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Abstract—A deeper understanding of urban vehicular traffic
is important to enable better design and evaluation of future
vehicular and cellular communication networks. In this paper, we
study the presence of spectral structure in urban vehicular traffic.
By analyzing publicly available sets of fleet vehicle mobility traces
obtained from two real-world deployments that consist of more
than 2,000 taxis in Shanghai and Beijing respectively, we reveal
the existence of a stable, low-dimensional spectral structure in
vehicular networks, which was often unnoticeable when using
classic spatio-temporal data analysis. This stable spectral struc-
ture not only significantly simplifies the representation of high
dimensional transportation data, but also offers interpretable
insights into urban mobility patterns. Leveraging the stability
of spectral structure, we demonstrate that the spectral structure
analysis could effectively tackle practical problems in the field of
transportation research, such as traffic anomaly detection.

I. INTRODUCTION

To improve traffic management and operations in metropoli-
tan areas, Intelligent Transportation Systems (ITS) rely on
sufficient and high-quality field data — vehicle density, vehicle
flow speed, and occupancy, among others — to provide proper
traffic controls. The ITS field data, collected either by road-
side transportation sensors[2] (e.g., induction loops, traffic
camera, or Radar/LIDAR sensors) or through floating car
sensors[3], [4] (e.g., GPS, RFID, and transponders), describes
transportation phenomena across both space and time. We call
such data spatio-temporal data.

The vast majority of research works on ITS data analytic
were conducted on the original spatio-temporal domain [1].
For example, researchers leverage the established spatio-
temporal relationship of traffic flows [6] to measure traffic
pattern variation over time, determine Origin-Destination (OD)
matrix, identify the functionality of different geographic re-
gions, and figure out the influx and outflux patterns within
a city [1]. However, this mainstream spatio-temporal domain
approach faces a number of significant challenges that hinder
it from achieving its goals, especially when being applied
to a large volume of high dimensional ITS data which is
often noisy and garbled [7]. These technical challenges call
for a change in ITS data analytic research, motivating us
to find a new approach that could systematically study high
dimensional ITS data collected from future smart cities. We
are motivated to study ITS data not only from the perspective
of the design and control of intelligent traffic management
systems and future autonomous vehicles, but also from the
perspective of helping to improve the design and evaluation
of future communication networks including vehicular net-
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works and cellular networks. For example, getting a deeper
understanding of ITS data on vehicular traffic from real urban
environments can make it easier to simulate network traffic to
and from connected vehicles at a city-scale. And in turn, such
simulations could help in the design of emerging protocols
and standards related to V2X, 5G, and beyond [28].

Somewhat to our surprise, we found that there are very
few research works that attempt to study transportation traffic
from a spectral analysis perspective. To bridge this gap, in
this paper, we propose to examine high dimensional ITS
data from a new perspective, and focus on analyzing the
spectral structure of urban vehicular traffic. While doing so,
we aim to develop a generic framework to systematically
study the spectral characteristics of ITS data, which are often
either unnoticeable or ignored in spatio-temporal domain. We
attempt to answer the following questions:

1) Does urban ITS data show the existence of a stable,
low-dimensional spectral structure?

2) If yes, what are the properties of this spectral structure?

3) If yes, how do we utilize this spectral structure for
solving practical problems?

Using Principle Component Analysis (PCA), a spectral
analysis tool, we analyze two publicly available sets of taxi
fleet mobility traces, with each trace consisting of more
than 2,000 taxis. Through this analysis, we indeed discover
the existence of such a spectral structure in the cases of
Beijing and Shanghai taxi traffic. Interestingly enough, we
also find that the spectral elements are intepretable, revealing
a deep insight of movement patterns. The spectral structure of
vehicular traffic is stable over time and over space, forming a
solid foundation for data reconstruction. We demonstrate that
the spectral characteristics are not only capable of annotating
the hidden structure of urban mobility patterns, but also are
able to identify traffic anomaly events.

