
Online Allocation of Sensing and Computation in
Large Graphs

Xinlin Li†, Merve Karakas†, Osama A. Hanna†, Mehrdad Kiamari∗, Jared Coleman∗,
Christina Fragouli†, Bhaskar Krishnamachari∗ and Gunjan Verma‡

†University of California, Los Angeles ∗ University of Southern California ‡ DEVCOM Army Research Laboratory
Email:{xinlinli, mervekarakas, ohanna}@ucla.edu, {kiamari,jaredcol}@usc.edu,

christina.fragouli@ucla.edu, bkrishna@usc.edu, gunjan.verma.civ@army.mil

Abstract—We consider vehicle tracking over a large territory
equipped with sensors and computational units, and propose
online resource allocation algorithms that decide which sensor
nodes to activate, and on which computational units to perform
the corresponding tracking tasks. We show through numerical
evaluation that our approach can notably outperform state of
art algorithms in terms of delay, communication cost, and the
number of required sensor measurements.

I. INTRODUCTION

A myriad of defense and civilian applications center around
vehicle tracking, e.g. for search-and-rescue operations; to-
wards this end, work has looked at accurately identifying
trajectories [10], [18], use of neural network approaches
[4], predicting directions of movement [12], and combining
multimodal data for tracking [18]. However, most of these
works assume the availability of sensor measurements that
cover the vehicle to track, as well as the availability of
computational resources to support the needed computations
for tracking. In this paper, we ask: how do we decide which
sensor nodes to activate, and on which computational units to
perform the corresponding tracking tasks?

We consider the following abstract scenario: A large num-
ber of sensor nodes (e.g., acoustic sensors) and comparatively
sparse computational units (CUs) have been deployed over
a given territory to help track target vehicles. The sensors
collect data and communicate it to nearby CUs, depicted in
Fig. 1, for processing and tracking. Clearly, to track vehicle(s)
crossing a territory, all sensors could actively transmit their
measurements at all times to all CUs; however, this rapidly
depletes the sensor batteries and may lead to communication
bottlenecks. Moreover, sensors’ measurements are informative
only when there is a target vehicle in their vicinity. Similarly,
due to other computational tasks, all CUs may not be able to
support the processing of all sensor data at all times. Ideally,
we would like some nearby CUs to be available to collect
and process data from informative sensors to estimate the
vehicle’s position. Based on these observations, our goal is
to maximize the accuracy of tracking target vehicles, using
minimal sensing and communication resources.

This work was supported in part by Army Research Laboratory under
Cooperative Agreement W911NF-17-2-0196.

Fig. 1. System model.

Fig. 2. Sensor selection example. Red represents candidate sensors to activate
at the current time window, while blue represents the activated one for
tracking.

The example depicted in Fig. 2 illustrates our setup. We
assume operation in time windows. At time window 1, a target
vehicle is close to the blue sensor. At time window 2, the
vehicle may move in a direction unknown to us. Therefore,
we want to take measurements from the current as well as
the colored in red neighbor sensor (i.e., all sensors the vehicle
may be close to) to decide which sensors to activate over time
window 2. However, at this stage, heavy processing on these
measurements is undesirable (e.g. run the tracking algorithm

on each) both because of delay and computational constraints;
we want to use some simple measures (eg., SNR for acoustic
sensors) to make our decision. Note that one measurement
from each sensor is not sufficient: sensor measurements are
noisy, and a direct comparison of individual measurements
from each sensor is likely to lead to errors. Thus, we want to
take a small number of simple measurements to identify the
sensor to activate in the current time window. Furthermore,
our performance depends on the allocation of sensor data to
available computational nodes, to achieve timely processing
of the data. The processing task may consist of, for example,
running suitable sensor signal processing algorithms or ML
models to detect, locate, and classify the target.

