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Abstract— Motivated by lunar exploration, we consider de-
ploying a network of mobile robots to explore an unknown
environment while acting as a cooperative positioning system.
Robots measure and communicate position-related data in
order to perform localization in the absence of infrastructure-
based solutions (e.g. stationary beacons or GPS). We present
Trilateration for Exploration and Mapping (TEAM), a novel
algorithm for low-complexity localization and mapping with
robotic networks. TEAM is designed to leverage the capability
of commercially-available ultra-wideband (UWB) radios on
board the robots to provide range estimates with centimeter
accuracy and perform anchorless localization in a shared,
stationary frame. It is well-suited for feature-deprived envi-
ronments, where feature-based localization approaches suffer.
We provide experimental results in varied Gazebo simulation
environments as well as on a testbed of Turtlebot3 Burgers
with Pozyx UWB radios. We compare TEAM to the popular
Rao-Blackwellized Particle Filter for Simultaneous Localization
and Mapping (SLAM). We demonstrate that TEAM requires an
order of magnitude less computational complexity and reduces
the necessary sample rate of LiDAR measurements by an
order of magnitude. These advantages do not require sacrificing
performance, as TEAM reduces the maximum localization error
by 50% and achieves up to a 28% increase in map accuracy in
feature-deprived environments and comparable map accuracy
in other settings.

I. INTRODUCTION

Scientists believe tunnels formed by cooled flowing lava
exist below the surface of the moon and may be a favorable
environment for human activities [1]. Multi-robot systems
have been proposed to explore these harsh, remote environ-
ments because of the low volume, mass, and development
costs of small robots and the inherent redundancy of teams
of robots [2], [3], [4]. Cooperation in robotic networks
presents further advantages in three dimensions: networking
(robots can forward data to extend the effective communica-
tion range), positioning (robots can collect inter-robot range
measurements), and task performance (multiple robots can
improve mapping efficiency) [5], [6], [7], [8], [9].

We focus on the application of mapping unknown envi-
ronments with light detection and ranging (LiDAR) data and
transferring this data to a stationary data sink (e.g. a lunar
lander). We use ultra-wideband (UWB) radios configured to
perform two-way ranging (TWR), i.e. exchanging packets
and measuring round-trip time to estimate distance [10]. A
popular solution for localization in GPS-denied environments

This work was supported by a NASA Space Technology Research
Fellowship Grant No. 80NSSC19K1189.

1Authors are with the Ming Hsieh Department of Electrical and Com-
puter Engineering, University of Southern California. {lilliamc,
candre, bkrishna, kpsounis}@usc.edu

2Author is with NASA Goddard Space Flight Center.
joseph.m.galante@nasa.gov

Fig. 1. TEAM leverages collaborative localization and coordinated mobil-
ity. Top left: robots initiate a shared coordinate frame. Top right: the first
robot moves and maps while using its neighbors to trilaterate. Bottom left
and right: subsequent robots take turns moving and mapping.

(e.g. indoors), UWB positioning allows a robot to determine
its position relative to the known positions of three other
UWB radios, called anchors or beacons [11], [12], [13].

Lunar exploration presents additional challenges beyond
the lack of GPS in that the establishment of UWB anchor
infrastructure or other stationary positioning references is
infeasible [3]. However, in this setting each mobile robot
can act as an instantaneous anchor for cooperative position-
ing (Fig. 1). This approach is also applicable for settings
where GPS information is unavailable or insufficient such as
precision agriculture, operating in dense urban environments,
and search and rescue [13].

We present Trilateration for Exploration and Mapping
(TEAM), a novel approach to localization and mapping
which leverages the advantages of robotic networks. Via
coordinated mobility, ad hoc multi-hop communication, and
the ability to trilaterate a position estimate, we demonstrate
that four or more resource-constrained robots can develop
accurate maps of unknown environments. Our contribution is
the design and experimental evaluation of TEAM which (1)
requires an order of magnitude less computational complex-
ity than a Rao-Blackwellized Particle Filter [14], [15]; (2)
reduces the necessary sample rate of LiDAR measurements
by an order of magnitude; (3) can reduce the maximum
localization error by 50%; and (4) achieves up to a 28%
increase in map accuracy in feature-deprived environments
and comparable map accuracy in other settings. These com-
putational, power consumption, and performance advantages
are obtained at the cost of overall task efficiency, as the
robots are periodically static in order to trilaterate. We
demonstrate TEAM in several simulation environments and
evaluate its performance on a network of mobile robots.



