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ABSTRACT
The success of Stackelberg Security Games (SSGs) in counter-
terrorism domains has inspired researchers’ interest in applying
game-theoretic models to other security domains with frequent in-
teractions between defenders and attackers, e.g., wildlife protec-
tion. Previous research optimizes defenders’ strategies by mod-
eling this problem as a repeated Stackelberg game, capturing the
special property in this domain — frequent interactions between
defenders and attackers. However, this research fails to handle
exploration-exploitation tradeoff in this domain caused by the fact
that defenders only have knowledge of attack activities at targets
they protect. This paper addresses this shortcoming and provides
the following contributions: (i) We formulate the problem as a
restless multi-armed bandit (RMAB) model to address this chal-
lenge. (ii) To use Whittle index policy to plan for patrol strategies
in the RMAB, we provide two sufficient conditions for indexability
and an algorithm to numerically evaluate indexability. (iii) Given
indexability, we propose a binary search based algorithm tofind
Whittle index policy efficiently.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence

General Terms
Security, Algorithms, Performance

Keywords
Exploration-exploitation tradeoff, Restless multi-armed bandit, Whit-
tle index policy, POMDP

1. INTRODUCTION
Given the increasing need for security around the globe, opti-

mizing the allocation of a limited number of security resources re-
mains a crucial challenge. The successful applications of Stack-
elberg Security Games (SSGs) for security resource allocation in
counter-terrorism domains [16] have inspired researchers’ interest
in applying game-theoretic models to new “frequent interaction”
security domains with repeated interactions between defenders and
attackers, e.g., wildlife protection domain. However, these two do-
mains are different. In wildlife protection domain, attack(poach-

Appears in: Proceedings of the 15th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2016), John
Thangarajah, Karl Tuyls, Stacy Marsella, Catholijn Jonker(eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ing) happens frequently so that it gives defenders (patrollers) the
opportunity to learn attackers’ (poachers’) behavioral patterns from
their previous actions and then to plan patrol strategies according-
ly; while this learning opportunity does not arise in the counter-
terrorism domain. Previous research [19, 5] has taken advantage of
this opportunity and has modeled the wildlife protection domain as
a repeated Stackelberg game. However, this work assumes that de-
fenders have knowledge of all poaching activities throughout the
wildlife protected area (we will discuss more about this related
work in Section 7). Unfortunately, given vast geographic areas for
wildlife protection, defenders do not have knowledge of poaching
activities in areas they do not protect. Thus, defenders arefaced
with the exploration-exploitation tradeoff — whether to protect the
targets that are already known to have a lot of poaching activities
or to explore the targets that haven’t been protected for a long time.

The exploration-exploitation tradeoff here is different from that
in the non-Bayesian stochastic multi-armed bandit problem[2]. In
stochastic multi-armed bandit problems, the rewards of every arm
are random variables with a stationary unknown distribution. How-
ever, in our problem, patrol affects attack activities — more patrol
is likely to decrease attack activities and less patrol is likely to in-
crease attack activities. Thus, the random variable distribution is
changing depending on player’s choice — more selection (patrol)
leads to lower reward (less attack activities) and less selection (pa-
trol) leads to higher reward (more attack activities). On the other
hand, adversarial multi-armed bandit problem [3] is also not an ap-
propriate model for this domain. In adversarial multi-armed bandit
problems, the reward can arbitrarily change while the attack activi-
ties in our problem are unlikely to change rapidly in a short period.
This makes the adversarial multi-armed bandit model inappropriate
for our domain.

In reality, how patrol affects attack activities would be reason-
ably assumed to follow a consistent pattern that can be learned from
historical data (defenders’ historical observations). Wemodel this
pattern as a Markov process and provide the following contribu-
tions in this paper. First, we formulate the problem into a restless
multi-armed bandit (RMAB) model to handle the limited observ-
ability challenge — defenders do not have observations for arms
they do not activate (targets they do not protect). Second, we pro-
pose an EM based learning algorithm to learn the RMAB model
from defenders’ historical observations. Third, we use thesolution
concept of Whittle index policy to solve the RMAB model to plan
for defenders’ patrol strategies. However, indexability is required
for the existence of Whittle index, so we provide two sufficient con-
ditions for indexability and an algorithm to numerically evaluate
indexability. Fourth, we propose a binary search based algorithm
to find the Whittle index policy efficiently.



