
Semi-Markov State Estimation and Policy
Optimization for Energy Efficient Mobile Sensing

Yi Wang, Bhaskar Krishnamachari, Murali Annavaram
Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA

{wangyi,bkrishna,annavara}@usc.edu

Abstract—User/environmental context detection on mobile de-
vices benefits end-users by providing information support to
various kinds of applications. A pervasive question, however,
is how the sensors on the mobile device should be sampled
energy efficiently without sacrificing too much detection accuracy.
In this paper, we formulate the user state sensing problem as
the intermittent sampling of a semi-Markov process, a model
that provides general and flexible capturing of realistic data
with any type of state sojourn distributions. We propose (a) a
semi-Markov state estimation mechanism that selects the most
likely user state while observations are missing, and (b) a semi-
Markov optimal sensing policy u∗

s which minimizes the expected
state estimation error while maintaining a given energy budget.
Their performance are shown to significantly outperform Markov
algorithms on simulated two-state processes and real user state
traces pertaining to different types of state distributions. Finally,
in order to evaluate the performance of u∗

s , we implement a
client-server based basic human activity recognition system on
N95 smartphones and desktops which automatically computes
user-specific optimal sensing policy based on historically collected
data. We show that u∗

s improves the estimation accuracy by
27.8% and 48.6% respectively over Markov-optimal policy and
uniform sampling through a set of experiments.

I. INTRODUCTION

Current generation smartphones integrate a wide range of
sensing and networking features such as GPS, accelerometer,
Bluetooth, and WiFi, which are able to recognize users’
context and surrounding information unobtrusively and in real
time. By sampling user/environmental context, the mobile
clients are able to better support high level applications such
as health monitoring, location/activity based services, and
content distributions. For example, it would be much more
convenient if mobile phones could automatically adjust the
ring tone profile according to the surroundings and the events
in which the users are participating; in mobile p2p networking
applications, performing a scan to identify the number and link
quality of peering devices may help the mobile device make
better decisions on efficient and reliable data transmissions.

In our study, we use the term “state” to represent
(discretized) user/enviromental context, which could pos-
sibly represent users’ activity, location, connectivity (to
peer/infrastructure node), background information, and so on.
A critical performance trade-off lies between the accurate
detection of user state and the energy consumption spent by
sensor samplings. On the one hand, most applications require
that user state is correctly recognized and estimated; on the
other hand, detecting user state requires sensor activations that
consume significant amount of energy which may drain the

mobile device battery quickly. Although sensor duty cycling
might be applied to reduce energy consumption, there exist
two major problems that need to be carefully investigated:
(1) how to accurately estimate the underlying state when
the sensor stays idle? and (2) given an energy budget, how
should sensor sampling be scheduled intelligently such that
the expected state estimation error can be minimized?

To address the above problems, in this paper, we formulate
the state sensing problem as the intermittent sampling of
a semi-Markov process, a class of stochastic processes that
allows any type of state sojourn time distribution and therefore
provides more accurate capture of realistic data than the
commonly used Markov process model. In particular, this
paper makes the following contributions:

First, for an intermittently sampled semi-Markov process
with truncated sojourn times, we propose a forward-backward
approach in order to estimate the most likely state informa-
tion whenever observations are missing. This real-time semi-
Markov estimation mechanism requires neither the origin in-
formation nor the initial state distribution, since it functions by
estimating the past sojourn time and the expected state ending
time for each individual estimation interval. We demonstrate
that it outperforms Markov estimation significantly on both
simulated state sequences as well as real data traces.

Second, we utilize linear programming (LP) with specific
definitions of costs (i.e., energy and error) to solve the con-
strained optimization problem in order to obtain the semi-
Markov optimal sensing policy u∗s that minimizes expected
state estimation error while satisfying an energy constraint. We
show that u∗s achieves great performance improvement over
the Markov-optimal policy u∗m [33] on real data traces.

Third, we design and implement a client-server based en-
ergy efficient mobile sensing system in order to evaluate the
performance of semi-Markov sensing policy in real systems.
The system is implemented on Nokia N95 devices (and
desktop PC as back-end server) for basic human activity recog-
nition which automatically computes and applies the user-
specific optimal sensing policy based on previously collected
user behavior dynamics. We demonstrate through a set of
experiments that the semi-Markov optimal policy achieves
the best estimation accuracy and longest battery lifetime as
compared to Markov-optimal policy and uniform sampling.

II. RELATED WORK

As the limited battery capacity often drives the design
consideration in mobile computing, energy efficient mobile



sensing [17], [34], [19], networking [9], [26], [1], and software
design [8], [6] have been widely investigated by researchers
in recent years. For example, in the field of mobile sensing,
Krause et al. [19] investigate the trade-off between prediction
accuracy and power consumption in mobile computing. The
design of SeeMon [17] and EEMSS [34] systems explore
hierarchical sensor management and sensor triggering mech-
anisms in order to achieve energy efficient context detection.
Driven by increasing user demands, energy efficient context
detection has been investigated and applied in applications
such as wearable health monitoring ([29], [35], [36], [4]) and
localization ([23], [18], [16], [20], [39]).

Modeling context with discrete state space and stochastic
processes (especially Markov processes) has been used in
different types of mobile sensing applications. For example,
Thiagarajan et al. [31] model the transition of user location
(in terms of road segments) as a Markov chain and provide
location estimation using HMMs in intelligent transportation
systems. Thatte et al. [30] treat fine-grained user activity
transition (e.g., sitting, walking, running, etc.) as a Markov
chain and design sensor selection algorithms in order to pro-
vide high-fidelity obesity monitoring. Although not explicitly
using a discrete state model, Wang et al. [32] investigated
the distribution of contact arrivals in mobile p2p networks
and studied its impact on energy efficient contact probing
mechanisms.