II. RELATED WORK

Localization and mapping in multi-robot systems is a
well-explored research area [16]. Previous work seeks to
improve accuracy of localization and the resulting maps
through collaboration, wherein robots communicate their
maps, positions, or other relevant data [17], [18]. Inter-robot
detection and/or ranging can be used to improve localization
[19], [18]. While previous work has sought to augment
state estimation algorithms with inter-robot ranging, focusing
on improved accuracy [20], [21], in this work we focus
on low-complexity approaches and examine the feasibility
of inter-robot ranging as the primary method for absolute
localization.

Recently, UWB has become a popular solution for lo-
calization in GPS-denied environments like factories and
warehouses [11], [12]. One significant advantage of UWB
is that it offers the ability for low-complexity trilateration
[22]. Shule et al. presented a survey of UWB localization
for collaborative multi-robot systems and highlighted recent
trends [23]. Most existing work relies on a set of fixed
anchors with known positions, and uses Kalman filters or
least squares estimators for tracking robots [13]. Fusing
UWB ranging data from these stationary anchors with other
sensors is a popular research direction [23], [20].

Several prior works consider self-localization in UWB
anchor networks. Di Franco et al. presented a method
for calibration-free, infrastructure-free localization in sensor
networks based on inter-node UWB ranging [24]. Hamer
and D’Andrea presented a self-localizing network of UWB
anchors which then allow multiple robots to localize based
on received signals [25]. Subramanian and Lim presented
a scalable distributed localization scheme and introduce the
possibility of anchor node mobility, tested in simulation [26].
Our work extends this idea to the application of mapping and
evaluates it experimentally.

While stationary UWB anchors have received considerable
attention for robotics in recent years, few works consider
UWB transceivers onboard the robots for relative positioning.
As a method for inter-robot ranging, UWB has recently been
demonstrated for autonomous docking [27], formation flying
[28], and leader-follower [29], [30]. In a closely related
work to ours, Guler et al. experimentally evaluate the use
of three UWB transceivers on a single robot and one UWB
transceiver on a second robot to perform accurate relative
localization without explicit inter-robot communication [31].
In another closely related work, Kurazume and Hirose pro-
pose an approach to cooperative positioning in which a group
of robots is divided into two groups who alternate acting as
reference landmarks, which they demonstrate on three robots
using a laser rangefinder for inter-robot ranging [32]. Inter-
robot detection in this manner introduces the correspondence
problem of matching the detected robot with its identi-
fier, which is difficult to address for large swarms. Using
UWB with unique device addresses solves this issue. Our
work combines the accurate relative localization of UWB
demonstrated by Guler et al. [31] and coordinated mobility

for cooperative positioning demonstrated by Kurazume and
Hirose [32]. Furthermore, we introduce explicit inter-robot
communication and consider the application of mapping
unknown environments.

III. TRILATERATION FOR EXPLORATION AND MAPPING

TEAM is described in Algorithm 1. After initializing
position estimates, each robot iterates through lines 2-12
wherein they map their environment and exchange their
coordinates and maps. During a robot’s TDMA window (see
Fig. 3), the robot drives autonomously, initiates two-way
ranging, and trilaterates. The following subsections present
each component of the algorithm.

Algorithm 1 TEAM running on robot i
1: coords, neighborCoords = Initialization()
2: while True do
3: neighborCoords = RadioReceive()
4: if currentTime is in TDMAwindowi then
5: odom = DriveAutonomously()
6: neighborDistances = UWBRange()
7: coords = TrilateratePosition(odom,

neighborCoords, neighborDistances)
8: end if
9: scan = LiDARScan()

10: map = UpdateMap(coords, scan, map)
11: RadioTransmit(coords, map)
12: end while

A. Initialization

Initialization occurs in line 1. If initial positions are
unknown, TEAM can determine initial positions given that
each robot has a known and unique identifier. Robot 0’s
position defines the map origin and the forward direction.
Robot 1’s position defines the y axis and robot 2’s position
defines the positive direction of the x axis. Robot 3 and
any additional robots can then trilaterate as discussed below.
If initial orientations are unknown, each robot can move
a known distance in its local forward direction and then
trilaterate to determine orientation. If initial positions are
known, TEAM leverages this data to perform sensor auto-
calibration, estimating the sensor offset from the truth and
using that bias to correct future measurements.

