
Neural Networks for DDoS Attack Detection using
an Enhanced Urban IoT Dataset

Arvin Hekmati
Dept. of Computer Science

University of Southern California
Los Angeles, California, USA

hekmati@usc.edu

Eugenio Grippo
Dept. of Electrical and Computer Engineering

University of Southern California
Los Angeles, California, USA

egrippo@usc.edu

Bhaskar Krishnamachari
Dept. of Computer Science

University of Southern California
Los Angeles, California, USA

bkrishna@usc.edu

Abstract— We investigate the application of artificial intel-
ligence to cybersecurity, to contribute to the safe and secure
growth of the internet of things (IoT). Specifically, we train and
evaluate different neural networks models to detect distributed
denial of service (DDoS) attacks in a large-scale IoT system. We
consider futuristic attacks launched by sophisticated malicious
entities that take over multiple distributed IoT nodes and are
able to disguise their intrusion by closely mimicking the benign
traffic of the network. Using data from prior work, we find
that a truncated Cauchy distribution is a suitable fit for benign
traffic volume from IoT devices, and we model the attack traffic
volume as following the same distribution but with different
parameters for location and scale. We emulate both benign and
attack traffic by overlaying these traffic volume distributions
on top of an activity status data trace from a real urban IoT
deployment consisting of about 4000 nodes. Using our enhanced
dataset, we compare four neural network models: multi-layer
perceptron (MLP), convolutional neural network (CNN), long
short-term memory (LSTM), and autoencoder (AEN), analyzing
their performance as a function of a parameter that measures
the deviation of the attacks from the benign data. We observe
that all four models are sensitive to the distance between benign
and attack traffic. We further observe that LSTM gives the best
overall performance in terms of both high accuracy and high
recall.

Index Terms—IoT DDoS Attacks, datasets, neural networks,
machine learning, botnet, Cauchy distribution

I. INTRODUCTION

The Internet of things (IoT) has dramatically grown pro-
pelled by the impetuous development of technology ([1],
[2]). It might be said, however, that its vulnerability has
been growing almost at the same pace. As a consequence,
cybersecurity of the IoT ought to be developed at an ever-faster
rhythm, allowing/accompanying the safe and secure growth of
networks ([3], [4]). With this goal in mind, this work addresses
one of the most dangerous types of attacks involving IoT
systems, namely distributed denial of sevice attacks (DDoS)
([5],[6],[7]).

As can be learned from the famous IoT-based DDoS Mirai
incident ([8],[9]) in 2016, botnet attacks can hijack thousands
of IoT nodes at the same time, dramatically increasing the net-
work traffic (on the order of Tbps) and shutting down servers,
affecting millions of end-users. Given this dangerous and
dramatically growing threat, we explore the use of machine
learning techniques ([10]) as the main tool to prevent such

attacks ([11]), specifically training neural networks to respond
as rapidly as possible to avoid propagation of undesired
attacks.

As we know, the success of a neural network model directly
relates to its training stage, creating the necessity to feed mod-
els with rich trusted datasets. Although real/synthetic DDoS
datasets have been provided or generated for many years (e.g.,
[12], [13], [14], [15], [16], [17]), there is a remarkable paucity
of large datasets specifically focused on IoT in the literature
with few exceptions ([18], [19], [20]). Table I presents an
overview of datasets in this field.

Recently, we have released an anonymized dataset contain-
ing real-trace data from an urban deployment of 4060 IoT
devices [21]. In this work, we further enhance that dataset with
a python open-source script that allows the user to emulate
DDoS network attacks in different network locations and with
different intensity. The basis for this emulation is grounded
in our finding that a real urban IoT benign traffic can be
well-modeled as a (truncated) Cauchy distribution (matching
the observation of prior researchers that Ethernet traffic is
well modeled by such a distribution [22]). Our proposed
“dataset+script” allows the injection of Cauchy distributed
attacks, and it also lets the user to parametrize the difference
between the benign and attack traffic volume. In this way,
a diverse training scenario can be effectively generated to
improve the training of neural network models. All these
generations are tuned by a parameter that we call “k” that
determines both the location and scale parameter of the attack
traffic volume distribution.

