP instead, for example, via value
iteration, however the dimension of the belief vector
is exponentially large in the number of channels.
Even worse, the infinite size of the continuous
belief space and the impact of the current action
on the future reward makes POMDP PSPACE-hard,
which is even less likely to be solved in polynomial
time than NP-hard problems [4]. To exemplify the
time complexity of solving such POMDP problem,
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Fig. 1: Running time (seconds) in log scale of the POMDP

solver as we vary the number of channels in the system

we simulate the multichannel access problem with
known system dynamics and use a POMDP solver
called SolvePOMDP [16] to find its optimal so-
lution. In Figure |1} we show the run-time as we
increase the number of channels in the system.
When the number of channels is higher than 5,
we find that the POMDP solver can not converge
after a long interval, and it gets terminated when
the run-time exceeds the time limit. All these factors
make it impossible to find the optimal solution to the
problem in general, and many existing works [8]]-
[10], [17]-[21] attempt to address this challenge
of prohibitive computation by considering either
simpler models or approximation algorithms.

IV. Myopric POoLICY AND WHITTLE INDEX

In the domain of dynamic multichannel access,
there are many existing works on finding the
optimal/near-optimal policy with low computation
cost when the channels are independent and system
statistics (P) is known. The Myopic policy and the
Whittle Index policy are two effective and easy-to-
implement approaches for this setting.

A. Myopic Policy

A Myopic policy only focuses on the immediate
reward obtained from an action and ignores its
effects in the future. Thus the user always tries
to select a channel which gives the maximized
expected immediate reward.

The Myopic policy is not optimal in general. Re-
searchers in [8]], [9] have studied its optimality when
N channels are independent and statistically iden-
tical Gilbert-Elliot channels that follow the same
2-state Markov chain with the transition matrix as

bw Pot]. 1t is shown that the Myopic policy is



optimal for any number of channels when the chan-
nel state transitions are positively correlated, i.e.,
P11 = poi- The same optimal result still holds for
two or three channels when channel state transitions
are negatively correlated, i.e., p;; < po;. In addition,
the Myopic policy has a simple robust structure that
follows a round-robin channel selection procedure.

B. Whittle Index Based Heuristic Policy

When channels are independent, the dynamic
multichannel access problem can also be considered
as a restless multi-armed bandit problem (RMAB)
if each channel is treated as an arm. An index policy
assigns a value to each arm based on its current state
and chooses the arm with the highest index at each
time slot. The index policy is not guaranteed to be
optimal in general.

In [10], the Whittle Index is obtained in closed-
form for the case when P is known and all channels
are independent but may follow different 2-state
Markov chain models. In the special case when all
channels are identical, it is shown to coincide with
the above-described Myopic policy.

When channels are correlated, the Whittle Index
cannot be defined and thus the Whittle Index policy
cannot be directly applied to our problem. Never-
theless, as a baseline in our evaluations, to leverage
its simplicity, we propose an heuristic that ignores
the correlations among channels and uses the joint
transition matrix P and Bayes’ Rule to compute the
2-state Markov chain for each individual channel.
Once each channel model is found, we can apply
the Whittle Index policy accordingly.

The Myopic policy and the Whittle Index policy
are easy to implement in practice and have poly-
nomial run-time, however they achieve optimality
only under certain conditions when channels are
independent. Moreover, both policies require prior
knowledge of the system dynamics, which is hard
to obtain beforehand. However, to the best of our
knowledge, there is no easy-to-implement policy
applicable to the general case where channels are
correlated and the system dynamics are unknown
— thus a new approach is needed.

V. DEEP REINFORCEMENT LEARNING
FRAMEWORK

When channels are correlated and system dynam-
ics are unknown, there are two main approaches

to tackle the dynamic multichannel access prob-
lem: (i) Model-based approach: first estimate the
system model from observations and then apply
dynamic programming or a computationally effi-
cient heuristic policy such as Myopic/Whittle Index
policies; (ii) Model-free approach: learn the policy
directly through interactions with the system with-
out estimating the system model. The model-based
approach is less favored since the user’s limited
observation capability may result in a bad system
model estimation. Even worse, even if the system
dynamics is well estimated, solving a POMDP in
a large state space is always a bottleneck as the
dynamic programming method has exponential time
complexity (as explained in Section III) and the
heuristic approaches do not have any performance
guarantee. All these challenges motivate us to fol-
low the model-free approach, which, by incorporat-
ing the idea of Reinforcement Learning, can learn
directly from observations without the necessity of
finding an estimated system model and can be easily
extended to very large and complicated systems.