The contributions of this paper are summarized as two folds:
First, by using large-scale empirical measurement traces, our
study is the first to reveal a stable, low-dimensional spectral
structure that governs the fundamental laws of vehicular
traffic patterns. We attribute this spectral structure to human’s
structured habits in traveling. Second, by leveraging this stable
spectral structure of urban taxi traffic, our study successfully
isolates traffic anomalies from regular traffic events. This is
achieved by separating Gaussian noise and spike principle
components, in spectral domain, from their periodic counter-
parts.
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II. BACKGROUND ON SPECTRAL ANALYSIS

Spectral analysis is used for reducing the dimensionality of
high dimensional data which has inherent redundancy. As an
example, Principle Component Analysis (PCA), a prominent
spectral analysis method, transforms data samples from their
original coordinate system into a new coordinate system, in
which each of its orthogonal dimensions successively maxi-
mizes the statistical variance of the original data.

Spectral analysis not only achieves the goal of dimension
reduction, but can also increase the data interpretability by
revealing the hidden low-dimensional structure, which is often
ignored in its original coordinate system. Further, it can be
used as a tool for better interpolation of missing data.

A. PCA Decomposition

To filter out the noise and reveal hidden dynamics, through
its coordinate transformation process, PCA finds the most
meaningful coordinate system to re-express a noisy, garbled
data set. Each dimension of the new coordinate system (it is
called principle component) points in the direction of maxi-
mum variation remaining in the data set, given the variance
already accounted in the previously identified principle com-
ponents. For instance, the first principle component captures
the dimension that reflects total variance of the original data
on a single dimension of this new coordinate system; the next
principle components thus characterize the maximum residual
variance for the remaining orthogonal dimensions of the new
coordinate system, respectively. To put it into mathematical
terms, by solving an eigenvalue and eigenvector problem of
the covariance matrix of measured data samples, we can find
such new principal components.

Principle Component (PC) Vectors. Let X be the vehicle
traffic measurement matrix in the original spatio-temporal
space; X is a two-dimension matrix with ¢ time slots and
p geographic regions. We consider each row vector of traffic
matrix X € R**P as a data point in 1P, and thus X, contains
t data points.

In the transformed new coordinate system, we represent
principle component vectors as {v; }?_,. For the first principle
component vector vy, it captures the maximum variance of
the original traffic matrix X in the spatio-temporal space as
follows:

v; = arg max || Xvl|. (1)
[lv]|=1

For remaining principle components v; (¢ > 2), it captures
the maximum residual variance of the traffic matrix, which
excludes the variance accumulated by the first ¢ — 1 principle
components, as follows:

i—1
v; = arg max |(X =3 Xvw] )| ©)
v||=
k=1

Eigenvalues of PCA. As learned from matrix theory, prin-
ciple component vectors {v;}¥_, are in fact the eigenvectors
of the matrix X7 X. Therefore, the eigenvalues {\;}}_, could
be obtained by solving the following formulation:

XTXU,‘ = /\ﬂ}i (3)

where non-negative {\;}”_, follows a descending order,
such as Ay > Ag... > A, > 0.

We apply PCA decomposition towards both temporal di-
mension R and spatial dimension R? of traffic measurement
matrix X € R**P, revealing its temporal and spatial charac-
teristics, respectively, in Section IV.

III. TRAFFIC MEASUREMENT MATRIX

Our analysis is focused on taxi density matrix, based
on empirical GPS traces collected in Beijing and Shanghai.
Though only two specific data sets are selected, it should
be understood that our spectral analysis methodology is not
limited to particular transportation methods or particular cities;
our study develops a generic framework to investigate the
fundamental principles that govern the urban traffic patterns.

Data Collection. The first taxi data set in our analysis was
collected from Beijing, China, and consists of 2,721 taxis
over two weeks, May 1 - May 14, 2009. The secondary set
was collected from Shanghai, China on January 31, 2007
- February 27, 2007 (1 month), and is composed of over
2,439 taxis. The logged data in the data sets includes vehicle
ID, time-stamp, longitude and latitude coordinates, speed and
heading, and occupancy status of a taxi vehicle. Due to cellular
cost constraint, each taxi only afforded to report its mobility
trajectory every 15 seconds (with passengers on board) or
every 60 seconds (without passengers). We use the geographic
boundary of each district of Beijing (or Shanghai) to classify
a taxi’s current location to its appropriate district.

