MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM) | 978-1-6654-3956-5/21/$31.00 ©2021 IEEE | DOI: 10.1109/MILCOM52596.2021.9652937

MILCOM 2021 Track 5 - Special Topics in Military Communications

Tactical Jupiter: Dynamic Scheduling of Dispersed
Computations in Tactical MANETSs*

A. Poylisher, A. Cichocki, K. Guo, J. Hunziker, L. Kant

Peraton Labs
150 Mount Airy Road, Basking Ridge, NJ 07920

Abstract—We present Tactical Jupiter, an adaptation of the
recently developed Jupiter framework for scheduling of dispersed
computations on heterogeneous resources to tactical MANETS.
Tactical Jupiter addresses the challenges to distributed scheduling
posed by intermittent connectivity and scarce/variable band-
width, variable computational resource utilization by background
load, and node attrition. Our key contributions include: (a)
disruption handling via increased autonomy of task executors,
(b) low-overhead ML-based task completion time estimation in
presence of background load, and (c) resilient dissemination
mechanisms for monitoring information.

Index Terms—Dispersed computing, scheduling, MANET.

I. INTRODUCTION

Recent advances in the computing power, storage, and
energy storage capacity available at the tactical edge enable a
significant distributed processing capability for the distributed
data produced at the tactical edge. Harnessing the frequently
unused part of this capability close to the data sources would
greatly reduce the data transfer time and required network
capacity and shorten computation time, leading to a higher
quality and speed of decision-making.

Approaches for scheduling dispersed computations have
been actively developed for the data center, fixed infrastructure
IoT (e.g., [1], [2] and Internet-wide scenarios. However, at
the tactical edge, they face multiple challenges, including (a)
intermittent connectivity and low, variable bandwidth, due to
mobility and/or adversarial action, (b) variable computational
resource utilization by the legacy users not subject to dis-
tributed scheduling, (c) node attrition due to adversarial action.

In this paper, we present Tactical Jupiter, an adaptation of
a recently developed USC Jupiter framework for scheduling
of dispersed computations expressed as task graphs on hetero-
geneous resources [3], [4], to tactical MANETS to address a
subset of above challenges. A task graph (TG) is a directed
acyclic graph where a vertex is a computational task and an
edge is a data transfer between tasks. The TG scheduling
problem is to produce a mapping or a series of mappings of
tasks in a TG to network nodes to minimize the total execution
time of the TG. Tactical Jupiter uses a modified version
of the HEFT algorithm [5], and continuous feedback from

“This work was supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-17-C-0047. Any opinions,
findings, conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of DARPA. Distribution
Statement “A” (Approved for Public Release, Distribution Unlimited).

B. Krishnamachari, S. Avestimehr, M. Annavaram
University of Southern California
3650 McClintock Ave, Los Angeles, CA 90089

monitoring of the compute network resources and executing
tasks and data transfers to regularly evaluate and adjust the
TG mapping to nodes in a tactical MANET.

Our key contributions include: (a) handling of selected
disruption types via increased autonomy of task executors,
(b) low-overhead ML-based task completion time (TCT) esti-
mation in presence of background load, and (c) resilient and
low-overhead dissemination of monitoring information.

The rest of the paper is organized as follows. In Sec-
tion II, we describe the system architecture, the dynamic task
mapping, task completion time estimation and path available
bandwidth estimation approaches. Section III describes a few
implementation details and presents initial evaluation results
for task completion time estimation and the overall system.
Section IV discusses related work, and Section V concludes
and outlines our next steps.

II. THE TACTICAL JUPITER APPROACH
A. Architecture

The architecture of Tactical Jupiter is shown in Fig. 1. Tacti-
cal Jupiter extends Jupiter, the USC framework for scheduling
and executing dispersed computing applications [3], [4], in-
cluding those created with coded computing mechanisms [6],
to address the challenges posed by the resource dynamics in
tactical MANETS, outlined in Section I. Given an application
described by a a task graph (TG), and a tactical network that
connects computational nodes, Tactical Jupiter dynamically
maps the tasks for execution on the nodes to minimize the
overall TG execution time.