2. MODEL

2.1 Motivating Domains and their Properties
Our work is mainly motivated by the domain of wildlife pro-

tection such as protecting endangered animals and fish stocks [14,
19, 5]. Other motivating domains include police patrol to catch
fare-evaders in a barrier-free transit system [21], borderpatrol [7,
8], etc. The model we will describe in this paper is based on
the following assumptions about the nature of interactionsbetween
defenders and attackers in these domains. Except the frequen-
t interactions between defenders (patrollers/police) andattacker-
s (poachers/fare-evaders/smugglers), these domains share anoth-
er two important properties: (i) patrol affects attacking activities
(poaching/fare evasion/smuggling); (ii) limited/partial observabili-
ty. We will next use the wildlife protection domain as the example
to illustrate these two properties.

Poaching activity is a dynamic process affected by patrol. If pa-
trollers patrol in a certain location frequently, it is verylikely that
the poachers poaching in this location will switch to other locations
for poaching. On the other hand, if a location hasn’t been patrolled
for a long time, poachers may gradually notice that and switch to
this location for poaching.

In the wildlife protection domain, both patrollers and poachers
do not have perfect observation of their opponents’ actions. This
observation imperfection lies in two aspects: (i) limited observabil-
ity — patrollers/poachers do not know what happens at location-
s they do not patrol/poach; (ii) partial observability — patroller-
s/poachers do not have perfect observation even at locations they
patrol/poach — the location might be large (e.g., a2km × 2km
area) so that it is possible that patrollers and poachers do not see
each other even if they are at the same location.

These two properties make it extremely difficult for defenders to
optimally plan their patrol strategies. For example, defenders may
find a target with a large number of attack activities at the beginning
so they may start to protect this target frequently. After a period of
time, attack activities at this target may start to decreasedue to
the frequent patrol. At this time, defenders have to decide whether
to keep protecting this target (exploitation) or to switch to other
targets (exploration). However, defenders do not have knowledge
of attack activities at other targets at that moment, which makes this
decision making extremely difficult for defenders.

Fortunately, the frequent interactions between defendersand at-
tackers make it possible for defenders to learn the effect ofpatrol
on attackers from the historical data. With this learned effect, de-
fenders are able to estimate attack activities at targets they do not
protect. Based on this concept, we model these domains as a rest-
less multi-armed bandit problem and use the solution concept of
Whittle index policy to plan for defenders’ strategies.

2.2 Formal Model
We now formalize the story in Section 2.1 into a mathematical

model that can be formulated as a restless multi-armed bandit prob-
lem. There are n targets that are indexed byN , {1, . . . , n}. De-
fenders havek patrol resources that can be deployed to thesen
targets. At every round, defenders choosek targets to protect. Af-
ter that, defenders will have an observation of the number ofattack
activities for targets they protect, and no information fortargets
they do not protect. The objective for defenders is to decidewhich
k targets to protect at every round to catch as many attackers as
possible.

Due to the partial observability on defenders’ side — defenders’
observation of attack activities is not perfect even for targets they
protect, we introduce a hidden variable attack intensity, which rep-

resents the true degree of attack intensity at a certain target. Clear-
ly, this hidden variable attack intensity cannot directly be observed
by defenders. Instead, defenders’ observation is a random variable
conditioned on this hidden variable attack intensity, and the larger
the attack intensity is, the more likely it is for defenders to observe
more attack activities during their patrol.

We discretize the hidden variable attack intensity intons level-
s, denoted byS = {0, 1, . . . , ns − 1}. Lower i represents lower
attack intensity. For a certain target, its attack intensity transitions
after every round. If this target is protected, attack intensity transi-
tions according to ans×ns transition matrixT 1; if this target is not
protected, attack intensity transitions according to anotherns × ns

transition matrixT 0. The transition matrix represents how patrol
affects attack intensity —T 1 tends to reduce attack intensity and
T 0 tends to increase attack intensity. The randomness in the tran-
sition matrix models attackers’ partial observability discussed in
Section 2.1. Note that different targets may have differenttransition
matrices because some targets may be more attractive to attackers
(for example, some locations may have more animal resourcesin
the wildlife protection domain) so that it is more difficult for attack
intensity to go down and easier for attack intensity to go up.