In this paper, however, as strictly Markovian characteristics
are rarely seen in real state traces, we formulate the user con-
text detection problem as the intermittent sampling of a semi-
Markov process. To reconstruct the user state process based
on discontigous observations, we propose a semi-Markov state
estimation algorithm that follows the conventional forward-
backward approach introduced by Ferguson in [12]. However,
the traditional algorithm introduced in [12] deals with full
observation sequence and hence cannot be directly applied to
cases where sensors are mostly idle with sparse observations.

Yu and Kobayashi [38] have studied the hidden semi-
Markov model (HSMM) with missing observations for mobil-
ity tracking applications. Their problem formulation assumes
that the HSMM starts at the first observation and ends at the
last one, and state estimation is conducted off-line for the
entire process. In contrast, in this paper, we provide a generic
estimation mechanism that can be executed in real time for any
estimation interval based only on neighboring observations.

Stochastic optimization tools have been widely used to
help design better protocols in resource-aware mobile op-
erations. For example, Benini et al. [3] addressed power
optimization on battery-operated devices with the assistance of
Markov Decision Process (MDP). Cheung et al. [6] propose
a MDP based optimization framework to optimize resource
usage (e.g., battery-life), such that user-specific reward can
be maximized. In our previous study [33], a Constrained
Markov Decision Process (CMDP) based optimization frame-
work has been proposed that schedules sensors intelligently
while assuming a Markov user state process. In this paper,
inspired by the standard use of LP to solve constrained

semi-Markov decision process (CSMDP) problem [10], we
build a constrained optimization framework and develop its
corresponding LP for intermittently sampled semi-Markov
processes in order to find the best semi-Markov sensing policy
that minimizes the expected estimation error under energy
consumption constraint.

III. SEMI-MARKOV STATE ESTIMATION WITH SOJOURN
TIME TRUNCATION

A. Preliminaries

We assume that time is discretized and the user state
evolves as a N-state discrete time semi-Markov process.
Sensor observations are assumed to be perfect, and due to
energy consumption concern, the sensor adopts duty cycling
which leads to a sparsely sampled state sequence with multiple
intervals of missing observations (see figure 1).

Fig. 1. The semi-Markov process is sampled at discontiguous time slots,
leading to multiple estimation intervals.

Let Ot represent the observed state at time t, where
Ot ∈ {1, 2, ..., N}. Let pij denote the probability of user state
transition from state i to state j. Similar to Markov models,
the transition probabilities satisfy

pij ≥ 0, and
N∑
j=1

pij = 1,∀i, j ∈ {1, 2, ..., N}, (1)

with no self-transitions, i.e.:

pii = 0,∀i ∈ {1, 2, ..., N}. (2)

We further let wi(a) (a ∈ N∗) denote the pmf of sojourn
time of state i. It is assumed that 1 ≤ a ≤ Ai < ∞, and∑

a wi(a) = 1, where Ai is the maximum sojourn duration of
state i. For practical purposes, we approximate distributions
with infinite support with a sufficiently large choice of Ai.

The following state estimation problem is investigated:
given the state distribution parameters pij and wi(a), and two
state observations Otm = o1 and Otn = o2, what is the most
likely state at any given time slot between tm and tn?

It is important to note that, unlike the assumptions made in
[12], [38], the observed states o1 and o2 do not necessarily
need to start at time tm or end at time tn. Instead, the state
estimation is conducted in real-time for any given estimation
interval, where sensor observations could be made at arbitrary
time slots, and the state detection may belong to any instance
of the sojourn time duration.

B. The Forward-backward variables
As the state observation o1 may truncate the state sojourn

duration, we define t′m (where tm − Ao1 < t′m ≤ tm) as the
”true” time at which state o1 is entered, i.e., the observed state
o1 started its sojourn time at time t′m, and lasted through time
tm. In real-time system implementation where state durations
are probabilistic, the exact value of t′m is often unavailable



since the sensor makes sparse observations and may not
have the knowledge of a complete historic state sequence.
Therefore, for a state evolving process that is divided into
multiple estimation intervals, t′m could be obtained through
the following approximation alternatives:

Method 1 (M1): Identify the starting time of o1 using the
state estimation result from the previous estimation interval.

Method 2 (M2): Use the expected value Ep of past sojourn
time, which can be calculated as follows (for state i):

Ep(i) =

Ai∑
a=1

a∑
τ=1

wi(a) · τ
a

. (3)

Method 3 (M3): Set t′m = tm, i.e., it is assumed the
state sojourn time starts at the beginning of each observation
interval. This assumption is implicitly used in [12] and [38],
however, in section III-D we will demonstrate that this method
leads to the most undesirable performance among all options.

Since M1 conducts state estimation based on previously
estimated results, it may cause error propagation where pre-
vious estimation error may accumulate and lead to undesired
performance in future estimations. M2 and M3 do not suffer
from this problem because they approximate the history of
state sojourn durations using expected and zero past sojourn
time, respectively. The comparison of these three methods
on simulated state sequences with different state sojourn
distributions is presented in section III-D.