Task Executor [active on every node]

Task
Execution
Monitor

Task Execution

Data

Computational

Task Agent

Link Available
Bandwidth
Controller Estimator

Transfer Inter-|

Nodeg

Node Data Transfer

Node Load
Estimator

TG Execution
Monitor

TG Mapping
Algorithm

1

Path Available
Bandwidth Esti

TG Mapper [active on a single node]

Node,

Task Completion
Time Estimator
4

Task Execution
Profiles

Fig. 1. The architecture of Tactical Jupiter. Runtime modules are in blue, the
application TG in purple, and offline-computed reference data in yellow.

ABFGrie® 2 As3DEB-BYRAY $3 LR r@R & ZbUEER California. Downlb@idd on April 02,2022 at 20:12:53 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2021 Track 5 - Special Topics in Military Communications

Tactical Jupiter is composed of two high-level components:
(a) the TG Mapper that is active on a single network node,
and (b) the Task Executor that runs on every network node
configured to execute computational tasks. The TG Mapper
is responsible for: (a) computing new/updated assignments
of tasks to nodes (mappings) based on various events, in-
cluding arrivals of new TGs, changes in resource availability,
and task completions/under-performance, and (b) pushing out
new/updated mappings to the Task Executors on the nodes
identified to execute the tasks. The TG Executor is responsible
for: (a) instantiating/terminating tasks, (b) monitoring execu-
tion of ongoing tasks and informing the TG Mapper of task
completion/under-performance.

The brain of Tactical Jupiter is the TG Mapping Algorithm
that can implement any Jupiter algorithm (e.g., [5] or [7]); ours
implements an modification of [5]. The TG Mapping Algo-
rithm has the following inputs: (a) path available bandwidth for
any node pair from the Path Available Bandwidth Estimator,
(b) projected task completion time (TCT) for a task on any
node from the TCT Estimator, and (c) mapped task progress
information from the TG Execution Monitor.

The Path Available Bandwidth Estimator maintains an an-
notated network topology and is informed by Link Available
Bandwidth Estimators that run on every Task Executor node.
The TCT Estimator maintains node computational load infor-
mation, informed by Node Load Estimators that run on every
Task Executor node. The TCT Estimator also makes use of
the pre-computed task execution profiles (Section II-C).

The TG Execution Monitor is informed by Task Execution
Monitors that run on every Task Executor node. The TG Map-
ping Algorithm effects mapping changes via Task Execution
Controllers that run on every Task Executor node. The Task
Execution Controller starts computational tasks and inter-task
data transfers autonomously, when these are ready, according
to the current mapping. The Data Transfer Agent implements
the application-independent inter-task data transmission and
supplies progress information to the Task Execution Monitor.

In the rest of this Section, we describe the operation of
Tactical Jupiter, including task mapping (Section II-B), task
execution profiling and TCT estimation (Section II-C), and
path available bandwidth estimation (Section II-D).

B. Task Mapping

The TG Mapping Algorithm depends on the following
inputs: (a) the TG, (b) the timeline of previously-scheduled
task assignments for each executor node, (c) the expected
TCT for each task on each executor node, (d) the expected
size of data transferred by each task upon completion, (e) the
estimated available bandwidth between all pairs of executor
nodes, and (f) the state of in-progress data transfers.

Upon generation of the initial mapping, the timeline of
availability for each executor node is empty. Note that the
timeline does not track the computational load unrelated to
the TGs managed by Tactical Jupiter. The TCT Estimator
(Section II-C) handles the effects of such background load.
The use of persistent executor node-oriented timelines allows

for node <— all new compute nodes do
Set timeline to empty
end for
if first schedule then
Record kickoff time
end if
Use HEFT (1) to calculate up-ranks of all tasks
for task <— tasks sorted by decreasing up-rank do
for node < all compute nodes do
Use HEFT (2) and (3) to calculate earliest start time and earliest finish time,
greedily assigning the node with the best earliest finish time to each task
end for

end for

Fig. 2. Task mapping with HEFT.

multiple TGs to run at once. Each TG has its own mapping
of tasks to executor nodes.

