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We study the airborne transmission risk associated with holding in-person classes
on university campuses for the original strain and a more contagious variant of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adopt a model
for airborne transmission risk in an enclosed room that considers room properties,
mask efficiency, and initial infection probability of the occupants. Additionally, we
study the effect of vaccination on the spread of the virus. The presented model has
been evaluated in simulations using fall 2019 (prepandemic) and fall 2020 (hybrid
instruction) course registration data of a large US university, allowing for assessing the
difference in transmission risk between in-person and hybrid programs and the impact
of occupancy reduction, mask-wearing, and vaccination. The simulations indicate that
without vaccination, moving 90% of the classes online leads to a 17 to 18× reduction
in new cases, and universal mask usage results in an ∼2.7 to 3.6× reduction in new
infections through classroom interactions. Furthermore, the results indicate that for
the original variant and using vaccines with efficacy greater than 90%, at least 23%
(64%) of students need to be vaccinated with (without) mask usage in order to operate
the university at full occupancy while preventing an increase in cases due to classroom
interactions. For the more contagious variant, even with universal mask usage, at least
93% of the students need to be vaccinated to ensure the same conditions. We show that
the model is able to predict trends observed in weekly infection rates for fall 2021.

COVID-19 | airborne transmission | vaccination

The COVID-19 pandemic (1) has had a profound impact on educational institutions
around the world. More than 85 colleges and universities across the United States have
reported at least 1,000 cases of COVID-19, and over 680 institutions have reported at least
100 cases (2). More than 124,000 public and private schools in the United States closed in
April 2020, impacting more than 55 million students (3). Worldwide, similar disruptions
affected more than 1.7 billion students (4, 5). Across the US educational system as a whole,
there were over 397,000 confirmed cases of COVID-19 and more than 90 deaths as of
December 2020.

In response to the initial COVID-19 outbreak in spring 2020, a large number of
colleges and universities across the United States decided to cancel in-person instruction
and close student housing (5). Many universities and colleges moved instruction online.
The transition from in-person classes to online instruction brought many challenges
for both students and instructors. For students, the transition to online instruction
exacerbated challenges associated with access to technology and led to concerns regarding
absenteeism and accommodation of special needs (5). For instructors, the transition to
online instruction led to increased concerns regarding student engagement and evaluation
(6, 7).

In fall 2020, many institutions of higher education in the United States returned
to in-person instruction. However, this led to a significant increase in new infections.
Several colleges and universities decided to reopen in the fall 2020 and provide hybrid
classes where a portion of the students could attend the classes in person while the
others attended online, providing a partial solution to the problems associated with purely
online instruction. In addition, colleges and universities put in place rules about physical
distancing, face covering usage, and limited social gatherings. Many institutions also put
in place extensive population testing, contact tracing, and quarantining measures for on-
campus students, staff, and faculty. This combination of measures had some success in
curbing the spread of COVID-19 on campuses (2).

More recently, the availability of effective vaccines has enabled a significant reopening of
society in countries with high vaccination rates, including a return to in-person instruction
at many educational institutions in the United States. However, there is still significant
value in studying the impact of vaccinations due to a combination of factors, such as the
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limited availability of vaccines in many parts of the world, eli-
gibility restrictions, vaccine hesitancy, variations in vaccination
mandates, and the emergence of more contagious variants of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(8–11).

There have been a few previous studies evaluating the relative
effectiveness of different measures (e.g., masking, reduced occu-
pancy, and testing) on COVID-19 spread (12–16). For example,
Cashore et al. (12) used simulations to analyze virus spread
at Cornell University using the susceptible-exposed-infectious-
removed (SEIR) model and predict outcomes for a full return of
students, faculty, and staff in the 2020 fall semester over a 16-wk
time period. They simulated several interventions, such as regular
PCR testing for individuals, contact tracing, and quarantining
for infected persons. The simulations generated predictions for
the number of people that came into close contact with infec-
tious persons, became infected, and required hospitalization. In
a subsequent study, the authors extended their work to better
estimate the number of contacts per day among members of the
campus community and analyzed the effects of high contact rates
and noncompliance with testing requirements on the number of
subsequent infections (13). Ying and O’Clery (17) present an
agent-based model of customer movements in a supermarket to
assess the various mitigation methods that have been used in
supermarkets using a synthetic dataset. Foster and Kinzel (18)
studied SARS-CoV-2 airborne transmission risk in classroom
settings, considering various ventilation and masking conditions
by combining Wells–Riley and computational fluid dynamics
models. However, they considered transmission risk in one sample
classroom, and they did not analyze the cumulative effects of
students attending multiple classrooms. Furthermore, their model
did not consider the effect of vaccination.