We also discretize defenders’ observations of attack activities in-
to no levels, denoted byO = {0, 1, . . . , no − 1}. Lower i repre-
sents less attack activities defenders observe. Note that defenders
will only have observation for targets they protect. Ans × no ob-
servation matrixO determines how the observation depends on the
hidden variable attack intensity. Generally, the larger the attack in-
tensity is, the more likely it is for defenders to observe more attack
activities during their patrol. Similar to transition matrices, differ-
ent target may have different observation matrices.

While defenders get observations of attack activities during their
patrol, they also receive rewards for that — arresting poachers/fare-
evaders/smugglers bring benefit. Clearly, the reward defenders re-
ceive depends on their observation and we thus define the reward
functionR(o), o ∈ O — largeri leads to higher rewardR(i). For
example, ifo = 0 represents finding no attack activity ando = 1
represents finding attack activities, thenR(0) = 0, R(1) = 1.
Note that defenders only get rewards for targets they protect.

To summarize, for the targets defenders protect, defendersget an
observation depending on its current attack intensity, getthe reward
associated with the observation, and then the attack intensity tran-
sitions according toT 1; for the targets defenders do not protect,
defenders do not have any observation, get reward0 and the attack
intensity transitions according toT 0. Figure 1 demonstrates this
process. In this model, the state discretization levelns, observation
discretization levelno and reward functionR(o) are pre-specified
by defenders; the transition matricesT 1 andT 0, observation ma-
trix O and initial beliefπ can be learned from defenders’ previous
observations. We will briefly discuss the learning algorithm in Sec-
tion 2.3. After those parameters are learned, this model is formulat-
ed into a restless multi-armed bandit model to plan for defenders’
strategies.
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Figure 1: Model Illustration



2.3 Learning Model From Defenders’ Previ-
ous Observations

Given defenders’ action history{ai} and observation history
{oi}, our objective is to learn the transition matricesT 1 andT 0,
observation matrixO and initial beliefπ. Due to the existence of
hidden variables{si}, expectation-maximization (EM) algorithm
is used for learning. We show the update steps here and the details
are in the online appendix1.

π
(d+1)
i = P (s1 = i|x; θd)

T
1(d+1)
ij =

∑T−1
t=1:at=1 P (st = i, st+1 = j|x; θd)
∑T−1

t=1:at=1 P (st = i|x; θd)

T
0(d+1)
ij =

∑T−1
t=1:at=0 P (st = i, st+1 = j|x; θd)
∑T−1

t=1:at=0 P (st = i|x; θd)

O
(d+1)
ij =

∑T
t=1:at=1 P (st = i|x; θd)I(ot = j)
∑T

t=1:at=1 P (st = i|x; θd)

where θd is the π, T 1, T 0, O last step andP (st = i|x; θd)
andP (st = i, st+1 = j|x; θd) are computed through forward-
backward algorithm.

3. RESTLESS BANDIT FOR PLANNING
In this section, we will formulate the model discussed in Section

2.2 as a restless multi-armed bandit problem and plan defenders’
strategies using the solution concept of Whittle index policy.

3.1 Restless Multi-armed Bandit Problems
In this section, we will briefly introduce the restless multi-armed

bandit problems (RMABs) and their main solution concept Whit-
tle index policy. In RMABs, each arm represents an independent
Markov machine. At every round, the player choosesk out of n
arms (k < n) to activate and receives the reward determined by
the state of the activated arms. After that, the states ofall arms
will transition to new states according to certain Markov transition
probabilities. The problem is called “restless” because the states of
passive arms will also transition like active arms. The aim of the
player is to maximize his cumulative reward by choosing which
arms to activate at every round. It has shown by Papadimitriou
and Tsitsiklis that it is PSPACE-hard to find the optimal strategy to
general RMABs [13].