A. Q-Learning

We focus on the reinforcement Learning
paradigm, Q-learning [22] specifically, to
incorporate learning for the dynamic multichannel
access problem. The goal of Q-learning is to find
an optimal policy, i.e., a sequence of actions that
maximizes the long-term expected accumulated
discounted reward. Q-learning is an empirical
value iteration approach and the essence is to
find the Q-value of each state and action pairs,
where the state x is a function of observations (and
rewards) and the action a is some action that a
user can take given the state Xx. The Q-value of a
state-action pair (X,a) from policy n, denoted as
0" (x,a), is defined as the sum of the discounted
reward received when taking action a in the initial
state x and then following the policy = thereafter.
0™ (x,a) is the Q-value with initial state x and
initial action a, and then following the optimal
policy n*. Thus, the optimal policy ©* can be
derived as 7*(x) = arg max, Q" (X, a), VX.

One can use online learning method to find
Q™ (x,a) without any knowledge of the system
dynamics. Assume at the beginning of each time
slot, the agent takes an action a; € {l,..., N} that

maximizes its Q-value of state-action pair (X;, a;)
given the state is x;, and gains a reward r,,;. Then



the online update rule of Q-values with learning rate
0 < a <1 is given as follows:

0(xs,a;) — QX ar) +afri+y Icrlla?( OXr41, are1) — Q(Xs, ar)]

In the context of the dynamic multichannel ac-
cess, the problem can be converted to an MDP when
considering the belief space, and Q-learning can
be applied consequently. However, this approach is
impractical since the belief update is maintained by
knowing the system transition matrix P a-priori,
which is hardly available in practice. Instead, we
apply Q-learning by directly considering the history
of observations and actions. We define the state for
the Q-learning at time slot # as a combination of
historical selected channels as well as their observed
channel conditions over previous M time slots, i.e.,
X; = [a-1, 0t-1, ..., Qr—p1, 0;—p7 ). And intuitively, the
more historical information we consider (i.e., the
larger M 1is), the better Q-learning can learn.

B. Deep Q-Network

Q-learning works well when the problem’s state
space is small, as a look-up table can be used to
update Q values. But this is impossible when the
state space becomes large. The state space size in
this work grows exponentially as O(N™), as we
use a combination of M vectors of length N to
represent historical observations and actions for a
system with N 2-state channels over past M time
slots. M 1is required to be large so that Q-learning
can capture enough information for learning. Even
worse, since many states are rarely visited, their
corresponding Q-values are seldom updated. This
causes Q learning to take a very long time to
converge.

Motivated by its success in other domains [J5],
we adopt the deep Q-Network approach to ad-
dress the very large state space. DQN takes the
state-action pair as input and outputs the corre-
sponding Q-value. Q-network updates its weights
0 at each iteration i to minimize the loss function
Li(6;) = El(yi - Q(x,a;6,))*], where y; = E[r +
vymax, Q(x’,a’;0;_1)] is derived from the same Q-
network with old weights 6;_; and new state x" after
taking action a from state Xx.

VI. OPTIMAL POLICY FOR KNOWN
FIXED-PATTERN CHANNEL SWITCHING

To study the performance of DQN, we first con-
sider a correlated channel model that we refer to as

fixed-pattern channel switching, in which all the N
channels in the system can be divided into several
independent subsets and these subsets take turns to
be activated following a fixed pattern. Specifically,
we assume all channels in one currently activated
subset are good and all channels in inactivated
subsets are bad. At each time slot, with a known
probability p (0 < p < 1) the next following subset
is activated, and with probability 1 — p the current
subset remains activated. We assume the activation
order of the subsets is known, fixed, and will not
change over time. In this special case, the optimal
policy can be found analytically and is summarized
in Theorem 1, providing a baseline to evaluate the
performance of DQN implementation in the next
section.