This paper uses a previously established modeling framework
(19) that studied the impact of different university policies on
the transmission of the original strain of SARS-CoV-2 through
classroom interactions at universities by considering parameters
such as occupancy, mask usage, and initial infection rates for
students and instructors. In this paper, we incorporate the impact
of vaccinations into the modeling framework and evaluate how
vaccination rates and vaccine efficacy impact the spread of the
virus on a university campus. The simulations in this paper also
consider the case of a more transmissible variant of SARS-CoV-
2, with properties similar to the Delta variant. We compare
model predictions with the real-world infection rates at a large
US university to evaluate predictive capability.

Results and Discussion

This section presents model predictions for the impact of mask
usage, occupancy reduction, and vaccination on the spread of
the SARS-CoV-2 virus due to classroom transmission. We used
course registration data from a large university for fall 2019 and
fall 2020. The fall 2019 dataset represents the normal operation
of the university without any online/hybrid scheduling. Fall 2020
represents the hybrid instruction scheduling of the university
where 90% of the courses moved online and the rest of the courses
were held in a hybrid mode on the university campus.

In order to better visualize the relation between courses in the
dataset that we used, we present conflict graphs for the fall 2019
and fall 2020 datasets. In these graphs, nodes are courses, and
edges between two courses show that there are at least k students in
common between them. Fig. 1 shows conflict graphs for fall 2019
and fall 2020 datasets for the case of k = 5. We used k = 5 in this
figure for simplicity since lower values for k would show similar

features but result in a denser graph that is harder to visualize. For
fall 2019, the courses are densely linked with each other, implying
that the virus can spread more widely in the student population.
On the other hand, for fall 2020 the courses show sparser links,
implying that virus spread in the hybrid schedule is likely to be
diminished considerably.

The classroom risk model in this study makes use of infor-
mation specific to each classroom interaction (i.e., room size,
ventilation rate, occupancy, lecture duration, and number of stu-
dents). Further, infection probabilities for each registered student
are calculated by considering their specific course schedule. The
average infection probabilities for the university as a whole are
then calculated by combining the individual infection probabil-
ities. Information regarding classroom physical and operational
properties was available from the university (Dataset). The model
also accounts for variability in virus emission rates from instruc-
tors and students due to the differences in vocalization activity
(i.e., lecturing vs. listening) and the usage of masks. We further
consider variations in vaccination rate and vaccine effectiveness
in preventing breakthrough infections, as well as the reduction
in virus emissions from vaccinated individuals with breakthrough
infections.

Further details regarding the model are provided in Materials
and Methods. We list a few key assumptions below. The results
consider scenarios with both full classroom occupancy (α= 1
or 100%) and reduced classroom occupancy (α= 0.2 or 20%)
for in-person classes. For the fall 2020 dataset, occupancy is set
to 20% for all hybrid classes. Instructors in the classroom are
assumed to be active (i.e., talking) 90% of the time, while students
are assumed to be active 5% of the time. Following previous
works, we assume virus emissions are significantly higher during
vocalization (20–22). We also assume a 10-fold increase in viral
emissions when generating predictions for the more contagious
variant, based on numbers reported for the Delta variant of SARS-
CoV-2 (23, 24). For cases in which mask usage is considered, we
assume the virus filtering efficiency for both inhalation (f ) and
exhalation (f̂ ) to be f = f̂ = 0.5 or 50% based on results reported
for typical cloth coverings (25). To simplify notation, we assume
f = f̂ and only use f in the remainder of this paper. Regarding
vaccines, we assume an effectiveness of β = 0.9 (90%) at prevent-
ing infection for the original SARS-CoV-2 strain (26) consistent
with available data for the messenger RNA (mRNA) BNT162b2
(Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vac-
cines. We assume that effectiveness reduces to β = 0.64 (64%)
for the more contagious variant (24, 27). For cases in which a
vaccinated individual has a breakthrough infection, we assume
that the viral load is reduced by a factor of 4. The vaccination
rate in the university population, γ, is varied systematically.

