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ABSTRACT

We provide a highly-efficient solution to the classical problem of
scheduling task graphs corresponding to complex applications on
distributed computing systems. A number of heuristics have been
previously proposed to optimize task scheduling with respect to
different metrics (e.g. makespan and throughput). However, they
tend to be slow to run, particularly for larger problem instances,
limiting their applicability in more dynamic systems. Motivated
by the goal of solving these problems more rapidly, we propose,
for the first time, a graph convolutional network-based scheduler
(GCNScheduler). By carefully integrating the inter-task data depen-
dency structure and the computational network into a single input
graph, the GCNScheduler can efficiently schedule tasks of complex
applications for a given objective. We use simulations to illustrate
that not only can our scheme quickly and efficiently learn from
existing scheduling schemes, but also it can easily be applied to
large-scale settings that current scheduling schemes fail to handle.
We demonstrate the generalization of GCNScheduler to unseen
real-world applications and show that it achieves almost the same
makespan and throughput as benchmarks, while providing several
orders of magnitude faster scheduling times.
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1 INTRODUCTION

Successfully running complex graph-based applications, ranging
from edge-cloud processing in IoT systems [4, 15] to processing
astronomical observations [10], heavily relies on executing all
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sub-components of such applications through an efficient task-
scheduling. Not only does efficient task scheduling play a crucial
role in improving the utilization of computing resources and re-
ducing the required time to executing tasks, it can also lead to
significant profits to service providers [3]. In this framework, any
application consists of multiple tasks with a given inter-task data
dependency structure, i.e. each task generates inputs for certain
other tasks. Such dependencies can be expressed via a directed
acyclic graph (DAG), also known as task graph, where vertices and
edges represent tasks and inter-task data dependencies, respec-
tively. An input job for an application is completed once all the
tasks are executed by compute machines according to the inter-task
dependencies.

There are two commonly used metrics for schedulers to optimize:
makespan and throughput. The required time to complete all tasks
for a single input is called the makespan. The maximum steady state
rate at which inputs can be processed in a pipelined manner is called
throughput. Makespan minimization and throughput maximization
can each be achieved through relevant efficient task-scheduling
algorithms that assign tasks to appropriate distributed computing
resources to be executed.

The underlying methodology for task scheduling can be cate-
gorized into heuristic-based (e.g. [7]- [19]), meta-heuristic ones
(e.g. [1]-[8]) , and optimization-based schemes (e.g. [2]). One of
the most well-known heuristic scheduling schemes for makespan
minimization is the heterogeneous earliest-finish time (HEFT) algo-
rithm [28], which will be considered as one of our benchmarks. For
throughput maximization, we benchmark against the algorithm
presented in [9] which we refer to as TP-HEFT.

One of the main disadvantages of all the above-mentioned sched-
uling schemes is that they work well only in relatively small settings;
once a task graph becomes large or extremely large, they require
very long computation times. We anticipate that applications in
many domains, such as IoT for smart cities will result in increas-
ingly complex applications with numerous inter-dependent tasks,
and scheduling may need to be repeated quite frequently in the
presence of network or resource dynamics [6, 27]. Therefore, it
is essential to design a faster method to schedule tasks for such
large-scale task graphs.

A promising alternative is to apply machine learning techniques
for function approximation to this problem, leveraging the fact that
scheduling essentially has to do with finding a function mapping
tasks to compute machines. Given the graph structure of appli-
cations, we propose to use an appropriate graph convolutional
network (GCN) [17] to schedule tasks through learning the inter-
task dependencies of the task graph as well as network settings (i.e.,
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execution speed of compute machines and communication band-
width across machines) in order to extract the relationship between
different entities. The GCN has attracted significant attention in
the literature for its ability in addressing many graph-based appli-
cations to perform semi-supervised link prediction [29] and node
classification [17]. The idea behind GCN is to construct node em-
beddings layer by layer. In each layer, a node embedding is achieved
by aggregating its neighbors’ embeddings, followed by a neural
network.