Theorem [: When the system follows a fixed-
pattern channel switching model, the optimal chan-
nel access policy follows Algorithm [I] depending on
the value of p.

Algorithm 1 Optimal policy

1: At the beginning of time slot 0, choose a channel in the
initial activated subset C;

2: forn=1,2,... do

3 At the beginning of time slot n,

4: if 0.5 < p <1 then

5 if The previous chosen channel is good then

6 Choose a channel in the next activated subset

according to the subset activation order
7: else

8: Stay in the same channel

9: else

10: if The previous chosen channel is good then

11: Stay in the same channel

12: else

13: Choose a channel in the next activated subset

according to the subset activation order

Proof: Please see proof in [23]. |

It turns out that the optimal policy for the fixed-
pattern channel switching shares a structure that
is simple and robust similar to the Myopic policy
in [[8]: the optimal policy has a round-robin structure
(in terms of the channel subset activation order)
and does not require to know the exact value of
p except whether it is above/below 0.5. This semi-
universal property makes the optimal policy easy to
implement in practice and robust to mismatches of
system dynamics.



TABLE I: List of DQN Hyperparameters

Hyperparameters Values
€ 0.1
Minibatch size 32
Optimizer Adam
Activation Function ReLU
Learning rate 1074
Experience replay size 1,000, 000
Y 0.9

VII. EXPERIMENT AND EVALUATION OF
LEARNING FOR UNKNOWN FIXED-PATTERN
CHANNEL SWITCHING

We present details of our DQN implementation
and then evaluate its performance on the fixed-
pattern switching pattern model, comparing it to the
optimal policy, through experiments.

A. DQON Architecture

We design a DQN by following the Deep Q-
learning with Experience Replay Algorithm [5]] and
implement it in TensorFlow [24]. The structure of
our DQN is finalized as a fully connected neu-
ral network with each of the two hidden layers
containing 200 neuron The activation function
of each neuron is Rectified Linear Unit (ReLU),
which computes the function f(x) = max(x,0). The
input of the DQN is defined as the combination of
previous actions and observations over previous M
time slots, selecting M = N. The output of the
DQN is a vector of length N, where the ith item
represents the Q value of a given state if channel i
is selected. We apply the e-greedy policy with the
random action exploration probability € fixed as 0.1.
A technique called Experience Replay introduced
in [5]] is used to store previous observation data and
break correlations among data samples that makes
training stable and convergent. When updating the
weights 6 of the DQN, a minibatch of 32 samples
are randomly selected from the replay memory to
compute the loss function, and a recently proposed
Adam algorithm [25] is used to update the weights
(details on the hyperparameters are listed in Table [I)).
In the following experiment settings, we consider a
system of 16 channels.

B. Experiment and Evaluation

In our experiments, we considered different situ-
ations: single good channel or multiple good chan-
nels, sequential switching or arbitrary switching,

Iplease refer to [23] for more explanations on this structure.
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and observe that DQN can achieve the optimal
performance in all situations. Due to the space
constraint, we only present results on the multiple
good channels situation, and refer the reader to [23]
for more results on other situations.

In this section, we investigate the fixed-pattern
channel switching model with 16 channels are
evenly divided into several subsets that take turns to
become available with a switching probability fixed
at p = 0.9. In Fig. 2| we provide a pixel illustration
to visualize how the states of channels change in
a multiple good channels situation over 50 time
slots, where a white cell indicates the corresponding
channel is good at the corresponding time.

We compare the DQN with two other policies: the
Whittle Index heuristic policy and the optimal pol-
icy with known system dynamics from section
The optimal policy has full knowledge of the system
dynamics and serves as a performance upper bound.
In the Whittle Index heuristic, the user assumes all
channels are independent and observes each channel
individually for 10,000 time slots to estimate its 2-
state Markov chain transition matrix.