Let A be the maximum length of state sojourn times, i.e.:

A = max
i

{Ai},∀i ∈ {1, 2, ..., N}. (4)

For a given time slot t, we define forward variables ft(i)
and f∗t (i) as:

ft(i) = Prob[o1, t′m, state i ends at t]

=
A∑

a=1

f∗t−a(i) · w
△
i (a), (5)

where

w△
i (a) =

{
wi(a), if t− a ≥ tm,

w′
i(a) =

wi(a)∑Ai
k=tm−t′m+1

wi(k)
, else. (6)

and

f∗t (i) = Prob[o1, t′m, state i starts at t+ 1]

=
N∑
j=1

ft(j) · pji. (7)

The reason that w△
i (a) is defined differently from wi(a) under

the condition that t − a < tm, is that the observed state at
time tm has already spent its sojourn time for tm − t′m + 1
consecutive time slots such that the rest of the sojourn
time distribution needs to be conditioned upon this fact, i.e.,
w′

i(a) = Prob[state i lasts for a slots | a ≥ tm − t′m + 1].
In order to compute ft(i), the boundary condition for f∗t (i)

needs to be initialized as follows:

f∗t (i) =

{
1, if t = t′m − 1, and i = o1,
0, otherwise. (8)

and
f∗tm(i) = po1i · wo1(tm − t′m + 1),∀i ̸= o1. (9)

Equation (8) emphasizes the fact that the detected state o1
has started its sojourn time at time t′m whereas equation (9)
computes the probability that state o1 transits to another state
in the first time slot of the estimation interval (i.e., tm + 1).

To initialize ft(i) at time tm, the probability that observation
o1 ends exactly at tm needs to be calculated, which satisfies:

ftm(i) =

{
w′

o1(tm − t′m + 1), if i = o1,
0, ∀i ̸= o1.

(10)

We further define the backward variables bt(i) and b∗t (i) for
a given time slot t:

bt(i) = Prob[o2| state i starts at t]

=

A∑
a=1

b∗t+a(i) · wi(a), (11)

and

b∗t (i) = Prob[o2| state i ends at t− 1]

=
N∑
j=1

bt(j) · pij . (12)

Since o2 does not necessarily end at tn, the initial and
boundary conditions for b∗t (i) are therefore given by:

b∗tn(o2) = 0, (13)

and

b∗tn+x(i) =

{
1,∀x ∈ {1, 2, ..., Ao2}, if i = o2,
0, otherwise. (14)

Equation (14) describes that given the fact that state o2 ends
at any time slot after time tn, the probability of seeing o2 at
time tn is 1, and correspondingly, the probability of seeing
other states at tn is 0.

The initial conditions for bt(i) need to be specified as:

btn(i) =

{ ∑Ao2
x=1 b

∗
tn+x(o2) · wo2(x), if i = o2,

0, ∀i ̸= o2.
(15)

in which btn(o2) is the average aggregated probability that
state o2 begins at time tn.

C. State estimation

Once the values of all the forward and backward variables
have been obtained by recursion, it is feasible to estimate the
state for each time slot between tm and tn. We define a new
forward variable:

ϕt(i) = Prob[o1, t′m, st = i], (16)

which holds the following property:

ϕt(i) = Prob[o1, t′m, st−1 = i]

− Prob[o1, t′m, st−1 = i and st ̸= i]

+ Prob[o1, t′m, st−1 ̸= i and st = i]

= ϕt−1(i)− ft−1(i) + f∗t−1(i). (17)



Therefore, ϕt(i) can be calculated by recursion as well. To
initialize, the following equalities hold:

ϕtm(i) =

{
1, if i = o1,
0, else. (18)

Next, we define a new backward variable:

ψt(i) = Prob[o1, t′m, o2, st = i], (19)

Similar to the relationship illustrated in equation(17), ψt(i)
can be further written in the following recursive form:

ψt(i) = ψt+1(i)− bt+1(i) · f∗t (i) + ft(i) · b∗t+1(i).(20)

The initial condition for ψt(i) is given by:

ψtn(i) = Prob[o1, t′m, o2, stn = o2]

= ϕtn(i), (21)

whose value has been stored at the end of the recursion while
calculating ϕt(i).

Finally, the maximum a posteriori (MAP) estimate of user
state at time t is given by:

s′t = argmax
i∈{1,2,...,N}

Prob[st = i|o1, t′m, o2]

= argmax
i∈{1,2,...,N}

Prob[st = i, o1, t
′
m, o2]

Prob[o1, t′m, o2]

= argmax
i∈{1,2,...,N}

ψt(i),∀t = tn − 1, ..., tm + 1. (22)

Algorithm 1 Estimating missing states between observations
Otm = o1 and Otn = o2 on a semi-Markov process.

1: Input: pij , wa(i), Ai, and t′m (whose value depends on
whether M1, M2, or M3 is used), ∀i, j ∈ {1, 2, ...N}

2: Output: State estimates S′ = {s′tm+1, ..., s
′
tn−1} and the

expected error sequence es = {etm+1, ..., etn−1}
3: Initialize ft(i) and f∗t (i) using equation (8), (9), and (10).

Solve by recursion using equation (5) and (7).
4: Initialize bt(i) and b∗t (i) using equation (13), (14), and

(15). Solve by recursion using equation (11) and (12).
5: Calculate ϕt(i),∀i ∈ {1, ..., N}, and ∀t ∈ [tm, tn], based

on equation (17) and (18).
6: Calculate ψt(i),∀i ∈ {1, ..., N}, and ∀t ∈ [tm, tn], based

on equation (20) and (21).
7: State estimation:

s′t = argmax
i∈{1,2,...,N}

ψt(i),∀t = tn − 1, ..., tm + 1.

8: Expected estimation error (κ: normalization factor):

et = κ ·
{
1− max

i∈{1,2,...,N}
ψt(i)

}
,∀t = tn − 1, ..., tm + 1.

Algorithm 1 estimates missing state information between
two neighboring state detections for a discrete-time, semi-
Markov process. It can be seen that solving for ft(i) and bt(i)
at time slot t consumes at most A multiplications, whereas
calculating f∗t (i) and b∗t (i) requires N multiplications. There-
fore, for an estimation interval with size T , the computa-
tional complexity of the semi-Markov estimation algorithm is

O(TN(N +A)). In comparison, the Markov state estimation
mechanism proposed in [33] needs T matrix multiplications
with matrix size N×N . This leads to O(TN3) computational
complexity without any speed-up. Thus, although the complex-
ity of Markov estimation is not affected by the state sojourn
duration A, as the number of states increases, the semi-Markov
approach becomes more computationally efficient.