To the best of our knowledge, there is no prior work that has
proposed a pure GCN, incorporated with carefully-designed the
features of both nodes and edges for task graphs, to perform sched-
uling over distributed computing systems.

The main contributions of this paper are as follows:

e We propose GCNScheduler, which can quickly schedule tasks
by carefully integrating a task graph with network settings
into a single input graph and feeding it to a GCN model
suitable for directed graphs.

o Any existing scheduling algorithm can be used as a teacher
to train GCNScheduler, for any metric. We illustrate this by
training GCNScheduler using HEFT for makespan minimiza-
tion, and TP-HEFT for throughput maximization.

o We show that GCNScheduler gives comparable schedul-
ing performance as the teacher algorithm, i.e. in terms of
makespan with respect to HEFT and in terms of throughput
with respect to TP-HEFT, respectively.

o We show that our GCNScheduler can be trained in a very
short period of time, for instance, it takes around a minute
to train the model using a graph with 5,000 nodes.

o We show that GCNScheduler is several orders of magnitude
faster than previous algorithms in obtaining the schedule for
a given task graph. For example, for makespan minimization,
GCNScheduler schedules 100-node task graphs in about 3.8
milliseconds while READYS and HEFT respectively takes
around 288 milliseconds and 25 seconds; and for through-
put maximization, GCNScheduler schedules 200-node task
graphs in about 4 milliseconds, compared to about 27 seconds
for TP-HEFT.

e We show that GCNScheduler is able to efficiently perform
scheduling for any size task graph. In particular, we show
that our proposed scheme is able to operate over large-scale
task graphs where existing schemes require excessive com-
putational resources.

2 RELATED WORK

Heuristic, meta-heuristic, and optimization-based are three cat-
egories of task scheduling schemes. Since heuristic algorithms
(e.g. [21]) may sometimes perform poorly compared to optimal
task scheduling, meta-heuristic (e.g. Particle Swarm Optimization
[16], Simulated Annealing [1], Genetic-based approach [23]) and
optimization-based schemes (e.g. [2]), which aim at approximating
the NP-hard optimization of task scheduling, have attracted signif-
icant attention. However, all the above-mentioned schemes tend
to run extremely slowly as number of tasks becomes large due to
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iterative nature of these methods, which requires excessive compu-
tations. Moreover, this issue makes the aforementioned schemes
unable to handle large-scale task graphs.

As obtaining the optimal scheduler is basically the same as find-
ing an appropriate mapper function, which maps tasks to compute
machines, machine-learning based scheduling has begun emerg-
ing as an alternative thanks to advances in fundamental learning
methods, such as deep learning [11] and reinforcement learning
(RL) [26]. Sun et. al. proposed DeepWave [25], a scheduler which re-
duces job completion time using RL while specifying a priority list
! as the action and the completion time of a job DAG as the reward.
Furthermore, Decima [18] schedules tasks over a spark cluster by
training a neural network using RL with scheduling the next task
for execution as the action and a high-level scheduling objective
of minimizing the makespan as the reward. The aforementioned
RL-based schemes suffer from having a huge action space (i.e., the
space of scheduling decisions).

While Decima [18] only operates in homogeneous environments,
Grinsztajn et. al. proposed READYS [12] to operate over heteroge-
neous environments. READYS combines two different components,
a GCN and actor-critic algorithm. There are three main differences
from our work with respect to their use of GCN: first, they use
the GCN to embed task nodes only without taking network set-
tings into account as we do; second, they use a regular GCN which
does not explicitly account for directed nodes while we use an
EDGNN [13] which does; and finally, the GCN in READYS does not
do scheduling (their GCN only does task node embedding, while
the scheduling is done via the actor-critic algorithm), whereas we
are the first to propose to use a GCN directly for task scheduling.

