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ABSTRACT
In MARL, communication among agents is essential to establish
cooperation. Over the realistic wireless network, many factors can
affect transmission reliability, especially considering that the wire-
less network condition varies with agents’ mobility. We propose a
framework that improves the intelligence of communication over
realistic wireless networks in two fundamental aspects: (1)When:
Agents learn the timing of communication based on message im-
portance and wireless channel condition. We further propose a
communication lagging technique to make the training end-to-end
differentiable. (2) What: Agents augment message contents with
wireless network measurements. The messages improve both the
game and communication actions of the agents. Experiments on a
standard environment show that compared with state-of-the-art,
our framework enables more intelligent collaboration and thus
achieves significantly better game performance, convergence speed
and communication efficiency.
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1 INTRODUCTION
In Multi-Agent Reinforcement Learning (MARL), communication is
critical to facilitate knowledge sharing and collaboration [3, 5, 17].
Most of the existing works [2, 11, 12, 15, 16, 18, 20] are based on
unrealistic modeling of the wireless network environment and
assume perfect transmission. However, in many practical MARL
applications (especially those involving navigation: e.g., fire fight-
ing [7], Search-And-Rescue (SAR) [13]), agents communicate via a
mobile ad-hoc network (MANET) [1, 9]. In such realistic wireless
networks, successful transmission is not guaranteed due to limited
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Figure 1: Two ways of agent-environment interaction

bandwidth, signal path loss and fading, medium contention, inter-
ference, etc.. Moreover, the mutual influence between the game
and wireless environments results in the environment coupling chal-
lenge, hampering the learning of communication strategies under
realistic wireless networks: On the one hand, agents’ mobility in
the game environment leads to dynamic network connectivity and
agents’ communication actions have significant impact on medium
contention and signal interference. On the other hand, changes in
the wireless environment can affect agents’ game actions (e.g., ap-
proaching others for better signal strength). We propose a general
and flexible framework to enable intelligent multi-agent communi-
cation in realistic wireless networks from two fundamental aspects:
When: We propose a “1-step communication lagging” trick to en-
able the formulation of “meta-environment”. We further augment
the action space so that communication scheme can be learned
end-to-end via back-propagation. What: We augment the observa-
tion space by including wireless network measurements. Agents
exchange such observations with small communication overhead.
The proposed framework significantly improves existing MARL al-
gorithms (both on- and off-policy ones) in a plug-and-play fashion.

2 METHOD
Use subscript “−𝑖” to denote variables from all agents other than
𝑖 . A natural design, followed by [5, 15, 16], is to send and receive
a message within the same step. In Figure 1a, at the beginning of
step 𝑡 , agent 𝑖 makes local observation 𝑜𝑡

𝑖
on the game environment.
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channel. Since some transmissions may fail, we use 𝒄𝑡
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to denote the

messages successfully received by 𝑖 . Next, agent 𝑖’s own message
and all its received ones go through another neural network to
generate the next action 𝑎𝑡

𝑖
. Finally, all agents interact with the

game environment via 𝑎𝑡
𝑖
and 𝒂𝑡−𝑖 . The game environment returns

the current reward 𝑟𝑡
𝑖
and next observation 𝑜𝑡+1

𝑖
. This concludes

step 𝑡 . A major drawback of the Figure 1a setting is training non-
differentiability. When optimizing policy 𝜋\ via back-propagation,
the gradients of the parameters \ need to flow from 𝑎𝑡

𝑖
back to 𝑜𝑡

𝑖
.

However, the wireless environment lies in the middle of step 𝑡 . The
mapping implemented by the realistic wireless channel, 𝒎𝑡 ,𝒘𝑡 →
𝒄𝑡
𝑖
, is non-differentiable [11]. We propose “communication lagging”

to make training differentiable. Denote 𝑎′ as communication actions
and 𝑜 ′ as wireless observations. In Figure 1b, an agent observes
at the beginning of step 𝑡 . Yet it does not generate 𝑚𝑡

𝑖
until the

end of step 𝑡 . After lagging, the “message-wireless environment”
and “agent-game environment” interactions happen simultaneously
(in dotted circle). Thus, the alignment of the two environments
makes training fully differentiable. More importantly, it leads to
a “meta-environment” abstraction, where the Markov Decision
Process (MDP) controlling agents’ behaviors can be reformulated,
and both the action and observation spaces can be expanded.