Two different metrics are used to evaluate classroom transmis-
sion of COVID-19. The first is the predicted number of new infec-
tions after 1 wk of classes, assuming an initial infection probability
of 0.01 in the population. Clearly, the absolute number of new
infections must be treated with caution since it is dependent on
the initial infection probability. However, this metric serves as a
useful measure of the relative efficacy of different interventions
under both normal and hybrid operation. The second metric is
the effective reproduction number Re

0 , defined as the ratio of the
infection probability after 1 wk of classes to the initial infection
probability (0.01). Since 1 wk is roughly the time scale over which
COVID-19 progresses, we see this metric as being analogous
to the basic reproduction number (R0) that is often interpreted
as the number of secondary infections caused by an infectious
individual.
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Fig. 1. Dataset visualization: conflict graphs for each semester. (A) Fall 2019. (B) Fall 2020.

Fig. 2 shows the effective reproduction number specific to
individual courses for the fall 2019 dataset, assuming prepandemic
operation, i.e., full occupancy, no masking, and no vaccination.
For most courses, model predictions indicate that Re

0 < 5. As ex-
pected, predicted transmission risk is highest (Re

0 > 20) in courses
characterized by long-duration interactions (e.g., laboratories or
studios) in classrooms with low air change rates.

Table 1 provides a summary of new infections and effective
reproduction numbers (together with 95% confidence intervals;
Materials and Methods) for a subset of the no-vaccination scenarios
considered. The simulations predict a significant reduction in new
infections for fall 2020 compared to fall 2019 across all masking
and occupancy conditions. In the case of the original SARS-CoV-
2 variant, the results indicate that universal mask usage results in
3.6× reduction in new infections through classroom interactions
for both the fall 2019 and fall 2020 datasets. Reducing class
occupancy to 20% by switching to hybrid instruction results in
2.2 to 2.3× further reduction in new infections. Importantly, the
transition to having 90% of the courses online from fall 2019 to
fall 2020, even without mask usage or reduced occupancy, results
in an 18× reduction in predicted new cases. It is interesting to
note that our simulations predict that mask usage (even at 50%
effectiveness) leads to a greater reduction in new cases compared
to a reduction in occupancy to 20%.

For the more contagious variant, the results indicate that
universal mask usage results in 2.8 to 2.9× reduction in new
infections through classroom interactions. A reduction in class

occupancy to 20% results in 2.5× further reduction in new
infections. Similar to predictions for the original virus strain, the
transition to having 90% of the courses from fall 2019 to fall 2020
alone leads to a 17× reduction in new cases. Importantly, even
though the relative reduction in cases due to mask usage, reduced
occupancy, and online instruction is similar between the original
strain and the contagious variant, the more contagious variant
leads to a significantly higher number of new cases in absolute
terms.

Also shown in Table 1 are estimates for the effective repro-
duction number (Re

0 ) for the different scenarios considered. The
relative impact of mask usage and reduced occupancy on Re

0 is
similar to the predicted impact on the number of new infections.
However, the reduction in Re

0 from the fall 2019 to fall 2020
dataset is less pronounced. For example, the simulations predict a
3.4× reduction inRe

0 compared to an 18× reduction in new cases
for the original variant in the absence of masking and reduced
occupancy. This is because the Re

0 parameter does not account for
the purely online student population; it just represents the ratio
of infections for the population attending classes. Estimates for
Re

0 are significantly higher for the more contagious variant of the
virus.

Next, we consider the effect of vaccines on the effective repro-
duction number. Predictions from a number of different simula-
tions with varying vaccination rates, vaccine efficacy, and mask
usage are summarized in Fig. 3. As expected, an increase in
vaccination rates and universal masking leads to a significant
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Fig. 2. Course-specific Re
0 plotted against classroom air change rate and

class duration. For clarity, marker color also represents Re
0.

reduction in the risk of transmission on campus and Re
0 . In Table

2, we present the critical vaccination ratio required to prevent an
increase in the number of new infections on campus, i.e., to ensure
Re

0 ≤ 1. To arrive at these estimates, we increase the vaccination
ratio, γ, in increments of 0.01 and calculate the corresponding
value of Re

0 together with 95% confidence intervals. These pre-
dictions are used to identify the range of γ values that ensure
Re

0 ≤ 1. For the original strain and with universal masking, the
upper-bound prediction for γ in Table 2 indicates that a 23%
vaccination rate is sufficient to keepRe