We train, evaluate and compare the performance of four
different neural network models, namely multi-layered per-
ceptron (MLP), convolutional neural networks (CNN), long
short-term memory (LSTM) and autoencoders (AEN). Prior
work has explored the training of various neural network
models for detecting anomalous DDoS traffic. For example,
Meidan et al. [23] trained an autoencoder and found high
performance for a setting where the attack traffic volume is
quite substantially (orders of magnitude) different from benign
traffic. We add to this literature in two ways: (1) by considering
more sophisticated futuristic attacks where the attack traffic
volume is much closer to the benign traffic, as determined
by the parameter “k”, and (2) by providing a quantitative

978-1-6654-9726-8/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r C

om
m

un
ic

at
io

ns
 a

nd
 N

et
w

or
ks

 (I
CC

CN
) |

 9
78

-1
-6

65
4-

97
26

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CC
N

54
97

7.
20

22
.9

86
89

42

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

comparison of the performance of four different NN models as
a function of that parameter, helping to identify the best choice
of model under different levels of similarity between benign
and attack traffic. Through extensive simulation experiments,
we conclude that:

• Both the accuracy and recall of all four NN models are
sensitive to the “k” parameter.

• LSTM model provides generally the highest accuracy and
recall for different values of “k”.

We make the dataset and the attack emulation script
along with our illustrative NN model available as an open-
source repository online at https://github.com/ANRGUSC/
IoT DDoS NN.

This work is organized as follows: in section II, we present
the raw urban IoT dataset and its benign traffic characteristics;
this section also introduces the modeling of the IoT benign
traffic (defining the (truncated) Cauchy distribution) and builds
the synthetic dataset defining the parameter that will regulate
the relation/distance between benign and attack traffic. In
section III we use the dataset to train, validate and compare
different NN models to detect DDoS attacks deployed in the
customized dataset. Lastly, section V summarizes this work
and proposes future research steps.

II. ORIGINAL AND BENIGN ACTIVITY DATASETS

The original data has been collected from the activity
status of real event-driven IoT nodes deployed in an urban
area. The source of this data, originally presented in [21],
has been anonymized for privacy and security reasons. The
original dataset contains three main features, the node ID,
the location of the node in Latitude and Longitude, and a
timestamp of the activity status of the IoT node. A record
has been added to the original dataset whenever the activity
status of a node changes. The raw dataset has 4060 nodes
with one month worth of data with no missing data points.

Having a record of each node whenever the status of that
node changes provides a bias towards the information of nodes
that have more activity changes during the day. In order to
overcome this issue, we also provide a script that takes the
original dataset and generates a new benign activity dataset
showing the activity status for each node every ts seconds. In
this way, all nodes in the benign activity dataset will have the
same number of records. The script can generate a customized
benign dataset by providing the beginning and ending date, the
number of IoT nodes, and the time step, i.e., ts.

In addition to the activity status of the nodes, going beyond
what was presented in [21], we add the number of packets
transmitted in each time step for each node to the benign
dataset. Meidan et al. [23] presented a dataset containing the
benign network traffic of 9 IoT nodes. We used the benign
packet volume in a time window of 10 seconds of a security
camera with ID XCS7 1003 as presented in [23]. We use
this real network traffic data to generate traffic data for the
benign dataset. Various distributions have been used in the
literature for estimating the network traffic [31]. We analyzed

80 different distributions to fit to the packet volume in the
real IoT security camera node. The Cauchy distribution fitted
the best to the real network traffic by having the minimum
mean square error. Due to the unusual nature of the full
Cauchy distribution – unbounded in value and not having a
defined mean, we use instead a truncated Cauchy distribution
with a low of 0 and high of the maximum packet volume
observed in the real data for generating the packet volumes
in the benign dataset. The truncated Cauchy distribution for
the benign traffic network is also compatible with prior work
on modeling network traffic [22]. In order to generate the
packet volume in the benign dataset, we will set the packet
volume to zero whenever the node is inactive. On the other
hand, when the node becomes active, packet volume will be
generated from the fitted truncated Cauchy distribution. Table
II presents a few sample data points in the original dataset.

In order to generate the packet volume for the attack
dataset, we define a new truncated Cauchy distribution with
the following parameters:

xa = (1 + k) · xb (1)
γa = (1 + k) · γb (2)
ma = (1 + k) ·mb (3)

where, xb, γb, mb refer to the location, scale, and max-
imum packet volume, respectively, of the truncated Cauchy
distribution of the benign traffic; while, xa, γa and ma are
the location, scale, and maximum packet volume, respectively,
of the generated truncated Cauchy distribution of the attack
traffic. k, is the tunable parameter for generating packets
with higher location, scale, and maximum packet volume.
While one could potentially use three different parameters for
creating new xa, γa, and ma, we use only one parameter k
just for simplicity.