(a) Beijing

(b) Shanghai

Fig. 1: The Taxi Density Matrix of Beijing and Shanghai in
a Week. The x-axis represents the time slot (in a unit of one
hour), the y-axis represents the districts (in a decreasing rank
of their taxi populations), and the z-axis shows the taxi density
X(t,p) at time slot ¢ in district p.

Traffic Measurement Matrix. We use taxi density matrix
as an example to illustrate the spectral analysis method. The
taxi density matrix X € R!*P is a 2-dimensional matrix
defined as the density of taxis in a particular region p at
time slot ¢. This matrix reflects the urban traffic conditions
(e.g., whether region p is a busy district at time t?). Fig. 1
shows such examples in Beijing and Shanghai, based on data
collected in a week. In the case of Beijing, we intentionally
choose a week with three consecutive weekend days (including
the International Labor Day as a national holiday).

The vehicle density in Beijing (Fig. 1(a)) fluctuates in a
daily base, ranging from sparse traffic at night to high volume
in the rush hour. We observe that taxis are unevenly distributed
over space: Central Business Districts (CBDs) have a much
higher concentration of taxis when compared to rural regions,
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reflecting the geographic functions within a modern metropoli-
tan. Similar observations are made in Shanghai (Fig. 1(b)). In
the remaining part of this paper, unless otherwise noted, we
omit the results of Shanghai traces for brevity.

IV. SPECTRAL ANALYSIS OF TRAFFIC MEASUREMENT
MATRIX

In this section, by following the methodologies laid out in
Sec. II, we conduct a PCA analysis of traffic data in Sec. IV-A
and reveal its spectral structure in Sec. IV-B.

A. Spectral Analysis via PCA

Initial PCA Results. PCA principle components (PCs) cap-
ture the new orthogonal dimensions of transformed coordinate
system. Fig. 2(a) and Fig. 2(c) provide an initial clue of
three phases in the PCA spectral domain: an initial phase of
periodical patterns, an intermediate phase rich with random
Gaussian-type noise, and a final phase featuring spike-like
noise. We will further examine this initial observation more
carefully in Fig. 4.

With PCs being determined, eigenvalues reflect the weights
of each principle component. Fig. 2(b) and Fig. 2(d) illustrate
the weight of different PCs in Beijing and Shanghai traces,
respectively. The initial phase of (periodic) PCs obviously
makes a dominating contribution when compared to other PCs.

Low Dimensionality of Urban Traffic. To further under-
stand how these first few PCs play a dominating role in a
quantitative fashion, we plot the scree plot for both Beijing
and Shanghai taxi traces in Fig. 3. This scree plot summarizes
how much residual statistical variance is captured by each
orthogonal PCA principle component. As shown in Fig. 3, the
first few principle components dominate the statistical variance
of urban traffic matrix. In Beijing trace, the first three PCs
dominate the 99% variance; on the other hand, it is slightly
relaxed in the case of Shanghai taxi trace, in which the first
five PCs are the dominating factors that contributed to 99%
variance. That is to say, the urban traffic matrix exhibits a
hidden structure with very few effective PCA dimensions (in
our two cases, less than five), which is significantly lower than
that of the original spatio-temporal space.

Principle Component (PC) Categories. As discussed
earlier in this section, PCA principle components could be
categorized into three major classes: Periodical PCs, Gaussian
noise PCs, and Spike PCs. Using a more rigorous method [21],
we confirmed that PCA analysis of urban traffic data indeed
follows these principle component categorizations. We only
present our results obtained from the Beijing trace for brevity.

Periodic PCs. The first few PCs capture the vast majority
of statistical variance. Fig. 4(a) and Fig. 4(b) visually show
that this category of PCs is periodic. This is not surprising,
because the dominant factor of traffic matrix variance is the
periodical daily traffic variation.

Gaussian Noise PCs. The second category of PCs represents
random, Gaussian-like noise. Such examples are shown in
Fig. 4(c) and Fig. 4(d). We found that, though the mere number
of Gaussian noise PCs significantly surpasses the other two

categories, but its aggregated residual variance could rather
be ignored when compared to the first category.

Spike PCs. The final category of PCs features a short-lived,
strong spike in its existence. Fig. 4(e) and Fig. 4(f) shows
two such examples, representing the elements of occasional
traffic bursts or traffic dips. These spike principle components,
rare and sporadic, are distributed across the PCA principle
component domains.