We view themeta-environment as the new game environment:
any algorithm on the original game environment can be directly
applied on themeta-environment. To define agents’ interactionwith
the meta-environment, we reformulate the MDP with expanded
state and action spaces: (S,A,T ,𝛀,O,R, 𝛾). Denote S as the state
of the meta-environment. The augmented action spaceA consists
of the game actions AT and communication actions AC . i.e., A =

AT×AC . The augmented observation space𝛀 consists of the game
observations 𝛀𝑻 and wireless observations 𝛀𝑪 . i.e., 𝛀 = 𝛀

𝑻 ×𝛀
𝑪 .

T and O are defined on the meta-state and augmented observation
and action spaces. Under the reformulated MDP, agents can learn a
policy on communication actions to decide “when to communicate”.
e.g., the binary action for “send / no-send”: 𝑎𝐶

𝑖
∈ A𝐶

𝑖
= {0, 1}.

Denote 𝑜C,𝑡
𝑖

as agent 𝑖’s observation on the wireless environment
at step 𝑡 . We augment the observation space O as follows. Firstly, for
each agent 𝑖 , we concatenate the wireless and game observations, as
𝑜𝑡
𝑖
=

[
𝑜
T,𝑡
𝑖

∥𝑜C,𝑡
𝑖

]
. During communication, agents add 𝑜C,𝑡∗ to their

original messages. The augmented observations help agents better
understand both the wireless and game environments. Specifically,
we augment the agents’ observation by important network mea-
surements (e.g., radio signal strength, RSS), so that they can predict
the dynamics due to environment coupling. Then we end-to-end
train an intelligent communication schemewith neither pre-defined
schedule nor prior knowledge on the wireless condition (unlike
[11, 16]). As a result, agents learn “when to communicate” based on
both the message relevance and the wireless channel conditions.

3 EXPERIMENTS
We let agents perform single-hop broadcast following [5, 8, 10, 11,
16]. We implement a 1-hop mobile network without Access Points

(AP) as in [4].We use “log distance path loss” model andmodel inter-
ference as receiver hearing multiple signals in range. We consider
background noise and attenuation due to obstacles. The slotted
𝑝-CSMA protocol [6] is implemented for medium contention.

We evaluate both the on-policy and off-policy baselines. We
also evaluate the corresponding variants for the proposed frame-
work. For off-policy baselines, we evaluate the state-of-the-art value
decomposition based algorithm, QMix [14]. Further, we addition-
ally implement a communication-enhanced version of QMix by
integrating the TarMAC design [2]. TarMAC is a state-of-the-art
algorithm performing attention-based message aggregation. For
on-policy baselines, we evaluate the state-of-the-art algorithms
CommNet [16] and IC3Net [15], both of which are trained based
on REINFORCE [19].

We conduct experiments on the standard MARL benchmark
“Predator-Prey” with the following modifications: We introduce 𝑘
obstacles that can affect both the game and wireless environments
to better simulate realistic applications. Obstacles of different mate-
rials have different attenuation effect on the wireless signal passing
it. We set gird size 𝑛 = 10. There are 3 agents, each with vision
𝑣 = 0, number of obstacles 𝑘 = 1 and obstacle size ℓ = 9.

0 0.5 1 1.5 ·108
0

10

20

30

40

St
ep
st
o
ca
tc
h
pr
ey

10x10 with obstacles, on-policy

0 1 2 3 4·106
0

20

40

Number of environment steps

10x10 with obstacles, off-policy

CommNet IC3Net Proposedon
QMix TarMAC Proposedoff

Figure 2: Comparison with state-of-the-art methods

We compare the proposed framework with state-of-the-art meth-
ods. We use RSS as the wireless observation. From Figure 2, we
observe that for both the on-policy and off-policy algorithms, the
proposed framework significantly shortens the number of steps to
catch the prey. In addition, the variance of our curves are very small.
For CommNet, the model hard-codes an all-to-all communication
scheme: each step, all agents broadcast messages. In a realistic wire-
less network environment, sending more messages can reduce the
number of successfully received messages due to increased chance
of collision and interference. Therefore, it can be hard for the al-
gorithm always performing broadcasting to stably learn a good
policy – as reflected by the large variance of the CommNet curve.
For IC3Net, the performance is better than CommNet since IC3Net
has gated communication which mutes unimportant messages. Our
framework further improves upon IC3Net due to its intelligent in
both the “when” and “what” aspects covered in Section 2. As for
the off-policy comparisons, QMix converges to a policy with signif-
icantly more steps. This shows the importance of communication.
For our curve and TarMAC’s, both converge to similar number of
steps. However, ours converges faster and with smaller variance.
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