To determine a mapping of tasks to processors, the basic
HEFT algorithm operates as shown in Fig. 2 and 3.

ranky(n;) =w; + max

nj€suce(n;

)(W—&-runkzu(nj)) €))

max

EST(n;,pj)=max {avail[j],
nm Epred(n;)

(AFT (nm) + cm,i)} 2)

EFT(n;,pj)=w; j + EST(ni,pj) 3

Fig. 3. HEFT equations: 1) Up-rank equation, where n; is the it/ task, w;
is the average computation cost of n; across all nodes, succ(n;) is the set of
successors to n; in the TG, and ¢; ; is the average transfer cost of sending
data between n; and n; for all possible node pairs. 2) Earliest Start Time
equation, where p; is the j*" processor, avail[j] is the earliest slot in p;’s
timeline where this task would fit, pred(n;) is the set of predecessors to
n; in the TG, and AF'T is the Actual Finish Time of such a predecessor.
Note that “actual” here means the finish time implied by the schedule when
the predecessor has not yet run. AFT is the EFT of the chosen node for a
task. 3) Earliest Finish Time equation, where w;_; is the computation cost
of running this task on this node.

Because of the changing TCT estimates and network re-
source availability, the TG Mapping Algorithm periodically
recomputes the the current mapping. If the new mapping is
a significant improvement over the existing one (in terms of
estimated completion time and taking into account the cost of
data transfers, including re-mapping), new task assignments
are put into effect. In the tactical networks, both the nodes
and the communication links can be unreliable. When the
TG mapping changes, the challenge is to ensure that tasks
communicate with the correct predecessors and successors.
If the TG Mapper were responsible for canceling tasks and
re-sending data, race conditions would become a significant
risk. Particularly difficult situations could arise when the Task
Execution Controllers miss important control messages from
the TG Mapping Algorithm.

The key insight into handling disruptions such as node
disconnections and nodes failing to expediently complete
tasks is that autonomy in the execution nodes relieves the
scheduler of the most complex responsibilities. A philosophy
of “the task assignment map drives everything” allows for
graceful adaptation to changes. The task assignment map is
the output of HEFT, described above. In Tactical Jupiter, the
full assignment map is sent to every executor node. By having
the whole assignment map, a Task Execution Controller can
do a number of things autonomously, including: (a) beginning

Authorized licensed use limited to: University of Southern California. Downb@4i3d on April 02,2022 at 20:12:53 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2021 Track 5 - Special Topics in Military Communications

loop
if all inputs have arrived for an assigned task then
Put task on job queue
end if
if new task assignment map arrives then
for task < tasks that have been completed here do
if successor has changed then
Send old result data to new successor
end if
end for
if one of this node’s assignments have changed then
Cancel execution of that task
Cancel result transfers for that task
end if
end if

end loop

Fig. 4. Task execution. Note that there are separate threads handling data
transfer and execution of tasks on the job queue.

task execution when the necessary inputs arrive, (b) sending
previously computed outputs to any executor node to which
results have not yet been sent, (c) interrupting task execution
if the current assignment is revoked, and (d) interrupting a
data transfer if the destination node’s assignment is revoked.
This set of behaviors is illustrated in Fig. 4.

With the “the task assignment map drives everything”
approach, the TG Mapping Algorithm effects all assignment
changes solely by transmitting a new assignment map. It does
not get involved in starting and stopping tasks, or orchestrate
network transfers. In the event of the disconnection of a large
number of executor nodes, the system gracefully recovers.

Keeping currently executing tasks on their assigned nodes
is a virtue for system stability and ease of understanding.
The TG Mapping Algorithm does not normally re-map the
tasks in progress. However, if a predicted TCT is exceeded
by a configurable threshold, the task becomes eligible for re-
mapping. This eligibility cascades up the TG if predecessor
task outputs are no longer available.

Fig. 5 shows the procedure of periodic mapping re-
computation. The current mapping is re-evaluated after the
path available bandwidth and executor node load information
has been collected. This is because improving conditions can
benefit the current mapping, so the appropriate comparable
for a new mapping is the re-evaluated current mapping. The
resulting mapping is sent to all executor nodes regardless of
whether it has changed, so that the Task Execution Controllers
that miss mapping messages (e.g., due to network instability)
get the correct schedule upon reconnecting. Disconnected
nodes continue operate on an outdated schedule, and can make
progress if data is available. Their output that can be used or
discarded, but in no way affects correctness of the end result.