An index policy assigns an index to each state of each arm to
measure how rewarding it is to activate an arm at a particularstate.
At every round, the index policy chooses to pick thek arms whose
current states have the highest indices. Since the index of an arm
only depends on the properties of this arm, index policy reduces
ann-dimensional problem ton 1-dimensional problems so that the
complexity is reduced from exponential withn to linear withn.

Whittle proposed a heuristic index policy for RMABs by con-
sidering the Lagrangian relaxation of the problem [18]. It has been
shown that Whittle index policy is asymptotically optimal under
certain conditions ask andn tend to∞ with k/n fixed [17]. When
k andn are finite, extensive empirical studies have also demon-
strated the near-optimal performance of Whittle index policy [1,
6]. Whittle index measures how attractive it is to activate an arm
based on the concept of subsidy for passivity. It gives the subsidy
m to passive action (not activate) and the smallestm that would
make passive action optimal for the current state is defined to be
1http://teamcore.usc.edu/people/yundiqia/web%20page/papers/AA
MAS2016Appendix.pdf

the Whittle index for this arm at this state. Whittle index policy
chooses to activate thek arms with the highest Whittle indices. In-
tuitively, the larger them is, the larger the gap is between active
action (activate) and passive action, the more attractive it is for the
player to activate this arm. Mathematically, denoteVm(x; a = 0)
(Vm(x; a = 1)) to be the maximum cumulative reward the player
can achieve until the end if he takes passive (active) actionat the
first round at the statex with subsidym. Whittle indexI(x) of
statex is then defined to be:

I(x) , inf
m
{m : Vm(x;a = 0) ≥ Vm(x : a = 1)}

However, Whittle index only exists and Whittle index policycan
only be used when the problem satisfies a property known as index-
ability, which we define below. DefineΦ(m) to be the set of states
for which passive action is the optimal action given subsidym:

Φ(m) , {x : Vm(x;a = 0) ≥ Vm(x : a = 1)}

DEFINITION 1. An arm is indexable ifΦ(m) monotonically in-
creases from∅ to the whole state space asm increases from−∞
to+∞. An RMAB is indexable if every arm is indexable.

Intuitively, indexability requires that for a given state,its optimal
action can never switch from passive action to active actionwith
the increase ofm. The indexability of an RMAB is often difficult
to establish and computing Whittle index can be complex.

3.2 Restless Bandit Formulation
It is straightforward to formulation the model discussed inSec-

tion 2.2 into a restless multi-armed bandit problem. Every target is
viewed as an arm and defenders choosek arms to activate (k tar-
gets to protect) at every round. Consider a single arm (target), it is
associated withns (hidden) states,no observations,ns×ns transi-
tion matricesT 1 andT 0, ns×no observation matrixO and reward
functionR(o), o ∈ O as is described in Section 2.2. For the arm
defenders activate, defenders get an observation, get reward asso-
ciated with the observation, and the state transitions according to
T 1. Note that defenders’ observation is not the state. Instead, it
is a random variable conditioned on the state, and reveals some in-
formation about the state. For the arms defenders do not activate,
defenders do not have any observation, get reward0 and the state
transitions according toT 0.

Since defenders can not directly observe the state, defenders
maintain a beliefb of the states for each target, based on which
defenders make decisions. The belief is updated according to the
Bayesian rules. The following equation shows the belief update
when defenders protect this target (a = 1) and get observationo or
defenders do not protect this target (a = 0).

b′(s′) =

{

η
∑

s∈S
b(s)OsoT

1
ss′ , a = 1

∑

s∈S
b(s)T 0

ss′ , a = 0,
(1)

whereη is the normalization factor. When defenders do not pro-
tect this target (a = 0), defenders do not have any observation, so
their belief is updated according to the state transition rule; When
defenders protect this target (a = 1), their belief is firstly updated
according to their observationo (bnew(s) = ηb(s)Oso according
to Bayes’ rule), and then the new belief is then updated accord-
ing to the state transition rule:b′(s′) =

∑

s∈S
bnew(s)T

1
ss′ =

∑

s∈S
ηb(s)OsoT

1
ss′ = η

∑

s∈S
b(s)OsoT

1
ss′

We now present the mathematical definition of Whittle index for
our problem. DenoteVm(b) to be the value function for belief s-
tateb with subsidym; Vm(b; a = 0) to be the value function for
belief stateb with subsidym and defenders take passive action;