We vary the number of channels in a subset as
I, 2, 4 and 8 in the experiment, and present the
experimental results in Fig. [3] The 16 channels in
the system are in order and the subsets are acti-
vated in a sequential round-robin order in the upper
graph in Fig. while the channels are arranged
arbitrarily and the activation order of subsets is also



arbitrary in the bottom graph in Fig. [3] As can be
seen, DQN remains robust and achieves the same
optimal performance in all cases as the optimal
policy and performs significantly better than the
Whittle Index heuristic. This shows that DQN can
implicitly learn the system dynamics including the
correlation among channels, and finds the optimal
policy accordingly. On the contrary, the Whittle
Index heuristic simply assumes the channels are
independent and is not able to find or make use
of the correlation among channels. Moreover, the
training time decreases as the number of good
channels increases. This is because there is more
chance to find a good channel when more good
channels are available at a time slot, and the learning
process becomes easier so that the DQN agent can
take less time exploring and is able to find the
optimal policy more quickly. This also explains why
Whittle Index heuristic performs better when there
are more good channels available.

VIII. EXPERIMENT AND EVALUATION OF DQN
FOR MORE COMPLEX SITUATIONS

We now consider whether DQN can achieve a
good or even optimal performance in more complex
and realistic situations. For this set of experiments,
we re-tuned our neural network structure to become
a fully connected neural network with each hidden
layer containing 50 neurons (and the learning rate is
set as 10‘5 and considered more complex simu-
lated situations as well as real data traces described
below.

A. Perfectly correlated scenario

We consider a highly correlated scenario. In a 16-
channel system, we assume only two or three chan-
nels are independent, and other channels are exactly
identical or opposite to one of these independent
channels. In addition to the Whittle Index heuristic,
we also compare DQN with a Random Policy in
which the user randomly selects one channel with
equal probability at each time slot. Since the optimal
policy is computationally prohibitive, we implement
the Myopic policy instead as a genie (knowing the
system statistics a-priori) since it is simple, robust
and can achieve an optimal performance in certain
situations.

2Please refer to [23] for the explanations on the DQN structure.
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During the simulation, we arbitrarily set the inde-
pendent channels to follow the same 2-state Markov
chain with py; > po;. When the correlation coeffi-
cient p = 1, the user can ignore those channels that
are perfectly correlated with independent channels
and only select a channel from the independent
channels. In this case, the multichannel access prob-
lem becomes selecting one channel from several
i.i.d. channels that are positively correlated, i.e.,
P11 = por- Then as it is shown in the previous
work [8], [9], the Myopic policy with known P
is optimal and has a simple round-robin structure
alternating among independent channels. In the case
when p = —1, the Myopic policy with known P also
has a simple structure that alternates between two
negatively perfectly correlated channels. Though
more analysis needs to be done in future to show
whether the Myopic policy is optimal/near-optimal
when p = —1, it can still serve as a performance
benchmark as the Myopic policy is obtained with
full knowledge of the system dynamics.

In Fig. §] we present the performance of all four
policies: (i) DQN, (ii) Random, (iii) Whittle Index
heuristic, and (iv) Myopic policy with known P.
In the first three cases (x-axis 0, 1 and 2), the
correlation coefficient p is fixed as 1 and in the
last three cases (x-axis 3, 4 and 5), p is fixed as
—1. We also vary the set of correlated channels to
make cases different. The Myopic policy in the first
three cases is optimal, and in the last three cases is
conjectured to be near-optimal. As shown in Fig.
the Myopic policy, which is implemented based
on the full knowledge of the system, is the best
among all six cases and serves as an upper bound.
DQN provides a performance very close to the
Myopic policy without any knowledge of the system
dynamics. The Whittle Index policy performs worse



than DQN in all cases.

B. Real data trace

We use real data trace collected from our in-
door testbed Tutornef] to train and evaluate the
performance of DQN on real systems. The testbed
is composed of TelosB nodes with IEEE 802.15.4
radio. We programmed a pair of motes distanced
approximately 20 meters to be transmitter/receiver.
The transmitter continually transmits one packet
rapidly to each one of the 16 available channels
within one time slot and the synchronized receiver
records the successful and failed attempts, with the
only interference coming from surrounding WiFi
networks that show high dynamic variability.

The data are collected for about 17 hours. In
order to create a challenging environment to test
the learning capability of DQN, we ignore 8 good
channels and use only the data trace from the
remaining 8 channels that show significant WiFi
interference.