0 ≤ 1. Without mask usage,
the critical vaccination threshold increases to 64%. On the other
hand, the increase in viral emissions and reduction in vaccine
efficacy for the more contagious, Delta-like variant leads to a much
higher critical vaccination threshold of 93% even with universal
masking. Without mask usage, even a 100% vaccination rate is
not sufficient to limitRe

0 and contain the spread of COVID-19 on

0 0.2 0.4 0.6 0.8 1
0.5

1

2

5

10

20

50

Fig. 3. Estimates for Re
0 plotted against vaccination rates (γ) for the fall 2019

dataset, representing normal university operations. Red patches show the
limits for the more contagious Delta variant with (lighter) and without (darker)
masks; blue patches show the same information for the original variant. The
upper and lower bounds of the patches represent limits where the vaccines
are 50 and 90% effective, respectively.

campus. Note that the critical vaccination ratios presented above
could be interpreted as the minimum bound for herd immunity
due to the fact that we only consider the classroom transmission,
while the spread could be higher if out-of-class interactions are
taken into account.

Fig. 4 compares model predictions for infection probability at
the university against real infection data for fall 2021. For fall
2021, we assume near-normal operation with a similar schedule to
fall 2019. We predict infection probabilities for the students using
registration information from fall 2019. However, we assume
universal mask usage and consider vaccination rates ranging from
γ = 0.85 to γ = 0.95. The actual vaccination rate is expected to
fall within this range. Given the prevalence of the Delta variant
for fall 2021, we further assume conditions corresponding to the
more contagious variant; i.e., we assume higher airborne virus
emissions and reduced vaccine effectiveness, β = 0.64 (24, 27).
Note that the model predictions shown in Fig. 4 make use of
real infection rate from the prior week and propagate infection
probabilities forward through 1 wk of classroom interactions; i.e.,
they represent a weekly update. Model predictions closely follow
the trends observed in the real infection rate data. Real infection
rates fall between model prediction for vaccination rates γ = 0.90
and 0.95.

Table 1. Number of new infections and effective reproductive number, Re
0, for the original and more contagious

variants of SARS-CoV-2 in the absence of vaccination
Fall 2019 schedule Fall 2020 schedule

α = 1 α = 0.2 α = 1 α = 0.2

f = 0 f = 0.5 f = 0 f = 0.5 f = 0 f = 0.5 f = 0 f = 0.5
Original strain

New infections 1860 ± 80 500 ± 40 770 ± 50 220 ± 30 100 ± 20 30 ± 10 40 ± 10 10 ± 7
over 1 wk

Re
0 5.5 ± 0.2 1.5 ± 0.1 2.3 ± 0.2 0.63 ± 0.08 1.6 ± 0.3 0.4 ± 0.2 0.7 ± 0.2 0.2 ± 0.1

More contagious
variant
New infections 11400 ± 200 4100 ± 100 4200 ± 100 1630 ± 80 670 ± 50 230 ± 30 230 ± 30 90 ± 20

over 1 wk
Re

0 33.5 ± 0.5 12.1 ± 0.3 12.4 ± 0.3 4.8 ± 0.2 10.5 ± 0.7 3.6 ± 0.4 3.7 ± 0.4 1.5 ± 0.3

f represents mask filtration efficiency, and α represents occupancy.
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Table 2. Critical vaccination rate (γ) required to have Re
0 = 1 under normal operation (for the fall 2019 course

registration dataset)
Original strain (β = 0.9) More contagious variant (β = 0.64)

No mask, f = 0 0.62 ± 0.02 —
With mask, f = 0.5 0.19 ± 0.04 0.92 ± 0.01

This assumes a vaccination effectiveness (β) of 90% for the original strain and 64% for the Delta variant.

In summary, our results show that while moving classes online
can curb the spread of infection, universal masking and vacci-
nation mandates can also make a significant impact. Further, a
comparison with real-world data shows that the model is able
to generate reasonable predictions for infection rates. However,
it must be emphasized that model predictions for transmission
risk presented here are limited to classroom interactions alone.
We do not consider extracurricular activities or social interactions.
Further, we do not model the impact of any population testing,
contact tracing, or quarantine policies implemented at the univer-
sity.

Materials and Methods

The methods used in this paper involve the development of a suitable model
and simulations performed using that model on a dataset. We describe in the
following subsections our model and the dataset used.