Vm(b; a = 1) to be the value function for belief stateb with sub-
sidym and defenders take active action. The following equations
show these value functions:

Vm(b; a = 0) = m+ βVm(ba=0)

Vm(b; a = 1) =
∑

s∈S

b(s)
∑

o∈O

OsoR(o)

+ β
∑

o∈O

∑

s∈S

b(s)OsoVm(boa=1)

Vm(b) = max{Vm(b; a = 0), Vm(b;a = 1)}

When defenders take passive action, they get the immediate re-
wardm and theβ-discounted future reward — value function at
new beliefba=0, which is updated fromb according to the case
a = 0 in Equation 1. When defenders take active action, they get
the expected immediate reward

∑

s∈S
b(s)

∑

o∈O
OsoR(o) and

theβ-discounted future reward. The future reward is composed of
different observation cases —

∑

s∈S
b(s)Oso is defenders’ proba-

bility to have observationo at belief stateb, andVm(boa=1) is the
value function at new beliefboa=1 that is updated fromb according
to the casea = 1 with observationo in Equation 1. The value func-
tion Vm(b) is the maximum ofVm(b; a = 0) andVm(b; a = 1).
Whittle indexI(b) of belief stateb is then defined to be :

I(b) , inf
m
{m : Vm(b; a = 0) ≥ Vm(b : a = 1)}

The passive action setΦ(m), which is the set of belief states for
which passive action is the optimal action given subsidym is then
defined to be:

Φ(m) , {b : Vm(b; a = 0) ≥ Vm(b : a = 1)}

3.3 Sufficient Conditions for Indexability
In this section, we provide two sufficient conditions for indexa-

bility whenno = 2 andns = 2. Denote the transition matrices to
beT 0 andT 1, observation matrix to beO. Clearly in our problem,
O11 > O01, O00 > O10 (higher attack intensity leads to higher
probability to see attack activities when patrolling);T 1

11 > T 1
01,

T 1
00 > T 1

10; T 0
11 > T 0

01, T 0
00 > T 0

10 (positively correlated arms).
Defineα , max{T 0

11 − T 0
01, T

1
11 − T 1

01}. Since it is a two-state
problem withS = {0, 1}, we use one variablex to represent the
belief state:x , b(s = 1), which is the probability of being in
state1.

DefineΓ1(x) = xT 1
11 + (1− x)T 1

01, which is the belief for the
next round if the belief for the current round isx and the active
action is taken. Similarly,Γ0(x) = xT 0

11 + (1 − x)T 0
01, which is

the belief for the next round if the belief for the current round isx
and the passive action is taken.

We present below two theorems demonstrating two sufficient
conditions for indexability. The proof is in the online appendix.

THEOREM 1. Whenβ ≤ 0.5, the process is indexable, i.e., for
any beliefx, if Vm(x;a = 0) ≥ Vm(x;a = 1), thenVm′(x; a =
0) ≥ Vm′(x;a = 1), ∀m′ ≥ m

THEOREM 2. Whenαβ ≤ 0.5 andΓ1(1) ≤ Γ0(0), the process
is indexable, i.e., for any beliefx, if Vm(x; a = 0) ≥ Vm(x;a =
1), thenVm′(x; a = 0) ≥ Vm′(x; a = 1), ∀m′ ≥ m

3.4 Numerical Evaluation of Indexability
For problems other than those that have been proved to be index-

able in Section 3.3, we can numerically evaluate their indexability.
We first provide the following proposition.

PROPOSITION 1. If m < R(0)−βR(no−1)−R(0)
1−β

, Φ(m) = ∅;
if m > R(no − 1), Φ(m) is the whole belief state space.

PROOF. If m < R(0) − βR(no−1)−R(0)
1−β

, denoteVm(b; a =

0) = m + βW0; Vm(b; a = 1) = R(o) + βW1, whereW1 and
W0 represent the maximum future reward. SinceW0 ≤

R(no−1)
1−β

(achieving rewardR(no− 1) at every round),W1 ≥
R(0)
1−β

(achiev-
ing rewardR(0) at every round),R(o) ≥ R(0), we haveVm(b; a =
1)− Vm(b; a = 0) = R(o)−m+ β(W1 −W0) ≥ R(0)−m+

βR(0)−R(no−1)
1−β

> 0. Thus, being active is always the optimal
action for any state so thatΦ(m) = ∅.