This paper proposes an approach to solve the following
online and coupled resource allocation problem: allocate
sensing, communication, and computational resources, in an
online manner, such that the a priori unknown trajectory of a
vehicle is tracked as accurately as possible, in a manner we
make precise in Section III. To identify the the best sensor to
use with a small number of sensor measurements, (see also
Section II), we propose an algorithm that combines maximum
a posteriori (MAP) detection with elimination, and we show
through extensive simulation results that it outperforms state-
of-the-art online learning algorithms such as UCB [1], [9] and
best arm identification algorithms such as T3C [14] across
metrics that capture communication cost and delay. We also
utilize online reservation techniques to ensure that CUs who
may be close to the (unknown in advance) vehicle trajectory
are available to support our task.

II. RELATED WORK

In the following we discuss the main used techniques and
their positioning within related work; a detailed description of
the system model and notation are provided in Section III-B2.

Online learning: Online learning algorithms, in particular,
multi-armed bandits (MAB), have gained significant attention
as they enable modeling real-time decision-making under
uncertainty. In an MAB setup, an agent is faced with a set
of actions, often referred to as arms, each associated with an
unknown reward distribution. The agent sequentially selects
an action to play and receives a reward, and it aims to
maximize its cumulative reward over time.

Perhaps the most well-known algorithms in this field are
the Upper Confidence Bound (UCB) algorithm [1], [9] and
Thompson sampling [15]. UCB [1], [9] maintains confidence
bounds on the estimated rewards of each arm. Thompson
sampling takes a Bayesian approach to utilize prior beliefs and
maintains a posterior distribution over the reward parameters
of each arm. Both algorithms and their variations have been
extensively utilized in different applications as they achieve
near-optimal theoretical guarantees.

A subset of multi-armed bandit algorithms, pertinent to our
study, named best arm identification (BAI) algorithms, intro-
duced by [3], focuses on determining the arm with the highest
expected reward. Unlike multi-armed bandit algorithms, BAI

algorithms prioritize identifying the optimal arm with a lim-
ited number of samples. While there are multiple settings,
Bayesian-based BAI algorithms appear to be most related to
our case which takes into account prior information on the
arms. [13] proposes Bayesian-based algorithms and proves
they have an asymptotically optimal posterior convergence
rate; these algorithms introduce randomization to obtain a
second candidate for sampling; hence, they provide more
exploration compared to the original Thompson sampling.
[14] proposes T3C to alleviate the computational burden
problem of [13] while preserving the theoretical guarantees.

As our main aim is to correctly identify the best sensor
to use with a small number of sensor measurements, the
sensor activation problem can be modeled as a best-arm
identification problem. The act of sampling the measurements
from a sensor corresponds to pulling an arm, the number of
arms is determined by the number of currently considered
sensors, and the reward is chosen to be a function of the sensor
measurement metric. All algorithms mentioned above can be
used to solve this problem; however, they do not exploit the
problem structure fully, e.g., in the current setup, it is possible
to pull more than one arm at each time and a pulled arm gives
information about other arms.

Computation scheduling: The problem of allocating a
complex application represented by a task graph (a di-
rected acyclic graph, or DAG, where nodes represent tasks
and directed edges represent precedence constraints between
tasks) to a network of computers has been explored recently
in the context of dispersed computing for various tactical
applications [6], [11]. Complex scheduling algorithms such
as the classic HEFT scheduler [16] and throughput-optimized
alternatives [7], [17] are needed to optimize for objectives
such as minimal makespan and maximal throughput in the
case of a general task graph. Recent work has shown that
machine learning techniques such as graph convolutional
networks can be used to significantly speed up the scheduling
process, which yields benefits in dynamic networks [5], [8]. In
this work, as a starting point we consider a relatively simple
task graph consisting of the sensor data being sent to a single
compute point at each time for processing. In this case, the
total latency incurred is a sum of the communication and
computation cost. If all compute points are homogeneous,
it suffices to optimize for the communication cost when
performing task placement (since the computation cost is
the same on all nodes), as we consider in section III. To our
knowledge, no prior work has explored reserving computation
points in advance of task allocation using target movement
predictions, which we explore in this paper.