B. Trilateration

Robots receive position estimates from their neighbors via
RadioReceive in line 3, and collect range measurements via
UWBRange in line 6. Given the positions and distances from
the three closest instantaneous anchors, TrilateratePosition
(line 7) determines a position estimate as shown in Figure 2.
The grey rings represent uncertainty in the two-way ranging
estimate, and the estimated position is the centroid of the
curved triangle formed by their intersection points. If fewer
than three anchors are within the communication range,
TrilateratePosition relies on the robot’s previous position
estimate and odometry to determine an updated position



Fig. 2. Robot 3 trilateration, using the received position estimates of robots
0, 1, and 2 as anchors.

estimate. For a robotic network of at least five robots, TEAM
can trilaterate in three dimensions.

To prevent UWB signal interference, TEAM uses a time-
division multiple access (TDMA) protocol such that lines
5-7 are only executed during a specified window as illus-
trated in Fig. 3. We selected TDMA because it offers high
channel utility and has extensions suitable for large teams of
cooperating robots [13], [33].

Fig. 3. Time-division multiple access scheme for 4 robots performing
TEAM. Each robot initializes two-way ranging (TWR) during its TDMA
window, and this cycle repeats.

C. Mobility

Exploration algorithms which seek to drive the robot
toward unexplored areas and maximize new information are
presented in [34], [35], [36], [37], and our previous work
[38]. TEAM is suitable for both autonomous exploration and
teleoperation. In this work we are focused on the resource-
constrained setting and elect to use simple drive control (line
5) in which robots are given a target direction and perform
autonomous collision avoidance based on LiDAR data.

To improve positioning accuracy, robots are stationary
outside of their TDMA window. Note that with four robots,
this scheme takes four times as long to cover a sum total
distance when compared to all robots driving simultane-
ously. This highlights an important system design trade-
off between prioritizing quick or accurate map coverage.
For larger networks, the three robots required to act as
instantaneous anchors are a smaller fraction of the network
and the reduction in sum total distance covered is less
significant.

D. Mapping

Each time the LiDAR takes a measurement (line 9), this
data is associated with the current position estimate. The
occupancy grid map representation is then updated (line 10)
with the LiDAR data. The resulting map is shared with
the data sink via RadioTransmit in line 11. To reduce the

burden on the resource-constrained robots, the data sink is
responsible for merging the maps received from all sources.
Using the map merging algorithm from [39], the data sink is
able to perform feature mapping and calculate the appropriate
frame transforms to merge all received maps. This process
does not require synchronization between robots, and the
data sink can receive a map as long as any multi-hop
communication path is available, as discussed below.

E. Communication

Under the assumption that all robots are within commu-
nication range, the publish/subscribe paradigm provided by
the Robot Operating System (ROS) is sufficient for sharing
positioning and map data (lines 3 and 11). However, lava
tubes are characterized by branches which challenge connec-
tivity [40]. Previous work exploring tunnels has considered
a variety of approaches including data tethers and droppable
network nodes [41]. This work builds on the approach of
[42] with mobile network nodes which can forward or re-
route data. The robots and data sink form an ad hoc mesh
network, in which robots can act as relays to the data sink
when needed, using Optimized Link State Routing (OLSR)
to determine network neighbors and appropriate routes [43].

IV. COMPLEXITY

In TEAM, selecting the three nearest anchors from the
anchors within range can be done in O(NlogN) where N
is the size of the network. Calculating the location estimate
is then a constant number of operations and several closed-
form and approximate algorithms exist [22]. Associating scan
data with a location estimate and updating the map can
also be done in constant time, as new scans are integrated
independent of the size of the existing map.

We compare TEAM with an improved Rao-Blackwellized
Particle Filter (referred to here as SLAM), a Monte Carlo
localization algorithm which is available via the GMapping
library [14], [15]. Following the complexity analysis in [14],
SLAM introduces complexity O(P ) each time the location
estimate is updated, where P is the number of particles.
This computation is associated with computing the proposal
distribution, computing the particle weights, and testing if
a resample is required. SLAM also introduces complexity
O(P ) for each map update, and complexity O(PM) each
time a resample occurs, where M is the size of the map.
For an optimized system, the number of particles required
is typically between 8 and 60 [14], depending on the size
and features of the environment. Thus, TEAM can provide
up to a 60x reduction in computational complexity. Table I
contains the average runtimes for relevant computations on
our hardware.

Computation SLAM, P=60 SLAM, P=1 TEAM
Trilaterate - - 0.001 s

Update map 0.40 s 0.1 s 0.1 s
Process scan 2.25 s 0.05 s < 0.001 s

TABLE I
RUNTIME COMPARISON



Parameter Value
Number of robots 4
Number of UWB measurements averaged 10
Std dev of UWB measeurements 10 cm [44]
LiDAR/Trilateration synchronization timeout 100 ms
Map publish rate 1 Hz
Position estimate publish rate 10 Hz
Max drive speed 0.22 m/s
360◦ LiDAR sample rate 5 Hz
360◦ LiDAR resolution 1◦

360◦ LiDAR standard deviation 0.01
RBPF number of particles 50
Odometry variance 0.01 mm

TABLE II
RELEVANT PARAMETERS FOR SIMULATION EXPERIMENTS

Fig. 4. The top image resulted from SLAM with 50 particles, the bottom
image resulted from TEAM, each after 25 simulated minutes. The true
environment dimensions are overlaid in red.