If m > R(no − 1), then the strategy of always being passive
dominates other strategies soΦ(m) is the whole belief state s-
pace.

Thus, we only need to determine whether the setΦ(m)monoton-
ically increases form ⊆ [R(0)−β R(no−1)−R(0)

1−β
, R(no−1)]. Nu-

merically, we can discretize this limitedm range and then evaluate
if Φ(m) monotonically increases with the increase of discretized
m. Given the subsidym, Φ(m) can be determined by solving a
special POMDP model whose conditional observation probability
is dependent on start state and action. We will discuss the algo-
rithm in detail in Section 4. This algorithm returns a setD which
containsns-length vectorsd1, d2, . . . , d|D|. Every vectordi is as-
sociated with an optimal actionei. Given the beliefb, the optimal
action is determined byaopt = ei, i = argmaxj b

T dj . Thus,
Φ(m) =

⋃

i:ei=0{b : b
T di ≥ bT dj ,∀j}.

Givenm0 < m1, our aim is to check whetherΦ(m0) ⊆ Φ(m1).
Use the superscript0 or 1 for setD, vectord, actione to distinguish
between the returned solutions with subsidym0 andm1. The fol-
lowing mixed-integer linear program (MILP) can be used to deter-
mine whetherΦ(m0) ⊆ Φ(m1).

min
b,z0,z1,ξ0,ξ1

|D0|
∑

i=1

z0i e
0
i −

|D1|
∑

i=1

z1i e
1
i

s.t. bi ∈ [0, 1], ∀i ∈ S,
∑

i∈S

bi = 1

z0i ∈ {0, 1}, ∀i ∈ {1, 2, . . . , |D
0|},

∑

i

z0i = 1

bT d0i ≤ ξ0,∀i ∈ {1, 2, . . . , |D0|}

ξ0 ≤ bT d0i +M(1− z0i ),∀i ∈ {1, 2, . . . , |D
0|}

z1i ∈ {0, 1}, ∀i ∈ {1, 2, . . . , |D
1|}

∑

i

z1i = 1

bT d1i ≤ ξ1,∀i ∈ {1, 2, . . . , |D1|}

ξ1 ≤ bT d1i +M(1− z1i ),∀i ∈ {1, 2, . . . , |D
1|}

If the result of the above MILP is0 or 1, Φ(m0) ⊆ Φ(m1). In
the MILP, M is a given large number,b is the belief state,z0/1i

is a binary variable that indicates whetherbT d
0/1
i ≥ bT d

0/1
j ,∀j

(1 indicates yes and0 indicates no),ξ0/1 is an auxiliary variable

that equalsmaxi b
Td

0/1
i ,

∑|D0/1|
i=1 z

0/1
i e

0/1
i is the optimal action

for the problem with subsidym0/1. If the result of this MILP is0
or 1, it means that there does not exist a beliefb under which the
optimal action for the problem with subsidym0 is passive (0) and
the optimal action for the problem with subsidym1 is active (1).
This meansΦ(m0) ⊆ Φ(m1).

3.5 Computation of Whittle Index Policy



Given the indexability, Whittle index can be found by doing abi-
nary search within the rangem ⊆ [R(0)−βR(no−1)−R(0)

1−β
, R(no−

1)]. Given the upper boundub and lower boundlb, the problem
with middle point lb+ub

2
as passive subsidy is sent to the special

POMDP solver to find the optimal action for the current belief. If
the optimal action is active, then the Whittle index is greater than
the middle point solb ← lb+ub

2
; or elseub ← lb+ub

2
. This bina-

ry search algorithm can find Whittle index with arbitrary precision.
Naively, we can compute the Whittle index policy by computing
theε-precision indices of all arms and then picking thek arms with
the highest indices.

However, since we are actually only interested in whichk arms
have the highest Whittle index and we do not care what exactly
their indices are, we can do better than this naive method, which is
demonstrated in Algorithm 1.