III. PROBLEM FORMULATION

A. Task Overview

We assume that time is divided into T time windows, where
each time window contains multiple timeslots and τ timeslots
are used for sensor selection. Given a set of sensor and CUs in
a territory (to be described in more detail later in this section),
we follow the timeflow depicted in Fig. 3: in (Block A) we

Sensor
Selection

Computation
Unit

Assignment
Tracking

feedback vehicle location
for the next time window

Computation
Unit

Reservation

Available unit(s)

Block A Block B Block C Block D

Fig. 3. Workflow in one time window.

decide which sensor to activate using as input the estimated
current location of the target vehicle, the availability of CUs
and online samples of measurements; in (Block B) we decide
to which CU to allocate the task; in (Block C) we track the
current position of the vehicle using sensor measurements; in
(Block D) we potentially reserve CUs in anticipation of future
movements of the vehicle; and with (Feedback) we provide to
the sensor selection the correct current position of the vehicle
as well as the CUs availability.

B. System Model

We here provide the system model that we use to the
abstract territory, sensing and computational resources, and
target vehicle movement. We believe this to be a reasonable
model for evaluation, yet, we note that our proposed algo-
rithms are not restricted to it.

1) Territory modeling: As depicted in Fig. 4 we abstract
the territory using a grid-based representation, where each
square contains a sensor. Specifically, given a territory, we
approximate it as an M ×M grid denoted as G, where Gi,j

refers to the square in ith row and jth column; thus we have
in total N = M2 sensors. To capture realistic conditions,
we assume that some squares are blocked (inaccessible), for
instance, due to the territory morphology.1

2) Sensor modeling: We assume that we are provided
with a partition (clustering) of the sensors into N clusters
of sensors, and will opt to activate one such sensor at a time.
For the sake of simplicity, we will use “sensor” to refer to
a collection/cluster of sensing assets in the remainder of the
paper. We use the sensor measurements for two goals: (i)
sensor selection and (ii) vehicle tracking. For (i), we are going
to use a fast-to-estimate (and low-cost to transmit) quality
metric of the sensor measurements, such as SNR. We expect
that such measurements can be significantly corrupted by
noise. For (ii), we will assume that communication-expensive
measurements are forwarded to a selected computational unit.

3) Computational Units (CUs) modeling: In our system, a
subset of cells contains CUs, and we examine the parameter
known as the K

N ratio of CUs to sensor cells, where K
and N represent the number of CUs and the number of

1We note that although we use this abstraction in our simulation results,
our proposed algorithms are not specific to this model and can be applied
over other territory models as well.

(a) Territory (b) Grid Representation (c) Trajectory Example

Fig. 4. Example of territory modeling and trajectory. Gray represents blocked
areas, green represents locations of compute units, blue marks the historical
trajectory, and red represents the current location of the vehicle.

sensors, respectively. Intuitively, the smaller K is, the more
computationally constrained the problem will get.

We assume a random process governing the background
activity of CUs, where a unit is either available (1) or
not (0). The simplest independent and identically distributed
(iid) model for availability suggests that at each time step,
each unreserved unit is available with probability p. We also
assume that during a current time-window we can “reserve” a
CU for the next time-window; in this case, any reserved unit
will be available with probability 1.

4) Movement model: In each time window t, we consider
a vehicle that can move to one of the adjacent squares
Lt = {li}Li=1 (if it is not blocked), and there are L possible
movements in total. These movements do not need to happen
with the same probability: for instance, the target vehicle
may be more inclined to move straight forward rather than
changing its direction, while it may be less likely to return to a
previously visited square. We assume that conditioned on the
history there is a probability associated with each possible
movement, denoted as Pt = {pi}Li=1, and

∑
p∈P = 1. We

allow these probabilities to change over time based on the
historical trajectory. Fig. 4 (c) shows an example of a random
trajectory.