D. State estimation performance on simulated processes

In this subsection, we evaluate the performance of Al-
gorithm 1 on two-state, simulated state transition processes.
In particular, each state sequence is generated based on
pre-specified state sojourn distributions and is observed at
a constant frequency, leading to estimation intervals with
equal lengths. Within each estimation interval, Algorithm 1
is conducted for state estimation and the estimated sequence
is compared to the original sequence to calculate the error.

Recall that one of our goals is to design a real-time
state estimation mechanism for sparsely sampled real user
state processes. In fact, in many human related traces, state
distributions have been found to exhibit heavy tails, e.g.,
Internet file sizes [7], human contact arrival processes [5],
[32], user motion transitions [33], and so on. These types of
traces are often modeled as memoryless distributions such as
geometric distribution in order to reduce the complexity of
study. In this section, we compare the performance of semi-
Markov state estimation to state estimation under Markovian
assumption, where, no matter what distribution function the
state duration follows, the state sequence is always assumed
to be a Markov process. The Markovian assumption, although
not strictly valid in reality, has been widely used to model user
related state traces such as speech [15], [25], mobility [14],
[28], and activity [13], [27].

For stationary Markov processes, the state transition proba-
bilities can be estimated using maximum likelihood estimates
(MLE) given that annotated data is available [2], [22]:

pij = nij/nj , (23)

where nij is the frequency of state transition from i to j, and
nj =

∑
i nij .

Estimating state information for missing observations under
the Markovian assumption has been discussed in [33]: given
that state i is detected at time tm, and state j is detected at time
tn (tm, tn ∈ T and tm < tn), the most likely state (denoted
by s′t) at time t is selected as

s′t = argmax
k

{
P

(t−tm)
ik · P (tn−t)

kj

P
(tn−tm)
ij

}
, (24)

i.e., the MAP state estimation for Markov process does not
suffer the sojourn time truncation problem as it implicitly
assumes that the underlying state process is memoryless.

We first conduct two sanity checks on semi-Markov esti-
mation by examining its performance on deterministic and
geometric distributed state processes. We then select one
standard distribution type, namely, binomial distribution, and



examine the performance of semi-Markov estimation. For the
widely seen heavy-tailed distributions in real user state traces,
we consider Zipf’s Law distribution, which is a discrete, power
law, and heavy-tailed distribution type.

For each state distribution instance, state estimations are
conducted on 10 simulated state processes each containing
1000 state transitions. Specifically, for all non-deterministic
processes, Algorithm 1 with variations M1, M2, and M3,
as well as Markov estimation mechanism are conducted and
their corresponding error ratio R are compared under different
estimation window sizes ranging from 20 to 200.

A. Sanity checks: deterministic and geometric distributions
As can be seen from figure 2 (left) that, the semi-Markov

estimation with M1 is able to reconstruct the entire se-
quence without any error under deterministic state distribu-
tion, whereas applying Markov estimation leads to undesired
performance. This is because when state sojourn durations
are constant, knowing how long a state has already spent its
sojourn time (M1) will lead to perfect state estimations.

Fig. 2. Algorithm comparisons on deterministic and geometric processes.

Figure 2 (right) shows that semi-Markov and Markov es-
timation mechanisms lead to very close results when state
sojourn times are geometrically distributed1. Because Markov
process is a special case of semi-Markov process, both es-
timation mechanisms provide very similar results on a state
sequence with geometrically distributed state durations. In fact,
different versions of semi-Markov estimation (M1, M2, and
M3) provide almost identical results due to the memoryless
property of geometric distribution.

B. Binomial
It can be seen from figure 3 (left) that the semi-Markov

estimation algorithm with M1 outperforms Markov estimation
and provides the best performance, whereas M3 leads to
the worst performance. Note the similarity between binomial
and deterministic distribution, where both pmfs contain peak
probability and decay quickly around the concentration. As
semi-Markov estimation mechanism provides state estimations
strictly based upon state distribution pmf, the “peak-like”
feature greatly reduces the estimation error; therefore, knowing
history state sequence information (M1) will always lead to
better state estimation results.

C. Zipf’s Law
The results shown in figure 3 (right) illustrate that semi-

Markov estimation provides lower estimation error. Table I
summarizes the percentage gain provided by different versions
of Algorithm 1. It can be seen that while M1 suffers the

1As noted in section III-A, although geometric distribution supports infinite
set of a values, we limit it such that 1 ≤ a ≤ 100 in order to satisfy the
running condition of Algorithm 1.

Fig. 3. Algorithm comparisons on binomial and Zipf’s law processes.

error propagation problem and M3 assumes unrealistic zero
past sojourn time, semi-Markov estimation with M2 leads to
the best average performance. Thus, from this point of the
paper, we will only consider M2 while evaluating algorithm
performance on real data traces that demonstrate heavy-tailed
distribution features.

M1 M2 M3
Avg. Gain 11.09% 11.37% 7.86%
Max Gain 23.79% 19.79% 17.61%

TABLE I
PERCENTAGE GAIN PROVIDED BY SEMI-MARKOV ESTIMATION OVER

MARKOV ESTIMATION (CORRESPONDS TO FIGURE 3 - RIGHT).