In summary, our TG Mapper improves upon the original
Jupiter by: (a) re-mapping during TG execution, (b) handling
node losses and task execution timeouts, (c) using dynamic
TCT estimation for tasks in the currently executing TG, and
(d) pipelining multiple TG executions.

C. Task completion time (TCT) estimation

To make the best use of CPU resources on each compute
node, a scheduler typically relies on prediction of future
performance. Existing work on CPU availability prediction is

loop
for task < all tasks do
if processor has exceeded expected time for task then
Mark task as eligible for rescheduling
end if
end for
Run scheduling algorithm (Fig. 2) with updated network and computational
load information
Estimate previous schedule with updated network and computational load
information
if proposed schedule finishes significantly sooner than previous schedule then
Adopt proposed schedule
end if
Send schedule, regardless of whether it has changed, to all nodes

end loop

Fig. 5. Periodic mapping re-computation.

often motivated by the need of the scheduler to assign a task
to the node with highest projected CPU availability [8], [9],
the percentage of CPU time available to a new process.

Our TCT Estimator takes this one step further and predicts
the time it would take to complete the execution of a given
profiled task were the task to execute on a particular node in
the immediate future. This is challenging as task execution
requires nonzero time, and, during this time, CPU availability
varies as background CPU load changes. We make no assump-
tion about the background load.

Detecting the effect of background load change: Consider
the average behavior of a foreground process to be scheduled,
and the set of background processes as aggregate background
load. Further, consider the typical case where all processes
share CPU resources of one or more cores/CPUs fairly. With
n concurrent processes competing for CPU resources, each
will receive 1/n of the total CPU resources. We use 7y and
rp to represent the average number of competing CPU-bound
processes during the time period under consideration for the
foreground process and the set of background processes.

To obtain these metrics, we use the OS scheduler statistics
provided by the in-kernel instrumentation. E.g., for Linux and
Android, we sample the procs_running entry in /proc/stat for
the instantenous reading of the run queue size, which reflects
the number of running processes, and average such readings
over a time window for a smoothed average run queue size.
To reduce overhead, we use a 1s sampling interval.

However, the CPU scheduling quantum (the period of time
for which a process is allowed to run uninterrupted in a
preemptive multitasking OS) is typically in the order of
milliseconds (e.g., 0.75 to 6 ms for the Linux time slice). At
time scales larger than the time slice, the run queue size alone
does not fully represent the CPU load incurred by the group of
processes under consideration. This drives the need to monitor
CPU utilization. We obtain per-process CPU utilization from
the /proc filesystem as well, sample it every 1s, and average
the per-second reading to derive a smoothed average CPU
utilization for a given window. We define uy and u; as the
average CPU utilization over a window for the foreground task
and all of the background processes.

Consider a window when both a foreground task and back-
ground processes are running. Since under fair CPU sharing
CPU load from a process is proportional to its average run

Authorized licensed use limited to: University of Southern California. Downb@d on April 02,2022 at 20:12:53 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2021 Track 5 - Special Topics in Military Communications

queue size, the foreground task should receive r¢/(r+14) as
its share. When the foreground task is not CPU intensive, u ¢ is
less than 100%, and its TCT is less affected by the background
load. The minimum TCT is T'CTj, obtained without any
background load. We define the TCT scaling factor for a
foreground task as the ratio of TCT with background load
over T'C'Ty. The minimum TCT scaling factor is 1, and the
maximum TCT scaling factor is reached when the foreground
task is CPU-intensive during the entire execution time with

max(1,up X (ry +7p)/ry) 4

Next, we discuss task execution profiling and background
CPU load estimation that provide inputs to the TCT Estimator,
and the process of TCT estimation.

