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Abstract— We show how the expected network through-
put of contending secondary users in an opportunistic
spectrum access network can be optimized by making
appropriate sensing decisions. We consider both uncoor-
dinated symmetric users that see the same primary user
behavior, and also a more general coordinated asymmetric
setting. For the uncoordinated symmetric case, we show
that when the number of users exceeds the number of
channels, the optimal strategy is independent of primary
user behavior. For the coordinated asymmetric case, we
show that at the optimal operation point each user can
adopt a pure strategy. Furthermore, the optimal solution
can be obtained by using the Hungarian algorithm for
bipartite maximum weight matching.

I. INTRODUCTION

Cognitive radios are gaining attention due to their
promise of alleviating the fundamental challenges associ-
ated with limited bandwidth. A set of approaches focuses
on opportunistic spectrum access, where secondary users
proble/sense channels to determine if they may safely
send packets without interfering with primary users. In
case of multiple channels, a key component of these
approaches is determining which channel to sense. Most
prior work has focused on the sensing decision from the
perspective of a single secondary user. When there are
multiple users contending for opportunities, however, the
sensing decision must take into account the possibility
that good channels may also be desired by other sec-
ondary users.

We consider in this paper how the expected total
throughput of multiple secondary users can be maxi-
mized by treating the sensing policy as a multi-channel
randomized multi-access decision. We formulate and
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solve two problems under this framework, both pertain-
ing to making sensing decisions for a single stage of
a time-slotted system in which primary user occupancy
probabilities are known forehand.

In the first problem, we consider a symmetric set-
ting in which contending secondary users experience a
common set of known channel occupancy probabilities
for primary users. The goal is to obtain a randomized
sensing policy whereby each channel is selected for
sensing with some given probability. We show that
the optimal policy randomizes over all channels whose
primary occupancy probability is strictly less than one.
Somewhat surprisingly, we find that when the number
of users n exceeds the number of channels m, then the
optimal strategy for each user is to sense each channel
with probability 1

n regardless of the primary occupancy
distribution; in this case, there can be some incentive for
users to ascribe some nonzero probability to desist from
sensing any channel at all.

In the second problem, we consider a more general
coordinated case where the contending secondary users
may each experience different primary channel occu-
pancy probabilities. In this asymmetric case, we assume
that primary user occupancy probabilities for all channels
are known a priori to each contending secondary user.
The goal is to maximize the total network throughput in
a coordinated manner. We show that in this case, there
exists an optimal operating point where each secondary
user chooses a pure strategy. At this point, each user
either picks a particular channel to sense with probability
one or none at all. Furthermore, we map this problem
to a maximum weight matching problem on bipartite
graphs. This combinatorial problem can then be solved
efficiently by applying the well-known Hungarian algo-
rithm [12].

The rest of the paper is organized as follows. We
briefly review some related work in section 2. We
formulate and solve the symmetric problem in section
3. We then consider the more general asymmetric case
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in section 4. We conclude with some discussion and
thoughts on future directions in section 5.

II. RELATED WORKS

There are several related lines of research on
opportunistic spectrum access. Several studies
(e.g., [2], [3], [4], [6]) consider multiple rounds
of probing/sensing before a channel access decision is
made. These are typically formulated as stopping time
problems. Other studies, such as [1], consider the setting
in which sensing takes place on only one channel at
the beginning of each time slot; in this case a key
question is that of deciding which channel to sense at
each stage. This is formulated as a partially observable
Markov decision process (POMDP). However, all these
works focus on deciding sensing strategies from the
perspective of a single user. Our focus in this paper is
to consider the sensing decision in the case of multiple
users. We follow the approach of [1] in treating a
time-slotted system in which only one channel can
be sensed before each transmission, but our modeling
differs from that work in that it considers the primary
users behavior not as a Markov process but in the
form of a single-stage a priori probability of channel
occupancy by primary users.

Some studies focusing on multiple users have pro-
posed the use of separate coordination channels or
control messages ([5], [11]) to prevent overlapping
transmission of secondary users by allowing them to
reserve the channel. Others have proposed scheduling
methods for distributed channel allocation ([7], [8]). In
these approaches, generally the multi-access problem is
considered separately from channel sensing. In contrast,
we focus here on a light-weight random access approach
based on Slotted Aloha, and take contention into account
as part of sensing decision itself.

There is some prior literature on multichannel slot-
ted Aloha (e.g. [9], [10]), but these generally consider
homogeneous channels from which one is selected with
equal probability. We explicitly consider channels with
different qualities in this work, as defined by different
primary user occupancy probabilities which result in a
potentially different sensing probability for each chan-
nel. Further, our focus on multichannel slotted Aloha
for making throughput-optimal sensing decisions in a
cognitive radio context is quite different.