V. SIMULATION EXPERIMENTS

A. Simulation Setup

We use the Gazebo robotics simulator to conduct ex-
periments in various environments. We implemented UWB
ranging in simulation according to the following model:

dpozyx =

{
dtrue +N(µ = 0, σ = 10cm), if 1LOS

None, otherwise
(1)

where dtrue is the true distance between two robots and
1LOS is an indicator function which evaluates to true if and
only if line of sight is available.

Table II presents relevant parameters used in the simula-
tion experiments. We assume UWB measurements have zero
mean and a standard deviation of 10cm [44]. Each call to
UWBRange returns the average of 10 independent measure-
ments. To ensure synchronization between the LiDAR scans
and UWB ranging measurements, a delay of more than 100
ms between the two sensors prevents TEAM from updating
the map with this scan data. This timeout was empirically
selected.

Note that with time-division mobility in the drive module,
our approach generates maps at a slower pace. In simulation,
we choose to not model the UWB interference constraint
and allow the robots to range simultaneously and therefore
drive simultaneously. This allows us to compare SLAM and
TEAM across the same time scale.

B. Simulation Results

The first environment we consider challenges SLAM but
is well-suited for TEAM: a long, featureless, obstacle-free
corridor. This environment is difficult for a particle filter

Fig. 5. The top image resulted from SLAM with 50 particles, the bottom
image resulted from TEAM. The true environment dimensions are overlaid
in red.

Fig. 6. The left image resulted from SLAM with 50 particles, the right
image resulted from TEAM. The true environment dimensions are overlaid
in red.

because the particle distribution becomes spread as the robots
navigate along the hallway which lacks discernible features
for localization [14]. The results of this experiment are
shown in Figure 4; they indicate that TEAM can significantly
improve map accuracy in featureless environments.

The second environment we consider challenges TEAM
but is well-suited for SLAM: an environment with obstacles
and branches that prevent line of sight. TEAM relies heavily
on odometry data in this environment, and the results of
this experiment are shown in Fig. 5. We demonstrate the
performance in the presence of noisy odometry data in Sec.
VI-B.

Finally, we consider an environment with lava tube-like
characteristics, including two branches. The Gazebo model
for this environment comes from [45]. The results of this
experiment are shown in Fig. 6 and strengthen our claim
that TEAM results in accurate maps regardless of the envi-
ronment.

One significant advantage of TEAM is that it decouples
localization from LiDAR sensor measurements. This allows
us to reduce the frequency of LiDAR scanning in order to
save power; this is useful for robots that have severe energy
constraints or memory limitations. Fig. 7 shows the result of
an experiment in which scans are throttled to 0.1Hz from 5Hz
used in the previous experiments. This shows that reduced
LiDAR frequency significantly deteriorates the performance



Fig. 7. The left image resulted from SLAM with 50 particles and scans
throttled to the low frequency of 0.1Hz. The right image resulted from
TEAM with the same low LiDAR sample rate.

Fig. 8. The left image resulted from SLAM with 1 particle. The right
image resulted from TEAM, which is computationally comparable.

of SLAM, while leading to topologically correct albeit sparse
maps with TEAM.

As discussed in Sec. IV, the algorithmic complexity of
SLAM is a function of the number of particles used to
capture the belief distribution of the location estimate. For
TEAM, the algorithmic complexity is comparable to SLAM
with a single particle. In Fig. 8 we illustrate the performance
of SLAM with 1 particle and TEAM side by side, to highlight
the difference in map accuracy despite similarly reduced
computation time.

While the merged map presents a clear picture of the capa-
bilities of TEAM, it is also useful to consider the localization
error of the robots over time. For SLAM, the localization
uncertainty varies as the belief distribution changes over
time. In feature-deprived environments like the one shown in
Fig. 4, this error can grow up to 25m. Fig. 9 compares the
localization error as a function of time during exploration
of the lava tube-like environment. We observe that errors
in TEAM are less than 3m and these errors are infrequent,
however errors in SLAM can grow up to 6m and are higher
on average.