3 PROBLEM STATEMENTS

We now elaborate upon formally representing the minimization
of makespan and the maximization of throughput as optimization
problems. In order to finish a job, all its tasks require to be exe-
cuted at least on a single compute machine. Before expressing the
definition of makespan and throughput, let us explain about task
dependencies, referred to as task graph, and network settings.

Task Graph: Every application/job is comprised of inter-task data
dependencies. Since there are dependencies across different tasks,
meaning that a task generates inputs for certain other tasks, we can
model this dependency through a DAG.Suppose we have N7 tasks
{T,}fiTl with a given task graph Grgsr = (Vrasks ETask) Where
VIask = {Tl}f\f1 and Erggr = {eii }(i,i7)eq respectively represent
the set of vertices and edges (task dependencies) with Q := {(i, i’)|
if task T; generates inputs for task Tj» }. Let us define vector p :=
[p1,---s pNT]T as the amount of computations required by tasks.
For every tasks T; and T}, Vi, j where e; j € E7 4, task T; produces
d; j amount of data for task T; after being executed by a machine.
Network Settings: Each task is required to be executed on a com-
pute node (machine) which is connected to other compute nodes
(machines) through communication links (compute node and ma-
chine are interchangeably used in this paper). Let us suppose to
have N¢ compute nodes {C; }5]:1 Regarding the execution speed

'Which indicates the scheduling priority of edges in a job DAG.
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of compute nodes, we consider vector e := [e, ..., eNC]T as the ex-
ecuting speed of machines. The communication link delay between
any two compute nodes can be characterized by bandwidth. Let
us denote B; j as the communication bandwidth of the link from
compute node C; to compute node C;. In case of two machines not
being connected to each other, we can assume the corresponding
bandwidth is zero (infinite time for communication delay).

In general, a task-scheduling scheme maps tasks to compute
nodes according to a given objective. Formally speaking, a task
scheduler can be represented as a function m(.) : VTask%{Ck}kN:Cl
where task Tj, Vi, is assigned to machine m(T;). The main goal is to
find a scheduler that assigns tasks to compute machines with re-
spect to optimizing a given objective (e.g. makespan minimization).
Our proposed scheme aims at obtaining such scheduler by utiliz-
ing a suitable GCN (incorporated with carefully-designed features)
where it is able to classify tasks into machines?.

4 PROPOSED GCNSCHEDULER

We present a novel machine-learning based task scheduler which
can be trained with respect to aforementioned objectives. To capture
the underlying graph-based relationships of the task-scheduling
problem, we employ a suitable GCN[13], in order to obtain a model
which can automatically assign tasks to compute machines. One
unique challenge in this problem is that there are two different
graphs that need to be considered - a task graph and the compute
network graph. We address this challenge by combining the two
graphs into one graph where there is a node for each node in the task
graph, but the node features and edge features combine the features
of both the task graph and compute network graph. This unified
graph is then used as the basis for the GCN training and inference.
There is no prior GCN-based scheduling scheme that has done such
a unification. This novel idea has significant advantages over the
conventional scheduling schemes. First, it can remarkably reduce
the computational complexity compared to previous scheduling
algorithms. Second, after training an appropriate GCN, our scheme
can handle any large-scale task graph while conventional schemes
severely suffer from the scalability issue.

4.1 Overview of GCNs for Directed Graphs

A suitable framework for problems that have to do with directed
graphs is EDGNN [13] where incoming and outgoing edges are
treated differently in order to capture nonreciprocal relationship
between nodes. In particular, the embedding of node v would be as
follows:

by = oW+ w3 niY

uue N(v) (1)
(t) (t-1) (t) (t-1)
+ W3 Z he,(u,z:) + W4 Z hE,(U,u) )’

ey €ETask u:eyu €ETask

where WY), W:(Zt), Wgt), and Wgt) represent weight matrices of

layer t for embedding of self node, neighboring nodes, incoming
()
e,(u,0)

respectively denote embedding of node v and the embedding of the
edge from node u to node v at layer ¢.

edges, and outgoing edges, respectively. Moreover, hffz), andh

2Each machine represents a class in our problem.
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4.2 Proposed Input Graph

In order to train an EDGNN-based model, we need to carefully de-
sign the input graph components, namely adjacency matrix, nodes’
features, edges’ features, and labels. It should be noted that our
scheme is not tailored to a particular criterion as we will show
later that it can learn from two scheduling schemes with different
objectives. Our designed input graph can be fed into the EDGNN
and the model will be trained according to labels generated from a
given scheduling scheme. We next explain how we carefully design
the input graph.