E. State estimation performance on real traces

To further strengthen our study, the performance of the
semi-Markov estimation mechanism is evaluated on real state
traces that pertain to smartphone network connectivities (Co-
Sphere Project [24]). The traces were collected by researchers
at Telematica Instituut in The Netherlands, where twelve par-
ticipants each carried a smartphone that automatically logged
its exposure to cell tower, WiFi access point, and Bluetooth
devices for a month. In our study, we pick WiFi and Bluetooth
data traces and view the user state as either “Connected”
or “Not connected” to infrastructure access points or peer
devices, and compare the performance of semi-Markov es-
timation against Markov estimation.

Note that the stationary assumption will hold on the em-
ployed traces, since the data duration (1 month) is much longer
as compared to the unit of state duration (10 minutes). In
fact, in most applications, although user behavior may vary in
different periods, researchers can carefully examine historic
data in order to extract durations where different stationary
model parameters hold, and state estimation can be conducted.

Similar to equation (23), MLE can be applied in order to
estimate the model parameters of a stationary semi-Markov
process [37]:

• Transition probabilities estimation:

pij = nij/nj , (25)

where nij is the frequency of state transition from i to
j, and nj =

∑
i nij .

• Sojourn duration estimation:

wa(i) = na(i)/ni,∀a ∈ {1, 2, ..., A}, (26)

where na(i) is the number of times that state i lasts for a
time slots and ni is the number of times state i is visited.



Each user state trace is sampled periodically according to
the input estimation window size that ranges from 20 to 200.
We show the complementary cumulative distribution function
(ccdf) of state durations, and demonstrate the estimation error
comparison result in figure 4 and 5.

Fig. 4. Bluetooth state distributions and the comparison of estimation error.

Fig. 5. WiFi state distributions and the comparison of estimation error.

It can be seen that the state distributions of Bluetooth and
WiFi connectivity traces exhibit heavier tails than memory-
less distributions (the referencing geometric distributions are
plotted based on the transition probabilities obtained under
Markovian assumption). Clearly, as the semi-Markov process
provides more accurate modeling and Algorithm 1 conducts
state estimation based on the exact state distribution function,
semi-Markov estimation outperforms Markov estimation by
achieving at least 14% average gain in terms of accuracy.

IV. OPTIMAL SENSOR SCHEDULING WITH ENERGY
CONSTRAINT

In practical system designs, a sensor energy consumption
budget is often specified in order to ensure a satisfying
operation lifetime without recharging the battery. We let ξ
(where 0 ≤ ξ ≤ 1) denote the maximum expected energy
consumption allowed. Let u represent a sensor sampling policy
that controls the duration the sensor should stay idle under
different state detections. We investigate the following con-
strained optimization problem for a partially observed semi-
Markov process: given an energy budget and state distribution
parameters, how should sensor duty cycles be arranged such
that the expected state estimation error is minimized?

We first introduce the formal definition of the two intrinsi-
cally conflicting performance metrics, i.e., the expected energy
consumption and the expected state estimation error:

DEFINITION 1: The expected energy consumption E[C] of
the user state sampling process is defined as

E[C] = lim
m→∞

m · 1∑m
k=1 Ik

, (27)

where Ik is the length of the kth estimation interval. Since the
energy consumed for each sample is assumed to be 1, E[C] is
therefore equal to the number of estimation intervals divided
by the total number of time slots.

DEFINITION 2: The expected state estimation error E[R]
is defined as the long term average of per-slot estimation error:

E[R] = lim
n→∞

∑n
t=1 et
n

(28)

The above constrained optimization problem is formulated
as an infinite-horizon CSMDP with the following elements:

- Decision Epochs O: Control decision is made based on
the detected user state at each observation slot.

- System State Space X: System state x ∈ X is equal to
the detected user state at each decision epoch.

- Action Space B: An action b ∈ B specifies the duration
of idle time under a particular state detection.

- System Transition Probabilities Ps
ibj: The semi-Markov

transition probability from state i to state j in b time slots.
- Cost-I cs(y, b): The expected aggregated semi-Markov

estimation error when action b is taken on state y.
- Cost-II ds(y, b): The intermediate sampling interval when

action b is taken on state y. Thus ds(y, b) = b.
- Constraint ξ: The energy consumption budget.
In this paper, we utilize the LP framework proposed by

Feinberg [10], [11] with problem-specific transition probability
and cost definitions to solve for the semi-Markov optimal
sensing policy u∗s .

Note that the ”perfect sensing” assumption plays an im-
portant role in the above CSMDP formulation, since if ob-
servations are erroneous, (say, generated by some emission
probabilities), the probability of the underlying true state at
each decision epoch will depend on the control policy itself,
making it impossible to compute the optimal sensing policy.
Although approximations could be introduced by assuming
that all observation symbols are emitted under steady state,
it is beyond the scope of this paper and we will leave the
optimization with erroneous sensing to future work.
A. Obtaining u∗s

Let ρ(y, a) stand for the “occupation measure” of state y
and action b, i.e., the probability that such state-action pair ever
exists in the decision process. The following LP finds the best
ρ(y, b) combinations that meet the energy budget requirement:

Minimize
∑
y∈X

∑
b∈B

ρ(y, b)cs(y, b) (29)

subject to:∑
y∈X

∑
b∈B

ρ(y, b)(δx(y)− P s
ybx) = 0,∀x ∈ X, (30)∑

y∈X

∑
b∈B

ρ(y, b) = 1, (31)

ρ(y, b) ≥ 0,∀y, b, and (32)∑
y∈X

∑
b∈B

ρ(y, b)(1− b · ξ) ≤ 0, (33)