Prior information: We assume that our algorithms have
access to the movement probabilities Pt

2. This allows to
capture prior information, for instance, from observing past
target vehicle trajectories or from knowledge of the territory.

C. Performance metrics

To measure the trade-off between tracking accuracy and
resource utilization, we use the following metrics.
• Accuracy. Given the trajectory of a target vehicle within
a square grid, we measure the accuracy of tracking as the
percentage of times we correctly identify the vehicle location.
• Communication Cost. Given a trajectory and associated
selected sensors, we measure the Euclidean distance be-
tween the activated sensors and the used computational point.
In particular, the communication cost is 1

T

∑T
t=1 ∥u(t) −

v(t)∥2, where v = (v(1), v(2), · · · , v(T)) is the positions
of sensors activated at each time window t, and u =

2When the movement probabilities are unknown, we simply assume a
uniform distribution.

(u(1), u(2), · · · , u(T)) is the positions of activated CUs for
corresponding time windows.
• Sensing Delay and Cost. Delay captures the number of
timeslots needed to identify the sensors to use, and cost
measures the number of arms pulled (samples collected). Note
that during each timeslot, we could in parallel collect more
than one sample from different sensor locations, under the
assumption that sensors do not “interfere” (i.e., the activation
of one sensor does not impact what is sensed by any others.)

IV. PROPOSED APPROACH

A. Sensor Activation

At each time window t, we consider an individual online
learning detection problem as follows: the sensor selection
algorithm receives the current tracking information, i.e., the
location of the vehicle lt−1, based on the measurements
obtained in the previous time window, t − 1. As the current
location of the vehicle is known to the algorithm, the set of
possible next positions can be inferred and denoted as Lt. As
vehicle moves to the next location, we draw samples from
a group of nearby sensors St and measure a simple metric,
such as signal-to-noise ratio (SNR), to capture the benefit of
selecting a particular sensor; accordingly, we define reward
as an increasing function of this metric. Considering that the
sensor located in the true vehicle location would return the
highest reward, we choose St to be the same as Lt. (The
choice the sampling set St also depends on the availability
of sensors and can differ from the locations Lt, in which our
algorithm also applies.)

We make the following observations: (i) When we draw a
sample from a sensor in the set St, the reward will give us
information about all near-by locations (not just the one we
sample from). Indeed, for any (fixed but unknown) position of
the vehicle, the rewards are correlated as the SNR depends on
the distance from the same vehicle location. Thus we could
think of our problem as hypothesis testing, where our four
hypotheses correspond to the possible locations of the vehicle.
(ii) During each timeslot, we can in parallel collect rewards
from more than one sensors in St, to reduce delay. However,
we may not want to collect samples from all sensors during
all timeslots, since then we may have an unnecessarily high
sensing cost (number of samples we draw).

Proposed Algorithm: Inspired by the previous observations,
we propose to use a maximum a posteriori (MAP) detector,
combined with an online elimination algorithm, as we de-
scribe next.

Maximum a Posteriori Probability (MAP) detector.
Based on the knowledge of the trajectory, we construct a prior
belief Π0 = Pt of the possible locations (i.e., hypotheses),
which will be updated at each timeslot n to form a posterior
distribution Πn after receiving samples. Specifically, given a
sequence of n reward-sensor pairs {(r(i), si)}ni=1 collected at
the current time window t, where the sequence {si}ni=1 is
selected ahead of time, and r(i) is a reward sampled from the
sensor si ∈ St, the MAP detector decides on a location of the

tracked vehicle by maximizing the posterior of hypothesises
as follows

lMAP(t) = argmax
l∈Lt

P[lt = l|{si}ni=1, {r(i)}ni=1]

= argmax
l∈Lt

P[{si}ni=1, {r(i)}ni=1|lt = l]P[lt = l]

= argmax
l∈Lt

P[{r(i)}ni=1|lt = l, {si}ni=1]P[lt = l] (1)

= argmax
l∈Lt

P[lt = l]

n∏
i=1

P[r(i)|lt = l, si], (2)

where lt is the true location of the vehicle at window t,
and Lt is the set of possible locations at time t. Note that
P[{{si}ni=1}ni=1|lt = l] is omitted in (1) because {si}ni=1 is
pre-determined and is independent of the value of lt.