Task execution profiling: By design, foreground tasks are
known to the scheduler in advance, and background processes
are unknown. To profile a foreground task, we execute it
multiple times in a row without any background load, on
each machine representative of an executor node in the actual
network, and record the TCT, average run queue size and
average CPU utilization for each execution. We then average
over all executions to derive T'CTy, ry and uy. Since our
monitoring process reads a small number of files every 1s, it
makes the contribution of 1 to the measured r;s and negligible
contribution to CPU utilization. The profile run queue size for
the foreground task is therefore ry = rp — 1.

Predicting background CPU load: Due to the unknown
nature of background processes, we can rely only on pre-
diction to capture average background CPU load, using CPU
utilization u; and run queue size r, over a time interval. We
record the two metrics periodically (every 1s), and solve the
time-series prediction problem using a bi-directional LSTM
network [10] for each metric. We select the average value
over the past time window W as the input feature, and the
average value over the next time window of the same size as
the output. We train the model with traces from a number of
benchmark tests from the Phoronix test suite [11], and test with
traces not included in the training dataset. With W > 120s,
we achieve 80-90% accuracy (or 10-20% prediction error).
We use RMSE over all predictions for scaled input data in
the range of [0,1] in order to derive the percentage error. For
reference, the same error range has been reported in a recent
large data center server trace study [12].

TCT estimation: Foreground TCT prediction using the TCT
scaling factor in Eqn. 4 requires the foreground task profile,
namely uy, r¢, and TCTy. For background processes, it only
requires prediction for r;, for the next time interval W. In order
to predict 7, the input feature to the prediction model must be
the average r in the previous interval. However, when both
the foreground process and background processes are present,
our monitoring process records the run queue size and CPU
utilization for all processes, including the monitoring process,
the foreground task, and the background processes.

During W, the monitoring process is always present. In
contrast, the foreground task may only be present for a

10
Dby M Ay Pty Nyt
S P
. ’ | |
N
@ | | ’
v 6
=1
LD
3
o
E 4
2 n w%‘wm,.) I —— 10s ave: actual
‘ “')M 180s ave: actual
0 200 400 600 800
time (10s)
18
—— 10s ave: actual
16 180s ave: actual
14 —— 180s ave: prediction
N12
o)
210
s
o 8
f=4
26
4
2
0 100 200 300 400 500 600 700
time (10s)

Fig. 6. Run queue size trace for training (top) and prediction results (bottom).

portion of W, or not present at all. Because the TG Mapping
Algorithm records the start and end time of each scheduled
task on any executor node, the TCT Estimator computes p,
the percentage of W the task is running.

If r. is the combined run queue size for W, the input to
the r, prediction model becomes:

Ty, =Tc—1—pXry)
D. Path bandwidth availability estimator

When generating a schedule, the scheduler considers avail-
able bandwidth between all node pairs. Estimating end-to-
end available bandwidth in tactical MANETSs presents a few
challenges. First, unlike in the wired networks, links may
not be independent due to spectrum interference, which is
particularly significant for CSMA MANETs we have used to
evaluate Tactical Jupiter. Second, combined effects of mobility
and terrain require frequent re-estimation.

The available bandwidth of a CSMA MANET link is a
function of: a) the traffic carried by the link in consideration;
b) the traffic carried by the other links that can interfere on the
same channel; ¢) potential spectrum interference from outside
the waveform; d) the PHY and MAC layer construction and
configuration (e.g., the transmission and carrier-sense ranges);
and e) node positions and terrain.

We have developed a low-overhead sensing-based path
bandwidth estimation approach for 802.11 MANETS that takes
advantage of a well-known MANET link state routing protocol
[13]. In our approach, described in detail in [14], each node
A periodically: i) estimates the probability of its own 802.11
MAC being idle; ii) shares its MAC idle probability with
one-hop neighbors by piggybacking on the periodic link state
protocol HELLO messages; iii) estimates one-hop available
link bandwidth between a neighbor and itself (L) as the prod-
uct of the minimum MAC idle probability of the two nodes
and maximum channel capacity; iv) efficiently disseminates

Authorized licensed use limited to: University of Southern California. Downb@ad on April 02,2022 at 20:12:53 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2021 Track 5 - Special Topics in Military Communications

L throughout the network using the topology control (TC)
messages of [13], so the topology annotated with L is available
at each node; and v) adjusts the estimate at A to account for
intra-flow contention and interference by dividing the estimate
by the number of nodes within the carrier sensing range of A.
v) requires the knowledge of node positions, terrain, and radio
configuration, available in tactical MANETS.