Figure 1 shows the benign packet complementary cumu-
lative distribution function (CCDF) in blue color besides the
truncated Cauchy distribution with different k values. As we
can see, the original truncated Cauchy distribution is well
fitted to the real packet CCDF. By increasing k, we are
basically increasing the location and scale of the truncated
Cauchy distribution, which means that we will have higher
probabilities for larger packet volumes, which is suited for the
case of a DDoS attack where the attacker transfers a huge
amount of packets during the attack. However, intuitively, a
larger k may also make it easier to detect the attack.

Figure 2 presents the mean number of active nodes in the
benign dataset versus the time of the day on one particular
day of the dataset. As we can see, up to 65% of the nodes get
activated around the middle of the day, but by midnight only
about 20% of the nodes are active.

III. ATTACK AND DEFENSE MECHANISM

This section presents how synthetic DDoS attacks are gener-
ated on the IoT nodes. Furthermore, here we define the training
dataset features and also the detection mechanism.

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Related Papers with IoT datasets

DATASET Date Number of Nodes IoT specific/General Binary activity or Traffic Volume Benign/Attack traffic
DARPA 2000[24] 2000 60 general traffic volume both
CAIDA UCSD DDoS Attack
2007 [25]

2007 unclear general traffic volume attack

Shiravi et. al. [26] 2012 24 general traffic volume both
CICIDS2017 [27] 2017 25 general traffic volume both
Meidan et. al. [19] 2018 9 IoT specific traffic volume both
CSE-CIC-IDS2018 on AWS
[28]

2018 450 general traffic volume attack

Meidan et. al. [23] 2018 9 IoT specific traffic volume both
CICDDoS2019 [29] 2019 25 general traffic volume attack
The Bot-IoT Dataset (Univ. of
NSW) [20]

2019 unclear IoT specific traffic volume both

Ullah et. al [18] 2020 42 IoT specific traffic volume both
Erhan et. al. [30]. 2020 4000 general traffic volume both
Hekmati et. al. [21]. 2021 4060 IoT specific binary activity both
Hekmati et. al. (to be published) 2021 4060 IoT specific traffic volume both

Fig. 1: Packets volume CCDF vs truncated Cauchy distribution

Fig. 2: Active Nodes Percentage vs Time

TABLE II: Sample Data Points in Benign Dataset

NODE LAT LNG TIME ACTIVE PACKET

5276 33.962 40.087 2021-01-01
23:00:00 0 0

5276 33.962 40.087 2021-01-01
23:00:30 0 0

5276 33.962 40.087 2021-01-01
23:01:00 1 9

5276 33.962 40.087 2021-01-01
23:01:30 1 11

A. Generating Attacked Dataset

In this paper, we synthetically generate a DDoS attack
on the IoT nodes by setting all attacked nodes to active
status for the duration of the attack. Additionally, we set the
packet volume distribution parameter, k and use equations
(1), (2), and (3) to define the distribution and sample in i.i.d
fashion from that distribution to generate the packets volume
transmitted in each time step. Four parameters can be set in
generating the attacks: the start time of the attack, the duration
of the attack, the percentage of the nodes under attack, and
the attack packet distribution parameter (k).

B. Generating Training Dataset

Given the attacked dataset, a labeled training dataset will
be generated. The attacked dataset has two features of active
status and packet volume with time-stamps. The attacked
dataset could be considered as a time-series dataset. Therefore,
in the training dataset, we stack the past nt entries of each
time-stamp to predict the attack status of the sample.

C. Defense Mechanism

For the defense mechanisms, we use four different deep
learning models to do binary classification on each sample
of the training dataset. For each deep learning model, we
train a model for each IoT node by using its data alone. Note
that this is a simple approach that will not take into account
any correlations in the data across different nodes, so there is
scope for further improvement by developing more complex
models that integrate the inputs from multiple IoT devices.
We defer the investigation of such more complex models to