The constraint given in (30) describes that the outgoing and
incoming rate of any state need to be the same. The constraints
(31) and (32) define ρ(y, b) as a probability measure. The
inequality constraint given in (33) guarantees that the expected
energy usage is less than the energy constraint value ξ, i.e.:∑

y

∑
b ρ(y, b)∑

y

∑
b ρ(y, b) · b

≤ ξ, (34)

which leads to the energy constraint in (33).
The above LP is an enhancement to the standard form

proposed in [10], where, instead of obtaining a policy that
does not consider history, the previous sojourn time is take into
account by defining the system state transition probability P s

ybx

and the intermediate estimation error cs(y, b) based on the
expected past sojourn duration (defined in M2). In particular,
given the estimation interval size b, starting state y, and
ending state x, the interval transition probability P s

ybx could
be calculated at step 5 of Algorithm 1, i.e.:

P s
ybx = ϕtn(x), (35)

under appropriate input conditions:

o1 = y, o2 = x, tn − tm = b, and (36)

tm − t′m =
A∑

a=1

a∑
τ=1

wy(a) · τ
a

− 1. (37)

Similarly, at step 8 of Algorithm 1, the aggregated estima-
tion error of that estimation interval can be expressed as:

esum =

tn∑
t=tm

et. (38)

Let eybxsum denote the aggregated estimation error under
condition (36), the intermediate cost cs(y, b) could then be
expressed as the following:

cs(y, b) =
∑
x

P s
ybx · eybxsum. (39)

Once the linear programming is solved for optimal occupa-
tion measures ρ∗(y, b), the semi-Markov optimal policy u∗s can
be constructed such that the probability of taking action b at
state y is equal to ρ∗(y,b)

ρ∗
y

, where ρ∗y =
∑

b∈B ρ
∗(y, b),∀y ∈ X .

B. Performance of u∗s on real user state traces

The performance of u∗s is evaluated on the same set of
real user state traces introduced in section III-E. As u∗m is
optimal for Markov processes, we explore whether u∗s could
outperform u∗m by achieving a better trade-off between energy
consumption and state estimation error, on user state traces that
are not strictly Markovian. In particular, the following steps
are executed for each user state trace:

(1) Estimate model parameters using (25) and (26).
(2) Compute u∗s using LP (29) - (33).
(3) Compute u∗m according to techniques proposed in [33].
(4) Apply both policies on the data trace and conduct semi-

Markov and Markov estimation correspondingly, and obtain
the estimation error as well as the energy usage.

Since the optimization framework is stochastic and is
constrained on the expected energy usage, the true energy
consumption when executing the policy on a particular trace
may not exactly reflect the given energy budget. We thus show
the results of estimation error vs. the actual energy usage in
figure 6. To better visualize the performance gain, the linear fit
of the energy-error pairs under different policies are shown in
figure 6. It can be seen that u∗s yields a better trade-off between
energy consumption and state estimation error as compared to
u∗m, by producing 12.04% and 14.19% less estimation error
on average while using the same energy consumption in each
respective case.

Fig. 6. Performance of u∗
m vs. u∗

s CoSphere traces.

Note that the comparison under large energy budgets is not
shown in figure 6 because u∗s and u∗m are found to provide
comparably low estimation errors when energy budget is not
stringent. In fact, this can be easily concluded from figure 3
which suggests that the estimation errors are indeed similar
under small estimation window sizes. However, real mobile
sensing systems often operate under small energy budgets
and deal with sparse observations, in which case the semi-
Markov estimation as well as the semi-Markov optimal policy
lead to the best improvement and are therefore desirable
implementation choices.

V. POLICY IMPLEMENTATION AND EVALUATION IN A
REAL MOBILE SENSING SYSTEM

In traditional designs of mobile sensing systems such
as [21], [34], there is a lack of theoretical optimization
framework that targets at achieving the best trade-off between
state detection/estimation accuracy and energy consumption.
In this section, we aim to introduce such a mechanism by
implementing the semi-Markov optimal policy u∗s on a basic
human activity recognition system, and providing benchmark
performance evaluation of u∗s , u∗m, and uniform sampling.
A. Design and implementation of the evaluation system

The designed mobile sensing system adopts a fully auto-
mated, client-server based architecture whose function flow is
shown in figure 7. Note that the automated feature minimizes
the burden of user-device interaction since zero user input is
required. As figure 7 illustrates, first, mobile client executes the
Behavior Learning Module, which collects historic user state
information and calculates the state distribution parameters
from recorded data. This procedure allows specific optimal
control parameters to be derived for users with different habits.
The state distribution parameters will be sent to the Optimal



Policy Calculation Module on the back-end server in order to
compute the user-specific u∗s (and u∗m). The optimal sensor
duty cycles are then transferred back to mobile client to begin
energy efficient sensing, which is realized via the Energy
Efficient Sensing Module. Finally, the partially observed data
sequence will be transferred to State Estimation Module which
is responsible of estimating missing state information.

Fig. 7. Operation flow of the fully automated evaluation system.

Note that currently, the optimal policy calculation and
state estimations are conducted on back-end server due to its
higher computing power and the availability of mathematical
softwares/libraries. We implement a prototype of the system
architecture shown in figure 7 as a basic activity recognition
system on Nokia N95 devices (mobile client) and desktop
PCs (back-end server) using Symbian C++ and Matlab, which
communicate to each other via socket connections.

The mobile client is designed to differentiate two human
activity states (“Stable” and “Moving”) based on accelerome-
ter sensing. In particular, the acceleration values on x, y, and
z axis of the accelerometer is continuously read for a certain
duration, and the standard deviation of the magnitudes of all
three axes readings is calculated. The user activity is classified
based on whether the standard deviation is below or above
some given threshold. Recall that our goal is not to develop
sophisticated activity classification algorithms, but to explore
how to derive and implement the stochastic optimal policy on
the mobile client and whether it is able to provide satisfying
performance in real system implementations. In fact, in [34]
we showed that a single accelerometer is able to differentiate
“Moving” and “Stable” with negligible error.