General Risk Model. Airborne transmission has been shown to be central to
the spread of SARS-CoV-2 in enclosed spaces (21, 28–30). Airborne transmission
is defined as transmission via inhalation of aerosols or small droplets that can
remain suspended for a long time (31). Aerosols also include droplet nuclei
produced through the process of rapid desiccation of exhaled respiratory droplets
(32). Spatial distancing, face covering, and hand hygiene guidelines are known
to be effective at limiting transmission via larger droplets and direct contact.
However, even with these precautionary measures, airborne transmission can be
occur in enclosed spaces with a large number of occupants and over extended
periods of contact, i.e., in classroom settings.

In this paper, we make use of a well-mixed indoor air room model for airborne
virus emission and exposure in an enclosed space. The goal is to provide an
estimate for airborne virus concentrations and dosage for a known number of
occupants and duration of contact. Airborne virus concentrations will depend on
the number of infectious persons in the room and whether the occupants are
being active or passive, as well as any mitigating factors such as the use of face

22-
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17-
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31-
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Fig. 4. Model predictions for infection probability compared with real data
(red line with markers). The shaded blue region shows predictions for vac-
cination rates ranging from γ = 0.85 to γ = 0.95. The solid blue line shows
predictions for γ = 0.90.

coverings; enhanced heating, ventilating, and air-conditioning (HVAC) protocols;
and limited occupant density due to spatial distancing. The dosage for exposed
individuals will further depend on the duration of contact and the effectiveness
of any face coverings. The main assumption in this model is that it considers
perfectly mixed conditions in the room, i.e., a uniform concentration of virus
particles. The model assumes that any airborne particles are mixed throughout
the space quickly and perfectly. This assumption implies a uniform transmission
risk for all occupants in the room. Such mixed flow or continuously stirred reactor
models are common in indoor air quality modeling (33, 34). In the context of
airborne disease transmission, such models are typically referred to as Wells–
Riley models after pioneering studies in this field (35–37). Recent efforts have
used such models to calculate SARS-CoV-2 airborne transmission risks for specific
commercial interactions or case studies (21, 22). A more complete version of the
model used in this paper has also been developed and made publicly available
by Jimenez (38).

We recognize that the perfectly mixed assumption is a significant oversim-
plification since virus concentrations are higher closer to the source of emission
(i.e., an infectious person) and in the air jet created by talking or vocalizing.
Prevailing air currents from HVAC systems and any open doors or windows can
also lead to localized hot spots. Consequently, some occupants in the room
will be subject to higher exposure than predicted by the model, and others
will be subject to lower exposure. Nevertheless, an increase in the exposure
predicted by the model should be considered indicative of higher transmission
risk overall. Higher-fidelity computational fluid dynamics simulations and/or
experiments that capture the intricacies of droplet and aerosol transport from
respiratory emissions in the presence of background airflow should be pursued
wherever possible (39, 40). However, since running such complex simulations or
experiments is not feasible for all potential scenarios, this model provides useful
first-order estimates of airborne transmission risk in enclosed spaces.

In this model, we consider an enclosed room of volume v (m3) with volumetric
airflow rate through the HVAC system Qhvac (m3 /s), such that the number of air
changes per unit time in the room is Ehvac = Qhvac/v (s−1). The total number of
people in the room is n. Each person is assumed to inspire and expire with an
airflow rate of Q (m3 /s) on average. The probability of a person being initially
infected is qi, and the virion emission rate for an infected person is Ea

i (virions/s) if
the person is being active (e.g., lecturing loudly) and Ep

i (virions/s) if the person is
being passive (e.g., listening quietly). A virion is a single infectious virus particle.
The probability of a person being active is pa. The probability of a person being
passive is therefore pp = 1 − pa. We further assume the use of face coverings
with the filtration efficiency f and f̂ for inhalation and exhalation, respectively. If
we assume f = f̂ , we can replace f̂ with f in the following equations. Finally, we
assume that the occupants remain in the enclosed room for the duration of T. Us-
ing these parameters, we can estimate the average airborne virus concentration
C (virions/m3) using a room-scale mass balance as

C(n, qi, pa) = (1 − f̂)
n

Ehvacv
qi
(

paEa
i + (1 − pa)Ep

i

)
[1]

and estimate the average virus dose D (virions) for an occupant as

D(n, qi, pa) = C(n, qi, pa)(1 − f)QT

= (1 − f̂)(1 − f)
n

Ehvacv
qi
(

paEa
i + (1 − pa)Ep

i

)
QT . [2]