III. THE SYMMETRIC UNCOORDINATED PROBLEM

A. Problem Formulation

We consider a system with N = {1, 2, ..., n} sec-
ondary users. They can sense M = {1, 2, ...,m} accessi-
ble channels. For user i, each channel j has a probability

pi,j that it will be available for use (i.e., sensing it would
reveal that it’s free1). In other words, 1 − pi,j is the
probability that channel j is occupied by a primary user
that can be sensed by the user i. The strategy for each
secondary user is to decide with what probability to sense
each channel so that they can minimize collision with all
other secondary users (and avoid colliding with primary
user) in order to maximize the total expected throughput.
Mathematically, the strategy for user i is a probability
vector (qi,1, qi,2, ..., qi,m) where

∑m
k=1 qi,k ≤ 1 and

qi,k ≥ 0 for all k ∈ M . Notice that we allow the case
that a secondary user avoids choosing any channel to
sense in a given round.

In this section, we consider the case where all the sec-
ondary users have the same evaluation of the availability
of each channel. That is, pi,j = pk,j for all i, k ∈ N . To
simplify the notation, in this section we denote pi,j as
pj . In this case, in the absence of explicit coordination, it
is clear that the secondary users should have symmetric
strategies. Therefore, we denote the symmetric strategy
for each secondary user as vector (q1, q2, ..., qm). We
assume that channel k provides bandwidth Bk.

The problem now can be formed mathematically as
follows:

max n
m∑

k=1

qk(1− qk)n−1pkBk (1)

s.t

m∑
k=1

qk ≤ 1 (2)

Since each user is identical in this symmetric setting,
we can simplify the objective function to the per-user
expected throughput:

max
m∑

k=1

qk(1− qk)n−1pkBk (3)

B. Analysis of the Optimal Solution

In this subsection, we use Lagrangian multipliers and
the KKT (Karush-Kuhn-Tucker) conditions to solve the
above constrained optimization problem.

Introduce Lagrangian multiplier λ to the optimization
problem with simplified objective function, we get:

L(qk, λ) =
m∑

k=1

qk(1− qk)n−1pkBk−λ(
m∑

k=1

qk− 1) (4)

Apply KKT conditions, we need to solve two cases
as follows: a) when λ = 0 and

∑m
k=1 qk < 1; b)λ 6= 0

and
∑m

k=1 qk = 1. We solve the two cases in following.

1We assume perfect sensing in this work.
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Case a): We substitute the condition λ = 0 back to
equation (4) and take first order derivative regarding to
qk. We have

∂L

∂qk
= (1−qk)n−1pkBk−qk(n−1)(1−qk)n−2pkBk (5)

The optimal value holds when ∂L
∂qk

= 0. Hence we get
qk = 1

n . Now we need to check the Hessian matrix of
the objective function to verify that the critical point we
get is the maximum point. Notice that ∂2L

∂qk∂qj
= 0 for

all k 6= j. Therefore Hessian matrix of this function
is a diagonal matrix. There exist m eigenvalues for
this Hessian matrix. They are ∂2L

∂2qk
for all k. We can

verify that whenever qk ≤ 2
n , ∂2L

∂2qk
≤ 0. That is, when

condition qk ≤ 2
n is satisfied for all k, the Hessian

matrix is negative definite. Hence the critical point is
the maximum point.

Notice that we also have to satisfy the condition∑m
k=1 qk < 1, we know that this case only holds when

m
n < 1, i.e. m < n. This means that when the number of
the secondary user is larger than the accessible channel
number, the best strategy for each secondary user is
just to choose 1

n probability on sensing each channel,
no matter what the channel availability distribution is.
This is a somewhat counter-intuitive result at first glance,
but essentially it says that in this over-crowded scenario,
each user should operate at an secondary-interference-
limited optimal point on each channel.

When n ≥ m holds, the total optimal throughput for
the network is

n

m∑
k=1

1
n

(1− 1
n

)n−1pkBk

Let n →∝, we have

lim
n→∝

n
m∑

k=1

1
n

(1− 1
n

)n−1pkBk =
1
e

m∑
k=1

Bkpk

This is the network throughput with relatively large
number users sharing limited channels.Note that the 1

e
loss in efficiency compared to perfect scheduling here is
the same as in traditional slotted Aloha.