In our evaluation system, the user behavior learning phase is
conducted for seven consecutive days, during which, the user
activity trace is fully detected and logged in the mobile device
file system. The symbol “0” and “1” are used to represent
different user states so that the state distribution parameters
can be easily calculated using equation (25) and (26). During
the learning phase, the mobile device is frequently charged to
maintain continuous sensing requirement.

On the server side, the policy calculation, state estimations,
as well as socket connection setup are all accomplished in
Matlab which provides standard LP solvers. Upon receiving
the state distribution parameters (in string format), the server
calculates the semi-Markov optimal sensing policy u∗s and
transfers it back to the client in terms of the average idle
interval size under different state detections, such that at each
decision epoch (the length of each time slot is 10 seconds),
the client will determine how long to turn off the sensor until
the next observation.
B. Performance evaluation

In this paper, we only focus on providing benchmark perfor-
mance measurement of the mobile client while implementing

different sensing policies, and we leave the potential optimiza-
tion on the trade-off between communication and computation
cost and the investigation of advanced learning techniques such
as reinforcement learning to future study.

Five independent experiments have been conducted and
their setups are introduced below. During each experiment, the
empirical devices are carried by a participant as his personal
cell phone but with no usage other than activity sensing.

Exp-1 (ξ = 1): the accelerometer is continually sampled
and activity is classified in each time slot. This sets the bench-
mark of the battery lifetime when sensor is fully activated.

Exp-2 (ξ = 0): this experiment provides a bottom-line
comparison and measures how long the same empirical device
lasts without any sensing task.

Exp-3,4,5 (ξ = 0.05): the accelerometer on the main empir-
ical smartphone is operated according to the sensing intervals
specified by u∗s , u∗m, and uniform sampling, respectively.
A second smartphone is used throughout these experiments
which samples its accelerometer in every time slot to provide
ground truth user state record. This second device is frequently
charged to ensure long operating duration.

To evaluate the effectiveness of the policies, we measure
the device battery lifetime from the time the smartphone
receives the optimal duty cycle instructions (when the battery
is still fully charged) until the battery is completely drained
while executing sensing policies accordingly. The partially
sampled user state sequences are reconstructed off-line, and
are compared to the ground truth in order to obtain the
estimation error. The empirical results are shown in table II.

Policy Battery Life Estimation Error (%)
exp-1 Full 52 hours 0
exp-2 None 236 hours ∞
exp-3 u∗

s 160 hours 9.96%
exp-4 u∗

m 158 hours 13.8%
exp-5 Uniform 150 hours 19.38%

TABLE II
SMARTPHONE BATTERY LIFETIME AND STATE ESTIMATION ERROR.

It can be seen from table II that implementing u∗s achieves
the longest device battery lifetime among all three energy-
saving policies and provides 27.8% and 48.6% gain on esti-
mation accuracy over u∗m and uniform sampling respectively.

To better visualize policy comparison, we reapply all poli-
cies on a subset of data collected during the experiment, and
show the distribution of sample points as well as the growth of
corresponding estimation error in figure 8. Note that although
figure 8 displays the motion trace (Stable vs. Moving) within
approximately 1 hour where the user is fairly active, the actual
empirical duration contains many significant idle periods (e.g.,
night hours). The optimization framework proposed in this
paper is able to provide better estimation performance by
finding u∗s , which samples more aggressively when the user is
found active, and increases the interval size when the user is in
idle period in order to balance the overall energy consumption.

VI. CONCLUSION AND FUTURE WORKS

Modeling user state traces using Markov model is often
unrealistic and could lead to undesired state estimation perfor-
mance. In this paper, we use a more general class of processes



Fig. 8. Data trace (solid line indicates Moving and blank space means Stable),
policy sample points, and aggregated state estimation error for this interval.

- semi-Markov process - to model user state traces, and
propose a generic semi-Markov state estimation mechanism
that can be executed in real-time in order to estimate the most
likely user state while sensor observations are missing. We
also obtain the semi-Markov optimal sensing policy by solving
the CSMDP problem for intermittently sampled semi-Markov
processes, which is able to minimize the expected state
estimation error while maintaining an energy consumption
budget. Finally, we provide benchmark performance evaluation
of three energy-saving policies on a novel client-server based,
fully automated human activity recognition system and show
that semi-Markov optimal policy is the desirable choice as
compared to Markov-optimal policy and uniform sampling.

For future research directions, we plan to investigate a more
comprehensive theoretical optimization framework where (1)
multiple sources of energy consumption such as computation
and communication are all taken into consideration, (2) state
detection could be erroneous, such that sensor selection is
available based on their different energy consumption and
detection accuracy and (3) different importance levels are
associated with different states.

REFERENCES

[1] P. Aghera, D. Fang, T. Simunic Rosing, and K. Patrick, Energy man-
agement in wireless healthcare systems, IPSN, 2009.

[2] M. S. Barlett, The frequency goodness of fit test for probability chains,
Mathematical Proceedings of the Cambridge Philosophical Society,
1951.

[3] L. Benini, A. Bogliolo, G. A. Paleologo, and G. D. Micheli, Markov
decision processes for control of a sensor network-based health monitor-
ing system, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, 1998, pp. 813–833.

[4] O. Cakmakci, J. Coutaz, K. V. Laerhoven, and H. werner Gellersen,
Context awareness in systems with limited resources, AIMS, 2002.

[5] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott, Pocket
switched networks: Real-world mobility and its consequences for op-
portunistic forwarding, Technical Report 617, University of Cambridge,
2005.

[6] T. L. Cheung, K. Okamoto, F. Maker, X. Liu, and V. Akella, Markov
decision process (mdp) framework for optimizing software on mobile
phones, EMSOFT, 2009.