Note that the above equations assume steady state conditions. Further, for sim-
plicity, this formulation neglects virus removal due to settling and the decay in
the number of viable (or infectious) virus particles over time. The primary sink of
virions is assumed to be the airflow through the HVAC system. These assumptions
are reasonable given the high air change rates in the classrooms (see Dataset
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description). Specifically, the average air change rate for the classrooms in the
dataset is 6.1 changes per hour, which translates into an air change time scale of
∼10 min. Per Stokes’ law, the settling velocity for a 5-μm aerosol with density
comparable to that of water is expected to be Vs ≈ 8 × 10−4 m/s. For a typical
classroom of height h = 2.7 m (∼9 ft), this yields a settling time scale of h/Vs ≈
3400 s, or about 1 h. There is significant variability in estimates for how long SARS-
CoV-2 remains viable in aerosols or droplet nuclei; prior studies suggest a half-
life of ∼1.1 to 1.2 h (41). In other words, settling and inactivation time scales
for airborne SARS-CoV-2 are expected to be almost an order of magnitude higher
compared to the time scale associated with air exchange.

The virus emission rates Ea
i and Ep

i can be estimated based on known virus
concentrations and aerosol volumes for typical active and passive activities (20,
21, 42). For instance, Stadnytskyi et al. (20) estimated that 25 s of active or loud
speaking led to the emission of between 60 and 320 nL of oral fluid. The viral
load in the sputum for the original variant was estimated to be cv ≈ 7 × 106

RNA copies cm−3, although it may be as high as O(109) RNA copies cm−3

(43). Based on these estimates, and assuming that the number of virions is
similar to the number of RNA copies (44), the virus output for an active, infected
person is expected to be Ea

i ≈ 17 − 90 virions/s for the original variant. Further,
the data presented in Buonanno et al. (21) suggest that virus emissions are
roughly 40 times higher while speaking when compared to resting conditions.
Assuming Ea

i /Ep
i ≈ 40, virus emissions from passive persons are expected to be

Ep
i ≈ 0.4 − 2.3 virions/s. For the more contagious Delta variant, we assume that

the average viral emissions of an infected person are 10× higher than for the
original variant, based on recent reports (23, 24)

Given the average virus dosage, we can calculate the infection probability for
one individual in the room after the encounter as

Pi = 1 − e
− D(n,qi ,pa)

D0 , [3]

where D0 is the dose that leads to transmission in roughly 63% of cases (21,
36). The exponential mapping used to translate virus dose into a transmission
probability implicitly accounts for the variation in physiological responses to the
same exposure as well as the room-scale variation in exposure that the well-mixed
model neglects (i.e., arising from concentration hot spots). To our knowledge,
the infectious dose for SARS-CoV-2 remains uncertain, but previous estimates
for SARS-CoV-1 and Influenza A suggest that 300 to 800 virions are needed
to cause infection in 50% of the population (45, 46). If the infectious dose is
D0 = 1000 virions, the respiratory emission estimates provided above suggest
that active infectious persons with Ea

i ≈ 17 − 90 virions/s can emit roughly 60
to 320 infectious doses per hour, while passive persons can emit roughly 1.8
to 7 infectious doses per hour. These ranges are consistent with the estimates
provided in previous studies (21, 22, 40), suggesting that infectious persons
undergoing light activity and talking can generate over 100 quanta per hour,
where a quantum is defined as the dose required to cause infection in 63% of
susceptible persons (36). We recognize that there is significant variability in our
estimates for both virus emissions and infectious dose. As a result, any predictions
for absolute infection risk must be treated with caution. Nevertheless, predictions
generated using the physics-based model presented in this section should still
provide useful estimates for relative risk under different scenarios.

The use of a well-mixed indoor air model is expected to yield robust pre-
dictions for classroom interactions in which masking is universal. However, the
perfect-mixing assumption can underestimate airborne transmission risk, espe-
cially for shorter-range unmasked interactions, such as those expected in some
social situations (e.g., dining). This is because masks serve to filter pathogens
and also disrupt respiratory jets (47), causing additional mixing. A more complete
model that accounts for the effect of respiratory jets, varying aerosol and droplet
size distributions, and the relative contributions of various removal mechanisms
to quantify indoor transmission risk for COVID-19 can be found in Bazant and
Bush (40). Recent studies show that the use of surrogate measurements for
respiratory activity (e.g., from carbon dioxide monitors) can also be used to
evaluate the risk of airborne SARS-CoV-2 transmission in indoor settings (48).