The available bandwidth along a path is then computed from
the annotated topology on demand at any node, including the
node currently hosting the TG Mapper, as the minimum link
bandwidth estimate along the path. This capability improves
fault tolerance and facilitates task re-mapping; we have imple-
mented it as a service in the routing protocol daemon of [13].

IIT1. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Tactical Jupiter is implemented in Python, runs inside
Docker containers on Ubuntu and Android, supports any
application expressed as a TG, and custom eligibility criteria
for task placement. The latter is useful for nodes that can act
as sensors or have custom processing capabilities.

We have evaluated Tactical Jupiter in a CyberVAN hybrid
emulation testbed [15] that combines high-fidelity discrete
event network simulation with virtual machines (VMs) running
real operating systems, libraries and applications.

TCT Estimator: To test the performance of our TCT Esti-
mator, we designed a number of foreground tasks with TCT
ranging from 60 to 180s with average CPU utilization uy
ranging from 10% to 100% on a 1-core and a 8-core x86_64
virtual machine (VM) running Ubuntu 16.04. We varied the
task execution environment from native on a VM to inside
a Docker container. We used the Phoronix test suite [11]
to generate background load. Our TCT Estimator is able to
achieve 87-95% accuracy in these tests. Figure 7 shows the
results from profiling an example task over 100 iterations and
the TCT estimation results for run queue size and TCT for a
foreground task with background load.

Full system evaluation: We conducted initial evaluation
of Tactical Jupiter in a CyberVAN scenario (Figure 8). The
scenario includes a low-bandwidth, platoon-sized 802.11n
MANET deployed on a relatively flat terrain. Node compu-
tational capabilities are heterogeneous (handheld devices and
vehicle computers). Resource availability changes due to node
mobility and background CPU load.

The application TG (in purple) represents a multi-stage
continuous training of autoencoder-based models and building
of ensemble classifiers to detect anomalies in the SA reports
sent by the ATAK application on all nodes that can be used
as a covert coordination channel by an adversary.

In our baseline scenario, an initial TG mapping is created by
hand, but there is no run-time re-mapping. In contrast, in the
Tactical Jupiter scenario, the TG Mapper performs dynamic
adaptation in response to: (a) a node destroyed by enemy
fire, and (b) a spike of background CPU load on a different
node. In the baseline scenario, the overall TG completion time
was severely affected by (b), but, even more significantly, the
computation could not finish at all due to a later-stage task

0.50 8

—— cpu utilization, ave=0.40% c
j .

g 0.45 run queue size, ave=3.85 7.g
o o
2 &
= 0.40 65
g W g
c [}
S$0.35 5%
N g
5 0.30 A A AN / MM A v/\/\ \t4 E
. NN \ NANWIWNYYNA VY WA o
20| WA S WIVNIWRERIRERA 2
v 2
0 0.25 30
s S

0.20 2

0 2500 5000 7500 10000 12500 15000 17500
start time for each iteration (s)

350 40
« TCT: actual c
300 « TCT: pred 35%
250 run queue: actual |3 §
5 run queue: pred o
= 258
5 200 o
= 20%
8 150 v
B 15 g
o
=100 10¢
50 5 %

0 0

0 500 1000 1500 2000 2500 3000 3500

start time for each iteration (s)

Fig. 7. TCT estimation results based on task profile metrics: (top) task profile:
CPU utilization and run queue size averaged over 100 task iterations, (bottom)
prediction for run queue size and TCT for 19 task iterations.

mapped to a destroyed node by the static mapping. Tactical
Jupiter re-computed the mapping within 10s in both cases, and
the TG completed, avoiding the large delay due to (b).

Application task
graph and progress

@oqo

‘ : -

o -

Network topology,

node capabilities
and load

Current
mapping of
tasks to nodes

Overall progress of
application
execution

Fig. 8. The CyberVAN evaluation scenario.