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

Output

Input

(a) MLP

1 Dim

Convolution

Max

Pooling Flatten

Kernel Size 3 Pool Size 2

Output

Input

(b) CNN

FC

Output

(c) LSTM

Encoder Decoder

FC

FC

FC

FC FC

FC

FC

FC

Output

FC

Input

(d) AEN

Fig. 3: Neural Network Models

future work. For each neural network model, we can choose
nt which presents the number of entries prior to the sample
used for predicting the attack status. The input layer either
used a two dimension mode ([nt, 2]) or one dimension mode
([2nt]), based on the neural network model, given that 2 refers
to two features of the dataset. We used the standard scaler
for scaling the training, validation, and testing dataset in all
models. Furthermore, due to having an unbalanced training
dataset with the minor class of attacked samples, we also
analyzed the case of using upsampling in the training process
for each model and the case without upsampling. Figure 3
presents the architecture for the neural network models. We
tried different number of nodes and layers for each model and
selected the one which performed the best. The details of each
model are the following:

• Multilayer Perceptron (MLP): In this model, we have
an input layer with 2nt neurons. The input layer is
followed by one dense layer with 4 neurons and ReLU
activation. A dropout of 20% and batch normalization are
also used at the end of the hidden layer. The output is a
single neuron with the Sigmoid activation function.

• Convolutional Neural Network (CNN): In this model,
we have an input layer in the shape of [nt, 2], The input
layer is followed by one 1-dimensional convolution layer
with 5 filters, kernel size of 3, and ReLu activation. This
layer is followed by a 1-dimensional max-pooling layer
with a pool size of 2, and then a flattened layer. Finally,
the output is a single neuron with the Sigmoid activation
function.

• Long Short-Term Memory (LSTM): In this model, we
have an input layer in the shape of [nt, 2]. The input layer
is followed by one LSTM layer with 10 units. Finally,
the output is a single neuron with the Sigmoid activation
function.

• Autoencoder (AEN): In this model, we have an input
layer with 2nt neurons. The input layer is followed by an
encoder that consists of three dense layers with 64, 32, 16
neurons, each followed by batch normalization and Tanh
activation function. The decoder consists of three dense
layers with 16, 32, 64 neurons, each followed by batch
normalization and Tanh activation function. Finally, we
have a dense layer with 2nt neurons and Tanh activation
function in the output layer. By using this model, we
essentially train the encoder to encode our input dataset

into a latent space. Then, we design a classification model
that gets this latent space as input. This input layer is
followed by one dense layer with 8 neurons and Tanh
activation function. The output layer consists of one
neuron with a Sigmoid activation function.

IV. NEURAL NETWORK MODELS EVALUATIONS

In this section, we evaluate the proposed neural network
models by doing extensive simulations to analyze each model’s
performance in different scenarios.

A. Experiment Setup

In these experiments, we randomly selected 20 IoT devices
out of 4060 nodes, and a time step of 30 seconds was used
for generating the benign dataset. We used three different days
of the dataset for the training, validation, and testing. The
attacks are started at 2 AM on all of the nodes with durations
of 1, 2, 4, 8, and 16 hours. Note that one could randomize
the starting time of the attacks. In that case, we can also
use the timestamp as an input feature to the neural network
models for better prediction. A list of 8 different values for
k is used for generating attacks: 0, 0.01, 0.05, 0.1, 0.3, 0.5,
0.7, and 1. Note that this approach helps generate attacks that
have very similar packet volume to the benign traffic (k = 0)
and generate attacks that are very different from the benign
traffic (k = 1). In order to generate the training dataset, we
considered a time window of 10, i.e. nt = 10, which means
the neural network models will make predictions based on
the information on the past 10 time slots of each sample.
After generating the datasets, it has been shuffled to do not
have prediction bias towards the time of the day. All proposed
neural network models have been trained for 50 epochs using
32 batches.

B. Mean Accuracy and Recall

Figures 4, 5, present the binary accuracy and recall value
of the neural network models versus the attack packet volume
distribution parameter (k), in the case of not upsampling the
training dataset. Furthermore, figures 6, 7, present the binary
accuracy and recall value of the neural network models versus
the attack packet volume distribution parameter (k), in the case
of upsampling the training dataset. Finally, table III presents
the mean recall and accuracy of the 20 models trained for
detecting DDoS attacks, for k equal to 0 and 1 in the training

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Mean testing dataset accuracy and recall for the neural network detection models

Mean Accuracy
Without Upsampling

Mean Accuracy
With Upsampling

Mean Recall
Without Upsampling

Mean Recall
With Upsampling

k 0 1 0 1 0 1 0 1
MLP 0.81 0.96 0.77 0.83 0.25 0.99 0.72 1.0
CNN 0.81 0.96 0.78 0.86 0.26 0.99 0.66 1.0
LSTM 0.81 0.97 0.79 0.89 0.27 1.0 0.56 1.0
AEN 0.81 0.96 0.78 0.86 0.26 0.99 0.65 1.0