Case b): This is the case where m ≥ n. We take the
first order derivative of equation (4),

∂L

∂qk
= Bkpk[(1−qk)n−1−qk(n−1)(1−qk)n−2]−λ (6)

Again, a critical value holds when ∂L
∂qk

= 0. This
critical value is the maximum value when Hessian matrix
is negative definite. That is, for all k = 1, 2, ...,m,
qk ≤ 2

n . For arbitrary distribution of pk, the first order
derivative equation is a high-order polynomial equation
of qk that can be solved numerically.

Below, we give an exact solution when n = 2 (when
we have linear equations).

Substitute n = 2 back into equation (6) and consider-
ing condition

∑m
k=1 qk = 1, we can solve the group of

resulting linear equations and get

λ =
m− 2∑m
k=1

1
pkBk

and

qk =
1
2
− λ

2pkBk
=

1
2
− m− 2

2pkBk
∑m

k=1
1

pkBk

Note that in two users case, 2
n = 1 and the probability

to access each channel is no greater than 1. Hence the
Hessian is negative-definite in this case. This results
shows us that in the two secondary users case, no user
would like to put more than 1

2 probability to a channel,
no matter what the channel conditions are.

C. Illustrative Example

We give an illustration of the solution for the case
where the channel availability probability distribution is
exponential. We suppose that all the channels are indexed
by numbers 1, 2, ...,m and that channel k’s availability
probability is represented as pk = c−k where c is a
constant. Table 1 illustrates the best strategies for a
secondary user with the exponential constant c changes
when there are totally 2 users and 3 channels accessible.

TABLE I
NUMERICAL RESULTS OF qk FOR A 2-USER SYSTEM WITH 3
ACCESSIBLE CHANNELS, WHEN CHANGING EXPONENTIAL

CONSTANT c

c = 2 c = 3 c = 4 c = 5 c = 6 c = 7
p1 = 1

c
0.43 0.46 0.48 0.48 0.49 0.49

p2 = 1
c2

0.36 0.39 0.40 0.42 0.43 0.44
p3 = 1

c3
0.21 0.15 0.12 0.10 0.08 0.07

IV. THE ASYMMETRIC COORDINATED PROBLEM

In this section, we generalize the previous formulation
to a more complex case. We now consider that each
secondary user has a different view of the channel
availability probabilities. Figure 1 illustrates how this
situation could happen. In Figure 1, user P1 and P2
are primary users who are relatively far from each other
so that they can use the channel without affecting each
other. User S1 and S2 are two secondary users who are
located between primal user P1 and P2. User S1 can
collide with both user P1 or user S2, but will not collide
with P2. Similarly, user S2 interferes with user P2 and
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S1, but not P1. According to the different behavior of
primary users P1 and P2, secondary users S1 and S2
have different views of the availability probabilities of
this particular channel.

Fig. 1. Illusion for two secondary users have different views on
channel availability

In this case, we use the original notation to formulate
the problem. Notice that the discussion in previous
section is a special case of this more generalized case.
We also assume that each secondary user knows all the
other secondary user’s view for the channel availability.
That is, we assume each second user has a prior global
information on the channel availability. Now the opti-
mization problem is2:

max
n∑

i=1

m∑
k=1

(qi,k · pi,kBk

∏
j∈N,j 6=i

(1− qj,k)) (7)

such that
m∑

k=1

qi,k ≤ 1 ∀i ∈ N (8)

In the rest of this paper, the bandwidth Bk is removed
from the original objective function for clarity (replacing
pi,k with pi,kBk everywhere would easily correct for this
omission). We also denote the objective function as f in
the following.

In this asymmetric case, applying KKT condition can
also derive a critical point. However, we found that
the Hessian matrix of objective function for asymmetric
case is NOT negative-definite. Hence, the critical point
derived from Lagrangian relaxation and KKT condition
is not the maximum point.

We define a pure strategy for a secondary user i as
a strategy which user i allocates sensing probability for
at most one channel as 1 and all other channels as 0.
Mathematically, user i’s strategy is called a pure strategy
when qi,k = 1 or qi,k = 0 for all k ∈ M while satisfying∑m

k=1 qi,k ≤ 1. A strategy profile S defines all secondary
users’ strategies. A pure strategy profile is a strategy

2We mention briefly that this problem formulation as well as the
symmetric case studied before can be generalized easily to handle
realistic SINR-based channel capture effects. It is not essential to the
formulation that simultaneous transmission must necessarily result in
collision for both secondary users.

profile where all secondary users choose pure strategies.
Each strategy profile S is associated with a performance
value f(S), where f is the objective function. In the
following, we will prove that in asymmetric case, the
optimal operation point is associated with a pure strategy
profile.

Lemma 1: Given a strategy profile S, there always
exists a pure strategy profile S̃ such that f(S) ≤ f(S̃).