We use the same data trace to train the DQN
and to compute the MLE of the transition matri-
ces of each channel for the Whittle index based
heuristic policy. We compare the performance of
the DQN policy, the Whittle index based heuristic
policy and the Random policy. The Myopic Policy
is not considered as finding the transmission matrix
of the entire system is computationally expensive.
The average accumulated discounted reward from
each policy is listed in descending order: 0.947
(DQN), 0.767 (Whittle Index) and —2.170 (Random
Policy). It can be seen that DQN performs best
in this complicated real scenario. We also present
the channel utilization of each policy in Fig. [5 to
illustrate the difference among them. It shows DQN
benefits from using other channels when the two
best channels (used by the Whittle Index heuristic
all the time) may not be in good states.

C. Practical Issues

We now consider the practical issue of synchro-
nization between the sender and receiver of the
system. One approach is to run the same structured
DQN:ss at the sender and the receiver separately. The
two DQNs start with the same default channel and

3More information about the testbed on
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Fig. 5: Channel utilization of 8 channels in the testbed

are trained concurrently. By allowing the receiver
to send back an ACK/NAK to the sender indicating
whether it receives a message or not every time slot,
the sender and receiver are guaranteed to have the
same channel observations and thus training sam-
ples. By using the same random seed on both sides
to initialize the pseudorandom number generator,
we can avoid any difference occurred during explo-
ration and back propagation during training. Thus,
the two DQNs always have the same parameters
and select the same channels, and the final learned
policy is guaranteed to be the same.

The channel mismatch problem can still happen
when an ACK/NAK is lost, which not only causes
loss of communication, but also results in different
learned DQN models at the sender and receiver
that give different channel selection policies. One
possible approach is to find a way to let the sender
and the receiver be aware of the time when a
channel mismatch happens, and try to recover in
time. The sender can detect the mismatch event
if no ACK/NAK is received. Once the mismatch
happens, the sender stops updating its DQN model
as well as training dataset and transmits data in the
future using one single good channel - or a small
set of channels known so far to have better channel
conditions [26]]. Along with the data messages, the
sender also sends the timestamp when the channel
mismatch was perceived. The sender keeps sending
this channel mismatch time information until an
ACK being received, which indicates the receiver
is on the same channel again and receives the
channel mismatch information. The receiver can
then set its DQN model as well as its training dataset
back to the state right before the channel mismatch
happened, which guarantees that the sender and
the receiver have the same DQN models as well



as training datasets. They can resume operating
and training thereafter. It can be shown that the
expected number of time slots needed for re-syncing
on a good channel after a channel mismatch is
E+, where N is the number of channels,
Pgood(1=Pack)
Pgood the probability this channel being good, pyck
the probability an ACK/NAK being lost, and € the
exploration probability. As long as the sender and
the receiver can re-synchronize again after a channel
mismatch, the effectiveness and performance of the

DQN approach is guaranteed.

IX. ADAPTIVE DQN FOR UNKNOWN,
TIME-VARYING ENVIRONMENTS

Algorithm 2 Adaptive DQN

1: First train DQN to find a good policy to operate with

2: forn=12,... do

3: At the beginning of period n

Evaluate the accumulated reward of the current policy

if The reward is reduced by a given thresholcﬂ then
Re-train the DQN to find a new good policy

else
Keep using the current policy

P RN R

To enhance DQN and make it more applicable
in realistic, dynamic situations, we have designed
an adaptive extension in Algorithm [2{ to make DQN
able to be aware of the system change and re-learn
if needed. The main idea is to let DQN periodically
evaluate the performance (i.e., the accumulated re-
ward) of its current policy, and if the performance
degrades by a certain amount, the DQN can infer
that the environment has changed and start re-
learning.

To evaluate this enhancement, we make the sys-
tem initially follow one of the fixed-pattern channel
switching cases from Section and after some
time it changes to another case. We consider both
single good channel and multiple good channels
situations. We let DQN automatically operate ac-
cording to Alg. 2] while we manually re-train Whit-
tle Index heuristic (as it is not able to detect any
change) when there is a change in the environment.
Fig. [6] compares the reward of both the old and new
policies learned for DQN and the Whittle Index
heuristic in the new environment, as we vary the
pattern changes. As can be seen, DQN is able to
find an optimal policy for the new environment as
the genie optimal policy does, while Whittle Index
heuristic, even manually tuned, does not.
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Fig. 6: Average discounted reward as we vary the channel
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Fig. 7: Average discounted reward in real time during training
in unknown fixed-pattern channel switching