Designed Input Graph: We start from the original task graph and
consider the same set of nodes and edges for our input graph as
the task graph. In other words, by representing the input graph as
Ginput = (Vinput:Einput)s we have Vinput = Vrgsk and Einput =
Et4sk- The crucial part for having an efficacious GCN-based sched-
uler has to do with carefully designing the features of nodes and
edges as well as the labels. According to the definition of makespan
in [28] and throughput in [9], these objectives are a function of
the required computational time of all tasks across all machines
(i.e. {% }vi,j) and the required communication delay to transfer the

result of executing all tasks to their successor tasks across all pair-
wise machines. Therefore, we incorporate the following features:
e The feature of node T, VT; € Vippu:, is denoted by xp; :=

(%, &, cee L)T € RNC | The intuition behind Xn i is that these
1° €2 eNe ’
features represent the required computational time of task T; across
all compute machines.

o The feature of edge ey, v, Yey,o € Einput, is denoted by x¢ (4, 1)

and it has the following features:

du,z) du,v du,v
Bi1 Bi2" " BNoNe

T 2
Xe, (u,0) = ( ) e RN,

The intuition behind xg () is that these features represent the
required time for transferring the result of executing task T;, to the
following task T, across all possible pair-wise compute machines. As
far as ablations studies are concerned, the makespan of a real-world
application of [5] on a network of machines (where one of them has
poor connections to others) is 0.5844s, while the makespan degrades
to 1.5844s (x2.71) and 3.5845s (x6.13) for the case of removing nodes
features and edges features, respectively.

Objective-Dependent Labeling: Based on what task scheduler
our method should learn from (which we refer to as the “teacher”
scheduler, namely, HEFT for makespan minimization and TP-HEFT
for throughput maximization), we label all nodes as well as edges.
Let us define Ln,y and L (4,5) as labels of node v and edge ey,
respectively. Regarding nodes’ labeling, we consider the label of
node Tj, Vi, as the index of compute node that the teacher algorithm
assigns task T; to run on. We label each edge according to the label
of the ending vertex it is from. In other words, Le (5,4) = Lnu Yu, 0
such that e, € Einpus. We should note that this edge-labeling is
crucial in enforcing the model to learn to label out-going edges of
a node with same label as its corresponding node’s label. We find
empirically that the alternative of labeling in-coming edges with a
node’s label results in performance degradation.
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4.3 Implementation and Training

As far as the model parameters are concerned, we consider a 3-
layer EDGNN with 32 nodes per layer and LeakyReLU activation
function. Since we suppose nodes and edges have features, we let
both nodes and edges to be embedded.

We train GCNScheduler with respect to each of makespan min-
imization and throughput maximization only once. For a given
objective (either makespan or throughput), we consider dataset

{Gi(rz)ut’ L(")}Zy1 for sufficiently large N, (e.g. Ny = 100) where
L) represents the labels (which comes from the teacher sched-

uler) of nodes and edges of ith input graph Glo

input’ Regarding input

graphs, Gi(,i;m ; s constructed from task graph G;Zs o

tation amount p;, machines execution speed e;, and communication
bandwidth matrix B;. The components of different input graphs are

tasks compu-

set independently from each other. Regarding task graphs G;lzs S
we generate DAGs randomly. Furthermore, since the HEFT and TP-
HEFT algorithms are extremely slow in performing task-scheduling
for large-scale task graphs, obtaining labels (i.e. determining the
machine each task needs to be executed on) for a single large graph
is cumbersome. Therefore, we use medium size task graphs (with
< 50 tasks for each) such that HEFT and TP-HEFT can handle
scheduling tasks over each of them.