MAP with Active Elimination. To reduce the overall
number of collected samples, we propose an adaptation of
the MAP detector inspired by the active arm elimination al-
gorithm [2]. Specifically, we maintain a set of good locations
(i.e., hypotheses), initially defined as all possible locations Lt.
At each time slot, we collect one sample from each sensor
located in the good locations. Subsequently, we calculate
the a posteriori probabilities of each possible location, as
described in (2). Locations with probabilities falling below a
predefined threshold, denoted as pth, are eliminated from the
set of good locations. And we stop drawing samples from the
sensor in eliminated locations. The pseudo-code is described
in Algorithm 1.

Algorithm 1 MAP with Active Elimination
1: Inputs: number of time slots τ , set of possible locations
Lt, prior distribution Π0, threshold probability for arm
elimination pth

2: Initialize the set of good locations: G ← Lt.
3: Initialize reward-sensor pairs: R ← {}
4: for n← 1, 2, ..., τ do
5: Draw samples from all sensors in good locations

{r, sl}l∈G
6: Update set of reward-sensor pairs: R ← R∪{r, sl}l∈G
7: Update distribution: Πn(l)← P[lt = l|R] ∀l ∈ G
8: Delete all arms a from G if Πn(l) < pth
9: end for

10: Output: argmaxl∈G Πτ (l)

B. Computational Unit Allocation
In order to expedite the whole procedure which is reliant on

sensor data, it is imperative to minimize both the transmission
time from sensors to compute units and the execution time on
those units. Intuitively, establishing a strong communication
link between sensors and compute units is crucial for optimal
performance. Given our assumption that path loss is propor-
tional to distance, connecting a sensor to the nearest compute
unit ensures a superior communication link. However, without
employing a strategy, the availability of nearby compute units
may be compromised due to background processing of lower-
priority tasks on those units. To overcome this challenge, we

propose a strategy that reserves compute units for sensors
based on predicted vehicle locations in the next time. By
proactively allocating compute units, the closest available unit
to a sensor can be reliably secured, resulting in efficient data
transmission and processing. As a consequence, this approach
can significantly reduce the overall time required for data
transfer from sensors to compute units and expedites data
processing at the compute units.

V. EVALUATION

In this section, we evaluate our proposed algorithms
through extensive simulations, in terms of all the evaluation
metrics mentioned in Section III-C, and compare against the
state-of-the-art algorithms as described next.

A. Simulation Setting

We use a M × M grid to approximate territories, with
M = 20 and thus N = 400 squares in total. We randomly
generate territory maps in which each square is randomly
blocked with probability 0.1. In addition, we simulate trajec-
tories by assuming the vehicle can move either vertically or
horizontally to one of the adjacent squares and the movement
probabilities take values in the set {cα, cβ, cγ, 0}. Here,
α = 4, β = 2, γ = 0.5 represent the weights of moving
forward, changing direction (either turning left or right), and
returning to a previously visited square, respectively, while
the value 0 is used to indicate a blocked direction. Note
that the weights of directions can change over time, as some
cells may be blocked or become previously visited as the
trajectory evolves; to make the probabilities sum to 1, we use
the normalization constant c that may change across different
time windows. For each setting and algorithm, we average the
evaluation over 50 trials. In each trial, we simulate a 100-step
trajectory (i.e. T = 100 time windows) on a randomized map.

Sensor Selection. We assume that the measurements of
each sensor, i.e., rewards of each sensor l, follow a Gaussian
distribution N (µs, σ

2), with a common known variance σ2 =
10 and unknown mean µs. The reward mean is calculated by
µs =

2
(1+ds)2

, where ds is the Euclidean distance between the
sensor s and vehicle. And we assume all sensors and vehicles
are located in the center of a square with unit length. The
choice of the reward means reflects the SNR of sensors. We
also assume that at each time window, we can take at most
100 samples from all candidate sensors in total. Within each
timeslot, we can take at most one sample from each sensor.