We also provide the real-time accumulated reward
during the learning process of DQN and the Whittle
Index heuristic in one of the above pattern changing
situations in Fig. [/| The system initially starts with
an environment that has 8 channels being good at
each time slot for the first 10 iterations. As can be
seen, both DQN and the Whittle Index heuristic are
able to quickly find a good channel access policy,
but DQN achieves the optimal performance. At
iteration 11, the environment changes to having only
1 channel being good at each time slot. As there is
a significant drop in the reward, DQN can detect
the change and starts re-learning. And at iteration
70, DQN finds the optimal policy and our system
keeps following the optimal policy thereafter. On
the other hand, even though we manually enable the
Whittle Index heuristic to detect the change and re-
estimate the system model and re-find a new policy,
its performance is still unsatisfying as it cannot
make use of the correlation among channels.

X. CONCLUSION AND FUTURE WORK

In this paper, we have considered the dynamic
multichannel access problem in a more general and



practical scenario when channels are correlated and
system statistics is unknown. The problem is an
unknown POMDP without any tractable solution,
and we have applied an end-to-end DQN approach
that directly utilizes historical observations and ac-
tions to find the access policy via online learning.
In the fixed-pattern channel switching, we have
analytically found the optimal access policy with
known system statistics and full observation ability.
Through simulations, we have shown DQN is able
to achieve the same optimal performance even with-
out any prior knowledge. We have also shown from
both simulations and real data trace that DQN can
achieve near-optimal performance in more complex
scenarios. In addition, we have designed an adaptive
DQN and shown through numerical simulations that
it can detect system changes and re-learn in non-
stationary dynamic environments.

There are a number of open directions suggested
by the present work. First, we plan to apply the
DQN framework to consider more realistic and
complicated scenarios such as multi-user, multi-
hop and simultaneous transmissions in WSNs. The
framework of DQN can be directly extended to
consider these practical factors in a simple way.
For example, in the situation of multiple users, to
avoid interference and collisions among users, we
can adopt a centralized approach: assuming there is
a centralized controller that can select a subset of
non-interfering channels at any time slot, and assign
one to each user to avoid a collision. By redefining
the action as selecting a subset of non-interfering
channels, the DQN framework can be directly used
for this multi-user scenario. As the action space
becomes large when selecting multiple channels,
the current DQN structure requires careful re-design
and may require very long training interval before
finding a reasonable solution. Instead, we use the
same DQN structure as that in Section VII and
consider the multiple-users situation in a smaller
system that contains 8 channels where at any time
slot 6 channels become good and channel conditions
change in a round-robin pattern. The number of
users varies from 2 to 4. As is shown in Fig.
DQN can still achieve a good performance in the
multiple-user case. Other deep reinforcement learn-
ing approaches, such as Deep Deterministic Policy
Gradient (DDPQG) [27]], will be studied in future to
tackle the large action space challenge.

Second, when the number of users in the network
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becomes large, the above proposed centralized ap-
proach becomes too computationally expensive. In
future, we plan to study a more practical distributed
approach where each user can learn a channel
selection policy independently. One intuitive idea
is to implement a DQN at each user independently.
Then users can learn their channel selection policies
parallelly, and avoid interference and conflicts by
making proper channel-selection decisions based
on the information gained from observations and
rewards. However, whether a good or optimal policy
can be learned, and whether an equilibrium exists
are unknown and need further investigation.
Moreover, as DQN is not easy to tune and may
get stuck in local optima easily, we plan to work
on improving our DQN implementation as well
as considering other Deep Reinforcement Learning
approaches to see if they have the ability to reach
the optimal performance in general situations and
study the tradeoff between implementation com-
plexity and performance guarantee. Also as a way
to test the full potential of DQN (or Adaptive
DQN) as well as other deep reinforcement learn-
ing technologies in the problem of multichannel
access, we encourage the networking community to
work together to create an open source dataset that
contains different practical channel access scenarios
so that researchers can benchmark the performance
of different approaches. We have published all the
channel access environments and real data trace
considered in this workﬂ This might serve as an
useful benchmark dataset for researchers to use.
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