(a) Training dataset (b) Testing dataset

Fig. 4: Binary accuracy of training and testing dataset vs k without upsampling

(a) Training dataset (b) Testing dataset

Fig. 5: Recall value of training and testing dataset vs k without upsampling

and testing dataset with/without upsampling. As we can see, in
general, for all models, the upsampling method in both training
and testing dataset, improves recall performance at low values
of k but hurts accuracy for large values of k. With and without
upsampling, the LSTM model generally has the highest binary
accuracy and recall. The only exception is the recall value for
low values of k in the case of upsampling, where other models
are performing better than the LSTM, with MLP offering the
highest recall in this case.

C. Attack Prediction versus Time

Figures 8 and 9 show the ground truth for attacks (True),
attack predictions true positive (TP) and false positives (FP)
mean overall nodes versus time, for both training and testing

dataset, with k value equals to 0 and 1. We used the attack
duration of 16 hours in these figures and the LSTM model with
upsampling for our predictions. As we can see, in the case of
k = 0, the model has a hard time detecting the attacks because
the attacker is blending its behavior with the real behavior of
the IoT nodes. On the other hand, in the case of k = 1, since
the attackers are using higher packet volumes for attacking,
the LSTM model is doing a very good job of detecting the
attacks.

V. CONCLUSION

After modeling the benign traffic of a city IoT based system
as a (truncated) Cauchy distribution, we developed a 4060
synthetic dataset based on a real urban IoT data, enhanced

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

(a) Training dataset (b) Testing dataset

Fig. 6: Binary accuracy of training and testing dataset vs k with upsampling

(a) Training dataset (b) Testing dataset

Fig. 7: Recall value of training and testing dataset vs k with upsampling

(a) Training dataset (b) Testing dataset

Fig. 8: Attack prediction vs time for k = 0

by a script to inject attack traffic following a parameterized
truncated Cauchy distribution. The proposed program allows
the user to modify the dataset by modifying a single parameter,
called “k”, that regulates the distance (in the location and

scale sense) between the benign and attack traffic; this feature
generates different dataset scenarios where benign and attack
distributions scale and location are varied as desired, bringing
multiple dataset choices for proper training and analysis of

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

(a) Training dataset (b) Testing dataset

Fig. 9: Attack prediction vs time for k = 1

NN models performance. We particularly observed that the
DDoS attack detection performance of four different NN
models (MLP, CNN, LSTM and autoencoders) trained with
this dataset are sensitive to the mentioned distance parameter.

In future work, we plan to consider more complex detection
models that can take into account spatial correlations in the
benign traffic. It may also be of interest to develop a real
packet generator based on our dataset to emulate benign and
attack traffic for use in cybersecurity testbeds.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HR001120C0160 for the Open, Programmable, Secure 5G
(OPS-5G) program. Any views, opinions, and/or findings ex-
pressed are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department
of Defense or the U.S. Government.

REFERENCES

[1] S. H. Shah and I. Yaqoob, “A survey: Internet of things (IoT) technolo-
gies, applications and challenges,” in 2016 IEEE Smart Energy Grid
Engineering (SEGE). IEEE, 2016, pp. 381–385.

[2] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi,
M. Shafie-khah, and P. Siano, “IoT-based smart cities: A survey,” in
2016 IEEE 16th International Conference on Environment and Electrical
Engineering (EEEIC), 2016, pp. 1–6.

[3] W. H. Hassan et al., “Current research on internet of things (IoT)
security: A survey,” Computer networks, vol. 148, pp. 283–294, 2019.

[4] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT security: An exhaustive survey on IoT vulnerabilities
and a first empirical look on internet-scale IoT exploitations,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2702–2733,
2019.

[5] R. Hallman, J. Bryan, G. Palavicini, J. Divita, and J. Romero-Mariona,
“IoDDoS-the internet of distributed denial of sevice attacks,” in 2nd
international conference on internet of things, big data and security.
SCITEPRESS, 2017, pp. 47–58.

[6] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[7] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76–79, 2017.

[8] H. Sinanović and S. Mrdovic, “Analysis of mirai malicious software,”
in 2017 25th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM). IEEE, 2017, pp. 1–5.