B. Spectral Structure of Urban Traffic

Motivated by the observation of low dimensionality in
urban traffic data, we hypothesize that few dominant princi-
ple components (in spectral PCA domain) consist a hidden
structure of urban traffic patterns, despite the fact that this
spectral structure is much more succinct than its counterpart
in spatio-temporal domain. To validate our hypothesis, we
investigate whether the spatio-temporal traffic matrix could be
reconstructed, with reasonable accuracy, by using this spectral-
domain structure.

Methodology. The spectral reconstruction is conducted by
calculating the best r-rank PCA approximation of the urban
traffic matrix X (here, » < p). Mathematically, it could be
expressed as

X(r)= Zamiv;‘r. 4
i=1

This method could be applied for PCA decomposition along
either temporal dimension ¢ or spatial dimension R? of traffic
matrix X € R**P. When determining the r value, we choose
periodic PCs only (the first category) due to their dominating
roles, while excluding the other two categories (Gaussian noise
PCs and spike PCs).

PCA Decomposition along Temporal Dimension. First,
we look into the case that PCA decomposition is conducted
along temporal dimension. Fig. 5 shows the original version of,
as well as the reconstructed version of, vehicle density across
different districts in a single week. We choose » = 3 in this
case. Fig. 5 demonstrates that, in general, the top 3 principle
components could accurately characterize the temporal fluctu-
ation of vehicle density. On the other hand, this reconstruction
has better reconstruction accuracy in high-population districts
than their low-population counterparts (the 1st district vs. the
11th district in Fig. 5); this may be attributed to the fact that a
lower variance of density exists in the high-population districts
due to more samples (and likewise a higher variance of density
in the lower-population districts due to fewer samples.) To
better understand the sensitivity of PC dimensions, we plot
the reconstruction error as a function of the number of PCs in
Fig. 6. As the number of PCs used for reconstruction increases,
the reconstruction error reduces but the contributions from
extra PCs become marginal after the first three PCs.

PCA Decomposition along Spatial Dimension. We also
examine the scenario where PCA decomposition is executed
along spatial dimension. Fig. 7 shows the original version of,
as well as the reconstructed version of, taxi density in dif-
ferent geographic districts. The reconstruction is obtained by
calculating the best r-rank (r = 5 in this case) approximation
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(a) Principle Component
(Beijing)

(b) Eigenvalue
(Beijing)

(c) Principle Component
(Shanghai)

(d) Eigenvalue
(Shanghai)

Fig. 2: The PCA Analysis of Taxi Density Matrix (3D Plot for Principle Components and Eigenvalues).
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fourth and fifth temporal PCs are likely to indicate short-term,
rush-hour traffic during morning and evening commutes, with
the spike of each lasting for only 2-3 hours.

TABLE I: Pearson Correlation of Temporal PCs Between
Different Days

o
8 0 12 1 0 2 4 &

0 2 4 Q
Num of PCs

I
Num of PCs

(a) Beijing (b) Shanghai
Fig. 3: The Scree Plot of Residual Variance vs. Principle
Component Dimensions.

of the original matrix X. Again, it is clearly seen that, in the
spatial dimension scenario, (only) the top 5 significant spatial
PCs could accurately characterize the vehicle density across
all districts, except occasional outliers.

By transforming urban traffic data from classic spatio-
temporal domain to our advocated spectral domain, we reveal
that there indeed exist a hidden, low dimensional structure of
urban traffic patterns. This revelation not only significantly
simplifies the representation of the high dimensional traffic
data, but also make it interpretable, as elaborated in the next
section.

V. PROPERTIES OF SPECTRAL STRUCTURE

In this section, we further examine the spectral structure
of urban traffic and make insightful observations, which are
either difficult to obtain, or often ignored, via classic spatio-
temporal domain analysis. A rigorous PCA analysis (Sec. II),
when properly performed, could reveal interpretable meanings
of identified principle components. We show that spectral
structure of urban traffic is not only interpretable, but also
stable over time and space.