With respect to network settings of input graphs, we let network
operate in both normal heterogeneous mode with bandwidths and
execution speeds randomly drawn from uniform distribution (for
80% of input graphs) and straggler mode (for 20% of input graphs)
where one or more machines experience either extremely poor
execution speed or extreme poor communication bandwidths to
other machines.

We use a batch size of 16, a learning rate of 1073, and Adam
optimizer. We also train the model for at most 50 epochs with early
stopping with respect to the validation set cross-entropy loss. All
our experiments are performed with 10-fold cross validation. The
accuracy of GCNScheduler in labeling the nodes with respect to the
schedules produced by the teacher scheduler is around 70%; how-
ever, we should note that ultimately the makespan or throughput
are more important rather than the accuracy of labeling individual
tasks. As far as training time, it only takes less than a minute3 for
the model to be trained with respect to a given objective. This is a
key advantage of GCNScheduler compared to RL-based schedulers
such as READYS [12] which take around 20 minutes to train their
models.

5 EXPERIMENTAL RESULTS

We measure the performance of GCNScheduler (in terms of the
makespan and the throughput) as well as time to find schedule
(TTFS). We further compare the performance of GCNScheduler
against our benchmarks (i.e. HEFT and READYS for makespan
minimization, while TP-HEFT and the random task-scheduler for
throughput maximization). We evaluate all schemes by running
them on our local cluster which has 16 CPUs (with 8 cores and 2
threads per core) of Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz.

30n our local cluster which has 16 CPUs (with 8 cores and 2 threads per core) of
Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz.
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In order to show that GCNScheduler can generalize well, we test
our trained model on both synthetic (medium-scale and large-scale)
task graphs as well as the task graphs of real-world applications.
Regarding the applications, we use Cycles [24] (time-step simula-
tions of crop production and the water, carbon (C) and nitrogen (N)
cycles in the soil plant atmosphere continuum), Epigenomics [14]
(executing various genome sequencing operations), Montage [22]
(an astronomical image mosaic engine), Seismology [5], and the task
graphs of three real-world perception applications, namely Face
recognition, Object-and-pose recognition, and Gesture recognition,
presented in [20]. For simplicity, we assume each task produces the
same amount of data after being executed. As far as network set-
tings are concerned, we consider 40 machines where their execution
speeds and the communication bandwidths are drawn randomly
from uniform distributions.

5.1 Makespan Minimization

We measure the performance of trained GCNScheduler (with re-
spect to makespan minimization) on the task graphs of real-world
applications provided in [5, 14, 20, 22, 24]. Table 1 shows the makespan
and TTFS of GCNScheduler (with the makespan minimization ob-
jective) against HEFT and READYS for the seven real-world applica-
tions. While our GCNScheduler leads to almost the same makespan
compared to benchmarks, it reduces the time taken to find the
schedule by several orders of magnitude as it is shown in Table 1.

5.2 Throughput Maximization

Similarly, we measure the throughput of GCNScheduler over the
task graph of real-world applications and compare it against bench-
marks. Table 2 shows the throughput and the time taken to find
the schedule of GCNScheduler compared to TP-HEFT for the real-
world applications. While GCNScheduler leads to a marginally
better throughput performance compared to TP-HEFT scheduler, it
significantly (2-3 orders of magnitude) reduces the time taken to
perform task-assignment as it is shown in Table 2.

6 CONCLUSION

We proposed GCNScheduler, a scalable and fast task-scheduling
scheme which can perform scheduling according to different objec-
tives. Not only can GCNScheduler easily handle large-scale settings
where existing scheduling schemes are unable to do, but also it
can lead to almost the same performance with several orders of
magnitude lower required time to schedule.
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