CUs Allocation. In each map, we randomly assign K
compute units. We evaluate how reserving the compute unit
closest to the next predicted target location can reduce the
communication cost, as a function of K.

B. Evaluation on Sensor Selection

Algorithms. For the sensor selection task, we compare the
following algorithms:

• The Upper Confidence Bound (UCB) algorithm [1], [9].
As UCB is not designed for best arm identification, we
modify it as follows. We run UCB for 100 iterations,

Fig. 5. Sensor Selection Accuracy v.s. Number of Measurements.

then output the arm with the maximum number of pulls
as our estimate of the best arm

• The Successive arm elimination algorithm (SAE) [2]. In
this case, we declare an arm with the highest estimated
mean among the arms that are not eliminated as our
estimate of the best arm.

• The Top-Two Transportation Cost (T3C) [14] assumes
a prior distribution over the reward means and updates
the beliefs upon receiving each sample. It pulls either
the best possible arm or an alternative at each timeslot
and outputs the one with the highest empirical mean as
the best arm. In our simulation, we construct a Gaussian
prior leveraging the prior information about the vehicle.

• MAP: We collect ⌊ 100|At|⌋ samples from each sensor, then
use the MAP detector described in the previous section
to output the estimate of vehicle location.

• MAP with arm elimination (MAP e) described in Algo-
rithm 1. We set pth = 0.01 as the elimination threshold.

Fig. 5 plots the accuracy of correctly activating the sensor
located in the square where the target vehicle appears. We
compare the accuracy achieved by different algorithms using
a fixed number of samples at each time window, among which
MAP and T3C show similar results and outperform others.

In addition, Fig. 6 compares the accuracy, sample cost, and
delay (see definitions in Section III-C) that the different algo-
rithms achieve under the restriction of at most 100 samples.
With comparable accuracy, our proposed elimination scheme
significantly reduces the sample cost and delay of vanilla
MAP and outperforms other algorithms across all metrics.

C. Computation Reservation Techniques

Fig. 7 illustrates the overall cost associated with transmit-
ting data from sensors to compute units versus 20%, 50%,
80% available compute units as well as reservation technique,
for three different numbers of compute units, i.e. K = 4,
K = 9, and K = 16. As the availability of compute units
decreases, primarily due to the presence of background data
traffic, the cost of data transmission experiences a significant
increase. However, our proposed reservation technique offers
a highly effective solution to mitigate this issue: we can
notably decrease the overall cost by reserving the nearest
compute unit for each corresponding sensor, considering the
predicted location of the vehicle in the next time window.
Furthermore, as shown in Fig. 7, as expected the overall cost
decreases as the number of all compute units increases.

Fig. 6. (a) Accuracy, (b) Sample Cost, (c) Delay

Fig. 7. Average Communication Cost per Trajectory for K = 4, K = 9, and K = 16

VI. CONCLUSIONS AND FUTURE WORK

In this work, we considered the problem of online alloca-
tion of sensing and computational resources, under low delay,
low measurements and low communication cost constraints,
while tracking a vehicle of interest. Our proposed algorithms
outperform the state of the art and offer an attractive ap-
proach that easily scales over large territories. Open questions
that could be explored in future work include taking into
account errors in estimating target trajectory and how they
may propagate, unknown transition probabilities for target
movement, and considering simultaneously tracking multiple
vehicles. Currently, we assume that reservation incurs no cost
and we are able to preempt ongoing processing on compute
units without degrading the system. Exploring reservation
schemes that consider these aspects is an important area for
future research. It would also be of interest to consider more
complex computations expressed in the form of a general
task graph. In this case, the scheduling of the processing
tasks will require the use of a sophisticated scheduler. In case
of dynamic and uncertain network conditions, where rapid
scheduling is needed, it may be helpful to explore recently
developed ML-based schedulers such as GCNScheduler [5],
[8]. In particular, it would be of interest to explore novel
enhancements to such schedulers that take into account prob-
abilistic predictions of sensing locations in order to make
advanced reservations for compute points, which our present
work indicates is a strategy that offers cost reduction. In the
current work, we have decoupled sensing and communication
for computation to some extent; it would also be of interest to
explore how the estimated communication and computation
costs for optimal task placement could be taken into account
in sensor selection.