A. Temporal Spectral Structure

Interpretation of PCs. We first study the spectral structure
along temporal dimension. Fig. 8 illustrates the first 5 PCs,
when PCA is applied to temporal dimension. Interestingly
enough, we find that the first temporal PC (Fig. 8(a)) resembles
the taxi density in the entire city, with a Pearson correlation
value of 0.98. It is not out of our expectation, since the first
temporal PC is supposed to capture the majority of statistical
variance. The second and third PCs seem to represent traffic
trend happening in the morning and afternoon (Fig. 8(b)),
respectively, with the peak lasting for 4-6 hours. Finally, the

PC Between Weekend | Between Weekday | Between Weekend and Weekday
1st PC 0.9947 0.9989 0.9597
2nd PC 0.8938 0.9619 -0.5855
3rd PC 0.7859 0.8243 0.5839
4th PC -0.1419 0.7323 -0.0181
5th PC 0.2410 -0.2916 -0.0119

Stability and Repeatability. We observe that the top tem-
poral PCs exhibit strong stability and repeatability, forming
a persistent spectral structure governing urban traffic along
temporal domain. Table I shows a strong stability of top
temporal PCs. The Pearson correlation value between any
two weekdays is high till the 4th PC (0.7323), and in the
case of any two weekend days, the correlation is strong till
the 3rd PC (0.7859). On the contrary, for a given PC, there
is either no correlation or negative correlation between a
weekday and a weekend day. Interestingly, for the 2nd PC,
the Pearson correlation between a weekday and a weekend day
is -0.5855, indicating the 2nd PC (reflecting morning traffic)
during weekday and weekend is somehow opposite to each
other, because people usually get up late during the weekend.
(Fig. 9 later shows that is the case.)

To dive into the details, Fig. 9 shows the comparison of
the 1st and the 2nd PCs across a week. Again, we find that
temporal principle components differ significantly between
weekday version (May 4 - May 7) and weekend version (May
1 - May 3). Meanwhile, we observe that, within the weekday
category, the Ist and 2nd temporal principle components are
almost the same across different days, while the 3rd and 4th
temporal principle components still show strong resemblance
across different days (we only show the 1st and 2nd principle
components in Fig. 9, due to limited space). Such trend exists
for other temporal principle components, but their correlation
is much weaker, as shown in Fig. 10.

We believe this strong stability is caused by people’s daily
routine schedules: in the weekdays, people have more struc-
tured travel patterns (e.g., a particular original-destination pair
at a given time in a repeatable fashion) due to work or school
requirements. In contrast, people are more relaxed during the
weekend, resulting in a less structured travel pattern.
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Fig. 4: Examples of Principle Component (PC) vectors In Beijing Taxi Trace. PCs could be classified into 3 categories: periodic
PCs (a)(b), Gaussian noise PCs (c)(d), and Spike noise PCs (e)(f).
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Fig. 5: Reconstruction of Taxi Density in Different Districts with Only 3 Temporal PCs. The x-axis presents the time evolution,
and the y-axis indicates the number of taxis in this district at a given hour. It is shown that only top 3 PCs are needed to
accurately reconstruct the original data set, thanks to low spectral dimensionality of urban vehicular traffic.
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Fig. 6: The Reconstruction Error (Root Mean Square Error,
RMSE) vs. Number of Principle Components.

B. Spatial Spectral Structure

Interpretation of PCs. The spatial PCs are organized in a
remarkable fashion: As shown in Fig. 11, the first spatial PC
represents the mean of taxi density in different districts, in the
rank of district population (Fig. 11(a)). As expected, this first
spatial PC captures the most important element of statistical

Recorsios
‘‘‘‘‘‘

Vehicie Data
Vehicie Data

(a) Rush Hour(7-8am) (b) Night(11pm-0am)
Fig. 7: Reconstruction of Vehicle Density Using only 5 Spatial
PCs. The x-axis presents the different geographic districts of
Beijing, and the y-axis indicates the taxi density.