Classroom Risk Model. Next, we take the model presented above and adapt
it to consider classroom interactions. A classroom is assumed to be occupied
by instructors (teachers) and students. Instructors are more likely to be active
(i.e., lecturing) during a class, while students are more likely to be passive (i.e.,

listening). Therefore, to better model classroom interactions, we assume different
activity levels for instructors and students, and we also consider the effect of
differing initial infection probabilities for instructors and students. Specifically,
we assume instructors and students have activity rates of pt

a and ps
a, respectively.

Similarly, we assume instructors and students have initial infection probabilities
qt

i and qs
i , respectively. We further assume that we have 1 instructor and Ns

students in a classroom attending the class in person, given by

Ns = αn, [4]

where n is the total number of students enrolled in the class and α is the
occupancy ratio of the students who attend the class in person. The average viral
dose from m infected students in a classroom can be calculated as

Ds
m = D(m, 1, ps

a), [5]

and the average viral dose from one infected instructor can be calculated as

Dt = D(1, 1, pt
a). [6]

The infection probability for a student in a given classroom after one session, for
the case that the instructor and m students are initially infected, is given by

Pi(1, m) = 1 − e
− Dt+Ds

m
D0 . [7]

The infection probability for a student in the case that the instructor is not initially
infected but m students are initially infected is given by

Pi(0, m) = 1 − e
− Ds

m
D0 . [8]

To find the total infection probability for a student in a class session, we have to
first compute the probability that m students out of Ns will be infectious given
the initial infection probability of 1 student as qs

i . For this purpose, we use the
following binomial probability:

ps
i (m, Ns) =

(
Ns

m

)
(qs

i )
m(1 − qs

i )
Ns−m. [9]

Finally, to calculate the total infection probability for any one student after one
class meeting given the initial infection probability for the instructor, qt

i , and the
students, ps

i (m, Ns), we have

Ps
i,class =

Ns∑
m=0

ps
i (m, Ns)[qt

i Pi((1, m)) + (1 − qt
i)Pi(0, m)]. [10]

Using the above formulation, we now formally define three important metrics for
assessing the impact of classroom interactions over 1 wk: 1) Ps

i,week , the individual
infection probability for students*; 2) P̂s

i,week , the average infection probability;
and 3) Re

0, the effective reproduction number. We define these metrics below.
We present these metrics with reference to the time period of 1 wk in part as a

modeling choice—our analysis and simulations could be carried out for any time
period. However, 1 wk is a natural time scale to focus on for two reasons. First,
class schedules repeat weekly. Second, COVID-19 symptoms appear at most after
2 wk, and on average, symptomatic patients show symptoms after 1 wk (49). We
assume individuals would not attend classes once they are symptomatic.

If a particular student j attends k classes with infection probabilities of
p1, p2, . . . , pk , the individual infection probability for that particular student
after attending 1 wk of classes is

Ps
i,week(j) = 1 − (1 − p1)

n1(1 − p2)
n2 · · · (1 − pk)

nk , [11]

where ni is the number of sessions for the class i. Since infection for student j can
be treated as a Bernoulli event with probability Ps

i,week(j), the expected number
of new infected students after holding 1 wk of classes is

Ns
i,week =

Ns∑
j=1

Ps
i,week(j), [12]

*For simplicity and ease of exposition, we focus only on students because we assume a
high student–faculty ratio at the university.
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and the estimated SD in the number of infected students after a week is defined
as

σs
i,week =

√√√√ Ns∑
j=0

Ps
i,week(j)[1 − Ps

i,week(j)]. [13]

Assuming a normal distribution for the sum, the 95% confidence interval in the
number of new infections can therefore be estimated as Ns

i,week ±Δs
i,week , where

Δs
i,week = 1.96 σs

i,week . [14]

We then define the average infection probability after 1 wk of classes as

P̂s
i,week =

Ns
i,week

Ns . [15]

Since Ns is deterministic, the 95% confidence interval for the average infection
probability is P̂s

i,week ± (Δs
i,week/Ns).