IV. RELATED WORK

Task mapping: Prior work in the area of scheduling dis-
tributed computations have largely been based on heuristics,
or have introduced simplifying assumptions about the environ-
ment and type of computations in order to reduce complexity,
e.g., [16] where all tasks are assumed to be of the same length,
or the presence of only two computing nodes. HEFT [5] is one
of the most popular heuristics, with an outcome comparable to
alternatives, as detailed in [16]. HEFT has largely been used

Authorized licensed use limited to: University of Southern California. DownlbE4ad on April 02,2022 at 20:12:53 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2021 Track 5 - Special Topics in Military Communications

in static environments, with a few exceptions. E.g., [17] uses
HEFT and reschedules when a resource monitor discovers a
new compute node, but does not consider node failures and
assumes compute nodes dedicated to the scheduler, both of
which are not realistic in tactical networks. In [18], HEFT
is also used for re-scheduling, but it is only performed at
carefully selected points during the execution.

Additional prior work in the area of fault tolerant schedul-
ing of TGs includes the offline approaches [19], or online
approaches with limited dynamic decision making [20]. How-
ever, they employ considerable task duplication to maximize
the computation survival probability, precluding them for
resource-constrained tactical MANETSs. Other fault tolerance
approaches include preserving task inputs [21]; checkpoint-
ing of the current execution frontier of the data-flow graph
performed in parallel with the computation once the data has
been created [22]; or message-driven execution and message
logging for fault recovery [23]. However, they have not been
applied to dynamically changing networking environments.

Task completion time estimation: A large body of prior
work has focused on prediction of performance interference
of computational tasks on CPUs and GPUs in the data center
settings [24]-[27]. Interference considered in multi-core CPUs
includes shared cache, main memory and function units for
SMT [24], [25]. Non-preemptive accelerators (e.g., GPUs),
however, have different sources of resource contention and
exhibit different behavior [26], [27]. Existing TCT estimation
approaches assume that the execution profiles of all competing
tasks. We, however, aim to estimate TCT when unknown
background tasks compete with profiled tasks.

Path available bandwidth estimation: Due to space limita-
tions, we refer the reader to the related work sections in [14].

V. CONCLUSION AND FUTURE WORK

We presented the design and initial implementation and
evaluation of Tactical Jupiter, a dynamic scheduling system
for dispersed computing applications expressed as task graphs,
that addresses multiple challenges posed by tactical networks.
Evaluated in the field at NetModX’21, Tactical Jupiter is
currently in transition to the US Army.

Our next steps include improving system robustness (includ-
ing mapper election without restarting the task graph, already
enabled by our design), extending TCT estimation to variable
task output sizes, tuning parameters, and investigating incor-
poration of dynamic task graph scheduling into Kubernetes.

REFERENCES

[11 Y. Kim, C. Song, H. Han, H. Jung, and S. Kang, “Collaborative task
scheduling for iot-assisted edge computing,” IEEE Access, vol. 8, pp.
216593-216 606, 2020.

[2] Y. Gao, W. Wu, H. Nan, Y. Sun, and P. Si, “Deep reinforcement learning
based task scheduling in mobile blockchain for iot applications,” in ICC
2020, 2020, pp. 1-7.

[3] P. Ghosh, Q. Nguyen, and B. Krishnamachari, “Container Orchestration
for Dispersed Computing,” in Proc. 5th International Workshop on
Container Technologies and Container Clouds, December 2019.

[4] P. Ghosh, Q. Nguyen, P. K. Sakulkar, A. Knezevic, J. A. Tran,
J. Wang, Z. Lin, B. Krishnamachari, M. Annavaram, and S. Aves-
timehr, “Jupiter: A Networked Computing Architecture,” arXiv preprint
arXiv:1912.10643, 2019.

[6]

[7]

[8]

[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

(21]
[22]

[23]

[24]

[25]

[26]

[27]

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” [EEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, 2002.
S. Li and S. Avestimehr, Coded Computing: Mitigating Fundamental
Bottlenecks in Large-scale Distributed Computing and Machine Learn-
ing. Now Publishing, 2020.