variance along the spatial dimension. Interestingly, each of the
remaining PCs ((Fig. 11(b)(c)) represents a spike correspond-
ing to a given geographic district, indicating the dominating
role of a particular district in each PC. Furthermore, in each
spatial PC, we notice there exist negative correlation between
different districts, which illustrates the functions of geographic
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Fig. 8: The Temporal Principle Components (PCs) of Beijing Trace (May 1). (a) the 1st PC represents the average volume of
daily taxi traffic; (b) the 2nd PC and 3rd PC resemble morning traffic and afternoon traffic trend, respectively; (c) the 4th PC
and 5th PC represent the morning “rush hour” and after “’rush hour”.
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Fig. 9: The Comparison of the 1st and 2nd Principle Components in Temporal Domain, Across a Week, in Beijing Trace. It
could seen that the first few of temporal PCs are highly stable among week days or among weekend days.
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Fig. 10: The Comparison of the 4th Principle Components in
Temporal Domain, Across a Week, In Beijing Trace.

districts (e.g., taxis in suburban districts flow into central CBD
districts in morning rush hour).

TABLE II: Pearson Correlation of Spatial PCs Between Dif-
ferent Days

PC Between Weekend | Between Weekday | Between Weekend and Weekday
Ist PC 0.9944 0.9987 0.9857
2nd PC 0.7982 0.9670 -0.1116
3rd PC 0.7088 0.8361 -0.0645
4th PC 0.6453 0.7413 0.0244
5th PC 0.4363 0.6353 -0.0460

Stability and Repeatability. Table II shows the stability
of top spatial PCs over different combinations (weekday vs.
weekday, weekend vs. weekend, and weekday vs. weekend).
It is observed that the Pearson correlation of top spatial PCs
is high (> 0.65) over the weekdays, indicating a consistent
spatial spectral structure. Though weaker (Pearson correlation
[0.43,0.99]), the spatial spectral structure between weekend is
still fairly stable. On the other hand, there is no correlation
in these spatial PCs between a weekday and a weekend day,

suggesting totally different travel patterns. Fig. 12 further
illustrates this point by showing the comparison of the the
Ist and 2nd spatial spatial PCs over weekday and weekend.

VI. TRAFFIC ANOMALY DETECTION

In this section, we demonstrate how the stable spectral
structure revealed by PCA analysis could be used to detect
and localize traffic anomaly events.

Methodology. The spectral structure is able to isolate traffic
events presented in anomalous PCA subspace from the regular
events happening in normal PCA subspace. Following PCA
anomaly detection literature [18], [19], [20], we partition the
traffic matrix X (p, t) at a given time ¢ and location p into two
subspaces as

X(p,t) X(p.t) + X(p, 1)

PPTX(p,t)+ (1 — PPT)X (p,t)

(&)
(6)

in which P = [vq, va, ..., v,] is a truncated matrix representing
the normal subspace and it is composed of r-rank principle
components obtained via PCA analysis. X (p, t) is the regular
traffic counts corresponding to normal subspace, and X (p, 1)
reflects the abnormal traffic events exhibited in anomalous
subspace. X (p,t) and X(p,t) are obtained by projecting
X (p, t) onto the normal and anomalous subspace, respectively.
In our study, we choose the Period PCs only as our normal
subspace, leaving both spike PCs and Gaussian noise PCs
to our anomalous subspace. We argue that this policy is
reasonable, because Period PCs captures the vast majority
of traffic data variability (Sec. IV), representing the normal
state; any major deviation from this normal state is therefore
considered an anomaly.
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Fig. 11: The Spatial Eigen Vectors of Beijing Trace (May 1). The 1st spatial PC represents the mean of vehicle density in
each district, and other remaining PCs represent a spike corresponding to its particular district.
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Fig. 12: The Comparison of the 1st and 2nd Principle Components in Spatial Domain, Across the Week, For Beijing Trace.
It could be seen that spatial PCs are fairly stable among week days or among weekend days.

Anomaly. Grd Zone 11

Vehicle Data

Vehicle Data

5000, 2000,
(I % w0 w0 w0 >
Hours

(a) the 11th Grid Zone

O
Hours

(b) the 23th Grid Zone

uuuuuuuuuuuuu

O
Hours

(c) the 49th Grid Zone

Fig. 13: Examples of Traffic Density Anomalies of Microscopic Grid Zones in Beijing Across One Week. The traffic density
anomaly event is caused by the fact that certain facilities in this zone attract people’s visits, e.g., (a) a stadium for a sport
event on holiday night, (b) an amusement park during 3 vacation days, and (c) an airport for post-holiday travels.