Due to the page limitation, we briefly sketch the proof
of this lemma here. In order to prove this lemma, we
claim that: when all other secondary users’ strategies are
kept fixed, we can always keep the total objective the
same or higher by making a particular user i’s strategy a
pure strategy. Without loss of generality, let us focus on
user 1. Since we fix all other secondary users’ strategies,
they can be treated as constants. Now the objective
function becomes a function of q1,k. Actually, it is a
linear combination of q1,k. We can rewrite the objective
function as:

max
m∑

k=1

a1,kq1,k + b1,k

with constraint
∑m

k=1 q1,k ≤ 1, where a1,k and b1,k are
constants.

It is not hard to verify that the above function’s
maximal value holds when user 1 adopts a pure strategy.
Specifically, if a1,k ≤ 0 for all k ∈ M , then q1,k = 0 for
all k. Otherwise, get the index of maximal a1,k and set
the corresponding q1,k = 1, q1,j = 0 for all j 6= k. Since
this newly constructed pure strategy maximizes the value
of the objective function, it performs at least the same as
the given strategy in terms of secondary user 1. Hence
the claim is proved.

When this claim holds, we can improve the value of
the objective function by changing user strategies one
by one. Start from the first user’s strategy in S; after n
iterations, we will end up with a pure strategy profile S̃
such that f(S) ≤ f(S̃). The following theorem follows
directly from Lemma 1.

Theorem 1: The maximal value of the objective function
is associated with a pure strategy profile.

Note that at the optimal operating point, at most
one user will sense any given channel. Collision among
secondary users will reduce total network throughput.
Applying this theorem to the objective function, we can
reduce the asymmetric case to a maximum weighted
matching problem in a bipartite graph. Theorem 1 indi-
cates that the maximal value of the objective function is
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the summation of a sequence of pi,k. Now we construct
a weighted undirected bipartite graph Gb(V1, V2;E),
where V1 = N and V2 = M . The weight of the
corresponding edge ei,j ∈ E is pi,k. A matching pair
(i, j) in the solution means qi,j = 1. The maximal
value of the objective function is the total weight for
the maximum weighted matching in this bipartite graph
Gb.

The maximum weighted matching problem in bipartite
graph can be solved using Hungarian algorithm [12] in
polynomial time. Specifically, if m ≤ n, it can be solved
in O(nm2) time; if m ≥ n, it can be solved in O(mn2)
time for our asymmetric problem. Note that when m ≤
m, i.e. secondary user number is larger than the channel
number, some secondary users will be unmatched, which
means these secondary users will not sense any channel.

V. CONCLUSION AND FUTURE WORKS

In the context of sensing-based opportunistic spectrum
access, multiple secondary users may contend with each
other either during the sensing-decision phase or during
transmission. When secondary users transmit data after
each sensing decision, as we have considered in this
work, the contention must be handled to some extent
in the sensing-decision phase itself. The question then
becomes fundamentally one of deciding how to random-
ize between the available channels in deciding which one
to sense. We have formulated this problem under both
symmetric and (more general) asymmetric cases.

In the symmetric case, we found in general that
there is always some incentive to sense any channel
that may be potentially free, with the better channels
more preferred in general. However, when the number
of users is greater than the number of channels, we
showed that the optimal strategy that maximizes the total
throughput is to pick each channel with a probability that
is the inverse of the number of users. This is somewhat
surprising as this implies that the optimal strategy is then
oblivious to the primary user occupancy behavior of the
channels.

In the asymmetric case, we observe that the maximal
value of the objective function occurs on when all the
secondary users choose pure strategy. This observation
simplifies the problem to a maximum weight matching
in a bipartite graph, which can be solved in polynomial
time by the Hungarian algorithm. However, in this case,
when the number of users is larger than the number
of channels, in order to get total network throughput
optimized, some secondary users will never get a chance
sense a channel, which leads to severe unfairness.

There are many interesting future directions that can
be considered. One question is whether a generalization

is possible that extends the single-stage optimization
problem presented here to a multi-stage optimization
which takes into account both future and immediate
rewards, based on richer models of primary user be-
havior (e.g. a Markov process, as considered in [1]).
In such a case, users may have incomplete or even
flawed information regarding the primary user occupancy
probability for each channel. We would also like to
generalize the asymmetric case to a multi-hop setting
where not all secondary users share a common medium,
where interference could be depicted, for instance, via
a conflict graph. Determining equilibrium strategies for
selfish users is also of interest; this will address, in
part, the fairness problem of current solution. Another
approach to address this fairness problem would be to
change the objective function to maximize the minimum
throughput among all secondary users.
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