It is similarly useful to quantify the accuracy of the merged
map created by each algorithm over time. We measure the
absolute pixel error of map image files which were manually
aligned with and compared to the image file of the true
environment. We plot the map accuracy over time and show
that while SLAM and TEAM both result in decreasing map
error, TEAM achieves a lower final absolute pixel error (Fig.
10). We observe that TEAM achieves a 28% decrease in error

Fig. 9. These graphs show the localization error over time for SLAM and
TEAM for the environment depicted in Fig. 6.

Fig. 10. This graph shows the map error as a function of time for the
environment depicted in Fig. 6.

relative to SLAM for the environment depicted in Fig. 4, and
a 27% decrease in error for the environment depicted in Fig.
6.

VI. TESTBED EXPERIMENTS

A. Testbed Setup

Our testbed is comprised of four Turtlebot3 Burgers, each
equipped with a RaspberryPi 3B+ running Raspbian, an
OpenCR1.0 control board, a 360 Laser Distance Sensor, and
differential drive. We have extended each platform with a
Pozyx UWB Creator series Anchor, and a USB Wireless
Adapter Mideatek RT5370N with 2dBi antenna. The wireless
adaptor allows each robot to designate one wireless interface
for internet connectivity, and one wireless interface for
joining our ad hoc mesh network, TurtleNet. The robots
and data sink, a PC running Ubuntu 16.04, all implement
Optimized Link State Routing (OLSR), a proactive routing

Parameter Value
TDMA window size 5 s
UWB ranging rate 20 Hz
Worst case expected communication delay 400 ns

TABLE III
ADDITIONAL RELEVANT PARAMETERS FOR TESTBED EXPERIMENTS



Fig. 11. Turtlebot3 Burger with Pozyx UWB anchor (left). Ground truth
map for hallway environment (right).

protocol for mobile ad hoc mesh networks [43], [46]. We
provide a tutorial for mesh networking Turtlebot3 Burgers
[47].

Table III presents parameters used in the testbed experi-
ments in addition to those previously listed in Table II. The
size of the TDMA window should be larger than the time to
collect 10 ranging measurements (0.5 sec) and smaller than
the time it would take a robot to drive beyond the maximum
communication range (90 sec). Delays between the robots
and the data sink do not affect the quality of the resulting
merged map, as it is processed asynchronously; however,
delays or dropped packets between robots affect the location
estimate accuracy. We introduce a 0.3 second buffer period
at the end of each TDMA window during which the robot
stops driving but continues to perform trilateration. Note
that for consistency, our time-division approach to driving
autonomously was used across all experiments.

Fig. 12. SLAM in the hallway: merged map

Fig. 13. SLAM in the hallway: map created by a single robot

B. Testbed Results

Fig. 12 shows the merged map created by our testbed in
a typical hallway environment using SLAM. Fig. 13 shows
the map created by a single robot, illustrating the effect of
inaccuracy in the odometry readings. We noticed that the
drift in odometry was not consistent across the four robots,
but the map merging algorithm mitigated this. For better

Fig. 14. TEAM in the hallway: merged map

Fig. 15. TEAM in the hallway: map created by a single robot

location estimate accuracy, the robots should localize within
the merged map rather than their individual maps.

Fig. 14 shows the merged map created using TEAM. We
observe that the wall edges are slightly less well-defined.
This is due to noise in the UWB ranging measurements
causing small jumps in the position estimate. This noise is
primarily attributed to multipath effects, and further char-
acterizing the UWB performance will help improve map
accuracy [18]. Fig. 15 shows the individual map of a single
robot and highlights the effect of loss of line of sight. This
causes the robot to rely on its odometry until UWB signals
are available again, at which point its location estimate
may jump, leading to discontinuities in the map. Distributed
strategies to maintain connectivity as presented in [38] can
prevent these discontinuities.

VII. CONCLUSIONS AND FUTURE WORK

We have presented the design, implementation, and eval-
uation of TEAM, a novel algorithm for localization and
mapping in unknown environments with a robotic network.
We demonstrate the ability of TEAM to leverage ultra-
wideband positioning to generate maps of various environ-
ments with high accuracy. Our algorithm significantly re-
duces the computational complexity and the required rate of
LiDAR samples, making it suitable for resource-constrained
multi-robot systems, and performs well in feature-deprived
environments where SLAM struggles.

In the future, we will investigate the use of discrete or
continuous belief distributions over the location estimate to
better capture the randomness in the Pozyx signals. We also
plan to further characterize the UWB multi-path effects.
Other directions for future research could include incor-
porating a consensus mechanism for electing instantaneous
anchors [48], [49], or improving inter-robot synchronization
[50], [51].
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