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47:235–256, 05 2002.

[2] P. Auer and R. Ortner. Ucb revisited: Improved regret bounds for
the stochastic multi-armed bandit problem. Periodica Mathematica
Hungarica, 61(1-2):55–65, 2010.

[3] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed
bandits problems. In Algorithmic Learning Theory: 20th International
Conference, ALT 2009, Porto, Portugal, October 3-5, 2009. Proceedings
20, pages 23–37. Springer, 2009.

[4] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and
F. Herrera. Deep learning in video multi-object tracking: A survey.
Neurocomputing, 381:61–88, 2020.

[5] J. Coleman, M. Kiamari, L. Clark, D. D’Souza, and B. Krishnamachari.
Graph convolutional network-based scheduler for distributing compu-
tation in the internet of robotic things. In MILCOM 2022-2022 IEEE
Military Communications Conference (MILCOM), pages 1070–1075.
IEEE, 2022.

[6] P. Ghosh, Q. Nguyen, P. K. Sakulkar, J. A. Tran, A. Knezevic, J. Wang,
Z. Lin, B. Krishnamachari, M. Annavaram, and S. Avestimehr. Jupiter:
a networked computing architecture. In Proceedings of the 14th
IEEE/ACM International Conference on Utility and Cloud Computing
Companion, pages 1–8, 2021.

[7] D. Hu and B. Krishnamachari. Throughput optimized scheduler
for dispersed computing systems. In 2019 7th IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud), pages 76–84. IEEE, 2019.

[8] M. Kiamari and B. Krishnamachari. Gcnscheduler: Scheduling dis-
tributed computing applications using graph convolutional networks.
In Proceedings of the 1st International Workshop on Graph Neural
Networking, pages 13–17, 2022.

[9] T. L. Lai. Adaptive treatment allocation and the multi-armed bandit
problem. Annals of Statistics, 15:1091–1114, 1987.

[10] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim. Multiple
object tracking: A literature review. Artificial intelligence, 293:103448,
2021.

[11] A. Poylisher, A. Cichocki, K. Guo, J. Hunziker, L. Kant, B. Krishna-
machari, S. Avestimehr, and M. Annavaram. Tactical jupiter: Dynamic
scheduling of dispersed computations in tactical manets. In MILCOM
2021-2021 IEEE Military Communications Conference (MILCOM),
pages 102–107. IEEE, 2021.

[12] Z. Rahman, A. M. Ami, and M. A. Ullah. A real-time wrong-way
vehicle detection based on yolo and centroid tracking. In 2020 IEEE
Region 10 Symposium (TENSYMP), pages 916–920. IEEE, 2020.

[13] D. Russo. Simple bayesian algorithms for best arm identification. In
Conference on Learning Theory, pages 1417–1418. PMLR, 2016.

[14] X. Shang, R. Heide, P. Menard, E. Kaufmann, and M. Valko. Fixed-
confidence guarantees for bayesian best-arm identification. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 1823–
1832. PMLR, 2020.

[15] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25:285–294, 1933.

[16] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
transactions on parallel and distributed systems, 13(3):260–274, 2002.

[17] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr. Communication-
aware scheduling of serial tasks for dispersed computing. IEEE/ACM
Transactions on Networking, 27(4):1330–1343, 2019.

[18] W. Zhang, H. Zhou, S. Sun, Z. Wang, J. Shi, and C. C. Loy. Robust
multi-modality multi-object tracking. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2365–2374, 2019.