A well-known parameter for infection spread in epidemics is R0, referred to
as the reproductive number, which indicates the average number of individuals
infected by one initially infected individual in a population. For classroom interac-
tions over the course of a week, we can define a similar ratio of new cases to initial
cases by taking the ratio of infection probabilities before and after the week. We
thus define the effective reproductive number R0 from 1 wk of operating classes
as

Re
0 =

P̂s
i,week

qs
i

. [16]

In order to calculate the confidence interval for Re
0, given that we assume the initial

infection probability of the students (i.e., qs
i is deterministic in the model), the

95% confidence interval for Re
0 can be estimated to be Re

0 ±Δs
i,week/(Nsqs

i ).
The predictions in Tables 1 and 2 reflect the 95% confidence interval estimates

provided in the preceding two paragraphs. The parameters used to generate
model predictions (e.g., initial infection rates, mask filtration efficiency, room
properties, pathogen emission rates, and infectious dose) are considered to be
deterministic quantities with known values, although we recognize that there are
significant uncertainties in some of these assumed parameter values.

Modeling the Effect of Vaccination. To consider the effect of vaccinations,
three additional parameters are introduced: 1) the fraction of the population that
is vaccinated, γ; 2) vaccine effectiveness in preventing infection, β; and 3) the
viral dose from vaccinated individuals with breakthrough infections is assumed
to be reduced by a factor η relative to individuals that are not vaccinated. Given
these assumptions and parameters, the average viral dosage from the students
and the instructor in Eqs. 5 and 6 is updated as follows:

Ds
m = D(m, 1, ps

a)[γ(1 − β)η + (1 − γ)], [17]

Dt = D(1, 1, pt
a)[γ(1 − β)η + (1 − γ)]. [18]

Following that, the infection probabilities calculated in Eqs. 7 and 8 are modified
as follows:

Pi(1, m) =

(
1 − e

− Dt+Ds
m

D0

)[
γ(1 − β) + (1 − γ)

]
, [19]

Pi(0, m) =

(
1 − e

− Ds
m

D0

)[
γ(1 − β) + (1 − γ)

]
. [20]

Note that we do not model some policies implemented by universities such as
regular testing of students and faculty, contact tracing, and quarantining close
contacts of infected individuals; these could potentially reduce the Re

0 further.

Dataset. We obtained registration information of all students for a large US
university for both fall 2019 and fall 2020 (50). Both datasets include information
for each student that registered for classes. For fall 2019, we consider only classes
that were held in person (most of them were). However, classes in fall 2020 were
either online or hybrid. In hybrid mode, a fraction of students are assumed to
attend the class in person, and the rest are assumed to watch the class online.
For fall 2019, there were 5,986 courses with 34,042 students on campus. For
fall 2020, there were 523 hybrid courses with 6,376 students registered for
those classes. The remaining classes were entirely online and are therefore not
considered in this study.

We also obtained a dataset of buildings at the same university that contained
information about classroom sizes, ventilation rates, and maximum occupancy
(or capacity) (50). This dataset was used to estimate the physical parameters
(classroom volume v, air change rate Ehvac , etc.) appearing in Eqs. 1 and 2. In
this dataset, classroom capacity varies between 5 and 430. The average student
enrollment is 35. The air change rate in the rooms varies from 1.8 to 15 h−1, with
an average of 6.1 h−1. Most classrooms are in buildings serviced by centralized
HVAC systems with air filter ratings ranging from minimum efficiency reporting
value (MERV)–14 to MERV-16. Roughly 30% of classrooms are in building ser-
viced by decentralized or rooftop HVAC systems with air filters ratings ranging
from MERV-8 to MERV-16. Classroom area varies between 32 and 3,668 ft2, with
an average of 519 ft2. Finally, course duration varies from 50 min to 5 h with an
average of 1 h and 51 min. Note that our simulations used data specific to each
classroom and course for calculating infection probabilities.

The University of Southern California’s Institutional Review Board (IRB) ap-
proval was required for this project. IRB approval (Study ID UP-20-00400) was
obtained to access and use the student registration datasets described in this
research. All anonymized relevant study data will be deposited on a private
repository and will be available to interested researchers upon request.

Data Availability. All anonymized relevant study data has been deposited
on the public repository GitHub (https://github.com/ANRGUSC/covid-university-
data) (50). The datasets are encrypted, and the decryption key will be available to
interested researchers upon request.
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