P. Sakulkar, P. Ghosh, A. Knezevic, J. Wang, Q. Nguyen, J. Tran,
H. K. G. Narra, Z. Lin, S. Li, M. Yu, B. K. ans S. Avestimehr, and
M. Annavaram, “Technical Report ANRG-2018-01: WAVE: A Dis-
tributed Scheduling Framework for Dispersed Computing,” University
of Southern California, Tech. Rep., 2018.

R. Wolski, N. Spring, and J. Hayes, “Predicting the CPU Availability
of Time-shared Unix Systems on the Computational Grid,” in Proc. 8th
International Symposium on HPDC, 1999.

K. S. Hasan, J. K. Antonio, and S. Radhakrishnan, “A New Multi-core
CPU Resource Availability Prediction Model for Concurrent Processes,”
in Proc. IAENG International Conference on Computer Science, 2017.
M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, 1997.
Phoronix, “The Phoronix Test Suite: Linux Testing and Benchmarking
Platform,” https://www.phoronix-test-suite.com, 2021.

H. Shen and X. Hong, “Host Load Prediction with Bi-directional
Long Short-Term Memory in Cloud Computing,” arXiv preprint
arXiv:2007.15582, 2020.

T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg, “The Optimized
Link State Routing Protocol Version 2,” RFC 7181, 2014.

G. Kim, J. Lee, L. Kant, and A. Poylisher, “Utility-Driven Traffic
Engineering via Joint Routing and Rate Control for 802.11 MANETSs,”
in Proc. COMSNETS 21, 2021.

R. Chadha, T. Bowen, C.-Y. J. Chiang, Y. M. Gottlieb, A. Poylisher,
A. Sapello, C. Serban, S. Sugrim, G. Walther, L. Marvel, A. Newcomb,
and J. Santos, “CyberVAN: A cyber security virtual assured network
testbed,” in Proc. 2016 IEEE MILCOM, 2016.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, 1999.

Z. Yu and W. Shi, “An Adaptive Rescheduling Strategy for Grid Work-
flow Applications,” in Proc. IEEE Parallel and Distributed Processing
Symposium (IPDPS), 2007.

R. Sakellariou and H. Zhao, “A low-cost rescheduling policy for efficient
mapping of workflows on grid systems,” in Proc. Sci. Prog. 12, 2004.

A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of
precedence task graphs on heterogeneous platforms,” in Proc. IEEE
Parallel and Distributed Processing Symposium (IPDPS), 2008.

N. Tabbaa, R. Entezari-Maleki, and A. Movaghar, “A fault tolerant
scheduling algorithm for dag applications in cluster environments,” in
Proc. ICDIPC, 2011.

E. Maehle and F.-J. Markus, “Fault-tolerant dynamic task scheduling
based on dataflow graphs,” Fault-Tolerant PDS, 1998.

N. Vrvilo, V. Sarkar, K. Knobe, and F. Schlimbach, “Implementing
asynchronous checkpoint/restart for CnC,” CnC, 2013.

E. M. Rojas, “Scalable message-logging techniques for effective fault
tolerance in hpc applications,” Ph.D. dissertation, Dept. of Computer
Science, University of Illinois, 2013.

H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-Flux: Precise
Online QoS Management for Increased Utilization in Warehouse Scale
Computers,” in Proc. 40th Annual ACM International Symposium on
Computer Architecture (ISCA), 2013.

Y. Zhang, M. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise QoS
Prediction on Real System SMT Processors to Improve Utilization in
Warehouse Scale Computers,” in Proc. 47th Annual ACM International
Symposium on Microarchitecture (MICRO), 2014.

S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated Warp
Scheduling and Cache Prioritization for Critical Warp Acceleration
of GPGPU Workloads,” in Proc. 42nd Annual ACM International
Symposium on Computer Architecture (ISCA), 2015.

Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to
Improve Utilization in Warehouse-Scale Computers,” in Proc. 23rd ACM
International Conference on Architectural Support for Programming
Languages and Operating System (ASPLOS), 2017.

Authorized licensed use limited to: University of Southern California. Downb@iZd on April 02,2022 at 20:12:53 UTC from IEEE Xplore. Restrictions apply.

		2021-12-27T09:10:10-0500
	Certified PDF 2 Signature