Experiment Results. We apply the traffic anomaly de-
tection to Beijing trace. To scrutinize the causality effect
between holiday schedules and taxi density anomaly events,
we partition metropolitan Beijing area into a large number of
much smaller grid zones (with each grid zone being 1 km?).
Fig. 13 shows three such examples of taxi density anomaly
events. Each example could be explained by the fact that this
particular zone has certain facilities that attracts people’s visits,
e.g., a stadium for a sport event on holiday night (Fig. 13(a)),
an amusement park during 3 vacation days (Fig. 13(b)), and
an airport for post-holiday travels (Fig. 13(c)).

VII. RELATED WORKS

Our study is inspired by pioneering works in two domains.
Spectral Analysis of Transportation Data. Somewhat to
our surprise, we found that there are very few research works
that attempt to study transportation traffic from a spectral
analysis perspective, with the exception of missing data im-

putation problem. For such missing data imputation problem,
spatio-temporal methods (e.g., neighborhood interpolation[8],
[9], [10], spline regression [11], [12], [13]) were mainstream
solutions [5], [14]; however, transportation researchers began
to realize the advantages of spectral analysis in the past
decade. BPCA was initially explored to address the traffic
data incompleteness problem, which common exists in urban
environments due to sensor malfunctions [16]. Later on, a
PPCA based solution was shown to perform significantly better
than the initial BPCA approach [15], and another PCA variant,
Robust PCA [17], was shown to gracefully handle even more
challenging scenarios featured with outliers and significant
missing data. It is important to note that, unlike prior works
narrowly focused on data incompleteness issue, our study has
had a more ambitious goal to establish a generic framework,
revealing the (hidden) spectral structure of vehicular traffic.

Internet Traffic Engineering. The research work most
relevant to our study is Internet traffic matrix analysis, in
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which Principle Component Analysis and its variants are
commonly used mathematical tools. In their seminal paper,
Lakhina et al [21] advocated the PCA method for such
analysis, and then demonstrated that complex Internet Origin-
Destination (OD) matrix could be approximated by a much
smaller number of principle components. Realizing that PCA
decomposition distinguishes abnormal subspace from normal
subspace fairly accurately, they reported that PCA analysis is
also an effective method for Internet anomaly detection [22],
but they also pointed out that the PCA parameters should be
carefully selected to ensure the efficacy of PCA-based anomaly
detection method [25]. Several enhancement approaches had
been studied to tackle this parameter sensitivity challenge[23].
A distributed PCA solution was proposed to achieve a bet-
ter trade-off between communication overhead and anomaly
detection accuracy [23]. Network anomograph was designed
to extend PCA methods to be more generic, covering both
spatial domain and temporal domain [24]. To have a more
robust performance under challenging scenarios (e.g., large
volume of Internet traffic anomalies), it was suggested that the
traffic variation matrix — rather than the original traffic matrix —
should be used in PCA-based anomaly detection [27]. Finally,
discovering that classic PCA method fails to capture temporal
correlation, a time-domain Karhunen-Loeve expansion was
added into PCA analysis framework [26] to enhance the
performance.

Of course, our paper differs from these studies because of
the different application domains (Internet traffic vs. vehicle
transportation). Another salient difference is that our work
examines the geographic structure of vehicular traffic through
spectral analysis, in addition to conventional PCA analysis that
only focusing on the periodicity (temporal domain) of Internet
traffic patterns.

VIII. CONCLUSION

In this paper, we study the spectral structure of urban
vehicular traffic, using spectral analysis tools such as PCA.
By analyzing publicly available sets of taxi GPS traces, we
find that there indeed exist a stable, low-dimensional spectral
structure of urban mobility patterns which is unnoticeable in
the conventional spatio-temporal domain. This stable, low-
dimensional spectral structure not only significantly simplifies
the representation of high-dimension transportation data, but
also offers interpretable insights to urban mobility patterns.
This is clearly the advantage of spectral analysis over classic
spatio-temporal data analysis. Furthermore, leveraging the
knowledge obtained through spectral analysis, using con-
crete examples, we showcase that practical challenges (traffic
anomaly) could be tackled.
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