[9] A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers,
K. Steding-Jessen, M. H. P. C. Chaves, I. Cunha, D. Guedes, and
W. Meira, “The evolution of bashlite and mirai iot botnets,” in 2018
IEEE Symposium on Computers and Communications (ISCC), 2018, pp.
00 813–00 818.

[10] C. D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet detection
in the internet of things using deep learning approaches,” in 2018
International Joint Conference on Neural Networks (IJCNN), 2018, pp.
1–8.

[11] N. Sharma, A. Mahajan, and V. Malhotra, “Machine learning techniques
used in detection of DoS attacks: a literature review,” International
Journal of Advance Research in Computer Science and Software En-
gineering, vol. 6, no. 3, pp. 100–105, 2016.

[12] “University of New Brunswick, Canadian Institute for Cybersecurity,”
https://www.unb.ca/cic/datasets/, accessed: 09-11-2021.

[13] “University of California Irvine, KDD Archive,” https://www.kdd.org/
kdd-cup/view/kdd-cup-1999/Data, accessed: 09-11-2021.

[14] “University of New South Wales, The UNSW-NB15 Dataset,”
https://research.unsw.edu.au/projects/unsw-nb15-dataset, accessed: 09-
11-2021.

[15] D. Gümüşbaş, T. Yıldırım, A. Genovese, and F. Scotti, “A comprehen-
sive survey of databases and deep learning methods for cybersecurity
and intrusion detection systems,” IEEE Systems Journal, vol. 15, no. 2,
pp. 1717–1731, 2021.

[16] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Flow-
based benchmark data sets for intrusion detection,” in Proceedings of
the 16th European Conference on Cyber Warfare and Security. ACPI,
2017, pp. 361–369.

[17] M. Ring, S. Wunderlich, D. Grüdl, D. Landes, and A. Hotho, “Creation
of flow-based data sets for intrusion detection,” Journal of Information
Warfare, vol. 16, pp. 40–53, 2017.

[18] “A Scheme for Generating a Dataset for Anomalous Activity
Detection in IoT Networks,” https://sites.google.com/view/
iot-network-intrusion-dataset, accessed: 09-12-2021.

[19] “University of California Irvine, Machine Learning Repository,”
https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks
N BaIoT, accessed: 09-12-2021.

[20] “University of New South Wales, The Bot-IoT Dataset,” https://research.
unsw.edu.au/projects/bot-iot-dataset, accessed: 09-12-2021.

[21] A. Hekmati, E. Grippo, and B. Krishnamachari, “Large-scale urban iot
activity data for ddos attack emulation,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
560–564. [Online]. Available: https://doi.org/10.1145/3485730.3493695

[22] T. Field, U. Harder, and P. Harrison, “Network traffic behaviour in
switched ethernet systems,” in Proceedings. 10th IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems. IEEE, 2002, pp. 33–42.

[23] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot—network-based detection of IoT botnet

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, 2018.

[24] “DARPA 2000 Intrustion Detection Scenario Specific Data Sets,” https:
//www.ll.mit.edu/r-d/datasets/, accessed: 10-08-2021.

[25] “The CAIDA UCSD ”DDoS Attack 2007” Dataset, 2007,” https://
www.caida.org/catalog/datasets/ddos-20070804 dataset/, accessed: 10-
08-2021.

[26] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” computers & security, vol. 31, no. 3, pp. 357–374,
2012.

[27] “Canadian Institute for Cybersecurity, “CICIDS2017,” unb.ca, 2017,”
https://www.unb.ca/cic/datasets/ids-2017.html, accessed: 09-13-2021.

[28] “University of New Brunswick, “CSE-CIC-IDS2018 on AWS”, 2018,”
https://www.unb.ca/cic/datasets/ids-2018.html, accessed: 09-13-2021.

[29] “University of New Brunswick, “DDoS Evaluation Dataset (CICD-
DoS2019)”,unb.ca, 2019,” https://www.unb.ca/cic/datasets/ddos-2019.
html, accessed: 09-13-2021.

[30] D. Erhan and E. Anarım, “Boğaziçi University distributed denial of
service dataset,” Data in brief, vol. 32, p. 106187, 2020.

[31] B. Chandrasekaran, “Survey of network traffic models,” Washington
University in St. Louis CSE, vol. 567, 2009.

Authorized licensed use limited to: University of Southern California. Downloaded on September 12,2022 at 09:58:24 UTC from IEEE Xplore. Restrictions apply.