[7] Mark E. Crovella and Azer Bestavros, Self-similarity in world wide
web traffic evidence and possible causes, IEEE/ACM Transactions on
Networking 5 (1996), 835–846.

[8] E. Cuervoy, A. Balasubramanianz, D. Cho, A. Wolmanx, S. Saroiux,
R. Chandrax, and P. Bahl, Maui: Making smartphones last longer with
code offload, MobiSys, 2010.

[9] F. R. Dogar, P. Steenkiste, and K. Papagiannaki, Catnap: Exploiting
high bandwidth wireless interfaces to save energy for mobile devices,
MobiSys, 2010.

[10] E. A. Feinberg, Constrained semi-markov decision processes with av-
erage rewards, Mathematical Methods of Operations Research, vol. 39,
1994, pp. 257–288.

[11] E. A. Feinberg and A. Shwartz, Constrained markov decision models
with weighted discounted criteria, Mathematical Methods of Operations
Research 20 (1995), 302–320.

[12] J. D. Ferguson, Variable duration models for speech, Symposium on the
Application of Hidden Markov Models to Text and Speech, 1980.

[13] J. Gao, E. G. Hauptmann, A. Bharucha, and H. D. Wactlar, Dining
activity analysis using a hidden markov model, ICPR, 2004.

[14] M. Grossglauser and D. Tse, Mobility increases the capacity of ad-hoc
wireless networks, vol. 10, 2002, pp. 477–486.

[15] J. Jaffe, L. Cassotta, and S. Feldstein, Markovian model of time patterns
of speech, Science, Volume 144, 1964.

[16] R. Jurdak, P. Corke, D. Dharman, and G. Salagnac, Adaptive gps duty
cycling and radio ranging for energy-efficient localization, SenSys,
2010.

[17] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song,
Seemon: scalable and energy-efficient context monitoring framework for
sensor-rich mobile environments, MobiSys, 2008.

[18] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava, Sensloc: Sensing
everyday places and paths using less energy, SenSys, 2010.

[19] A. Krause, M. Ihmig, E. Rankin, S. Gupta, D. Leong, D. P. Siewiorek,
A. Smailagic, M. Deisher, and U. Sengupta, Trading off prediction ac-
curacy and power consumption for context-aware wearable computing,
IEEE International Symposium on Wearable Computers, 2005.

[20] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao, Energy-accuracy
aware localization for mobile devices, MobiSys, 2010.

[21] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, S. Eisenman, H. Lu,
M. Musolesi, X. Zheng, and A. Campbell, Sensing meets mobile social
networks: The design, implementation and evaluation of the cenceme
application, SenSys, 2008.

[22] K. Murphy, Dynamic bayesian networks: Representation, inference and
learning, Ph.D. dissertation, University of California, Berkeley, 2002.

[23] J. Paek, J. Kim, and R. Govindan, Energy-efficient rate-adaptive gps-
based positioning for smartphones, MobiSys, 2010.

[24] A. Peddemors, H. Eertink, and I. Niemegeers, Density estimation for
out-of-range events on personal mobile devices, MobilityModel, 2008.

[25] L. R. Rabiner, A tutorial on hidden markov models and selected
applications in speech recognition, Proceedings of the IEEE, 1989.

[26] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu, Napman: Network-
assisted power management for wifi devices, MobiSys, 2010.

[27] D. Sanchez, M. Tentori, and J. Favela, Hidden markov models for activity
recognition in ambient intelligence environments, ENC, 2007.

[28] G. Sharma and R. R. Mazumdar, Scaling laws for capacity and delay
in wireless ad hoc networks with random mobility, ICC, 2004.

[29] G. Thatte, M. Li, A. Emken, U. Mitra, S. Narayanan, M. Annavaram,
and D. Spruijt-Metz, Energy-efficient multihypothesis activity-detection
for health-monitoring applications, EMBC, 2009.

[30] G. Thatte, V. Rozgic, M. Li, S. Ghosh, U. Mitra, S. Narayanan, M. An-
navaram, and D. Spruijt-Metz, Optimal allocation of time-resources for
multihypothesis activity-level detection, DCOSS, 2009.

[31] A. Thiagarajan, L. S. Ravindranath, K. LaCurts, S. Toledo, J. Eriksson,
S. Madden, and H. Balakrishnan, Vtrack: Accurate, energy-aware traffic
delay estimation using mobile phones, SenSys, 2009.

[32] W. Wang, V. Srinivasan, and M. Motani, Adaptive contact probing
mechanisms for delay tolerant applications, MobiCom, 2007.

[33] Y. Wang, B. Krishnamachari, Q. Zhao, and M. Annavaram, Markov-
optimal sensing policy for user state estimation in mobile devices, IPSN,
2010.

[34] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishna-
machari, and N. Sadeh, A framework of energy efficient mobile sensing
for automatic user state recognition, MobiSys, 2009.

[35] W. Wu, M. Batalin, L. Au, A. Bui, and W. Kaiser, Context-aware sensing
of physiological signals, Proceedings of EMBS, 2007.

[36] W. Wu, A. Bui, M. Batalin, D. Liu, and W. Kaiser, Incremental diagnosis
method for intelligent wearable sensor systems, IEEE Transactions on
Information Technology in Biomedicine, vol. 11, 2007, pp. 553–562.

[37] S. Yu, Hidden semi-markov models, Artificial Intelligence, 2009.
[38] S. Yu and H. Kobayashi, A hidden semi-markov model with missing

data and multiple observation sequences for mobility tracking, Signal
Processing, Volumn 83, Issue 2, 2003.

[39] Z. Zhuang, K. Kim, and J. P. Singh, Improving energy efficiency of
location sensing on smartphones, MobiSys, 2010.