Algorithm 1 Algorithm to Compute Whittle Index Policy
1: function FINDWHITTLE INDEXPOLICY

2: lb← R(0)− βR(no−1)−R(0)
1−β

, ub← R(no − 1)

3: A← ∅, S ← {1, 2, . . . , n}
4: while |A| < k do
5: S1 ← ∅, S0 ← ∅
6: for i ∈ S do
7: aopt ← POMDPSOLVE(Pi,

lb+ub
2

)
8: if aopt = 1 then
9: S1 ← S1

⋃

{i}
10: else
11: S0 ← S0

⋃

{i}
12: end if
13: end for
14: if |S1| ≤ k − |A| then
15: A← A

⋃

S1, S ← S − S1

16: ub← lb+ub
2

17: else
18: S ← S − S0

19: lb← lb+ub
2

20: end if
21: end while
22: return A
23: end function

In Algorithm 1,A is Whittle index policy to be returned and is
set to be∅ at the beginning.S is the set of arms that we have not
known whether belong toA or not and is set to be the whole set of
arms at the beginning. Before it finds top-k arms (the loop between
Line 4 and Line21), it tests all the arms inS about their optimal
action with subsidyub+lb

2
. If the optimal action is1, it means this

arm’s index is higher thanub+lb
2

and we add it toS1; if the optimal
action is0, it means this arm’s index is lower thanub+lb

2
and we add

it to S0 (Lines6 − 13). At this moment, we know that all arms in
S1 have higher indices than all arms inS0. If there is enough space
in A to include all arms inS1, we addS1 toA, remove them from
S and set the upper bound to beub+lb

2
because we already know

that S1 belongs to Whittle index policy set and all the rest arms
have the index lower thanub+lb

2
(Lines14 − 16). If there is not

enough space inA, we removeS0 from S and set the lower bound
to be ub+lb

2
because we already know thatS0 does not belong to

Whittle index policy set and all the rest arms have the index higher
than ub+lb

2
(Lines17− 19)

4. COMPUTATION OF PASSIVE ACTION
SET

In this section, we will discuss the algorithm to compute thepas-
sive action setΦ(m) with the subsidym. This problem can be
viewed as solving a special POMDP model whose conditional ob-
servation probability is dependent on start state and action while
the conditional observation probability is dependent on end state
and action in standard POMDPs. Figure 2 demonstrates the dif-
ference. The left figure represents special POMDPs and the right
figure represents standard POMDPs. In both cases, the original s-
tate iss, the agent takes actiona, and the state transitions tos′

according toP (s′|s, a). However, the observationo the agent get
during this process is dependent ons anda in our special POMDPs;
while it depends ons′ anda in standard POMDPs.

observation

state

�
a

6

-
P (s′|s, a)s s′

o

P (o|s, a)

�
a

6

-
P (s′|s, a)s s′

o

P (o|s′, a)

Figure 2: Special POMDPs vs Standard POMDPs

Despite this difference, the solution concept of value iteration
algorithm in standard POMDPs can be used to solve our special
POMDP formulations with appropriate modifications. We willdis-
cuss the special POMDP formulation for our problem in Section
4.1 and present the modified value iteration algorithm in Section
4.2.

4.1 Special POMDP Formulation
The special POMDP formulation for our problem is straightfor-

ward.
state spaceThe state space isS = {0, 1, . . . , ns − 1}.
action spaceThe action space isA = {0, 1}, wherea = 0 rep-
resents passive action (do not protect) anda = 1 represents active
action (protect).
observation spaceThe observation space isO = {−1, 0, 1, . . . , no−
1}. It adds a “fake” observationo = −1 to represent no observa-
tion when taking actiona = 0. It’s called “fake” because defenders
have probability1 to observeo = −1 no matter what the state is
when they take actiona = 0, so this observation does not provide
any information. When defenders take actiona = 1, they may
observe observationsO\{−1}.
conditional transition probability The conditional transition prob-
ability P (s′|s, a) is defined to be:P (s′ = j|s = i, a = 1) = T 1

ij

andP (s′ = j|s = i, a = 0) = T 0
ij .

conditional observation probability The conditional observation
probability P (o|s, a) is defined to beP (o = −1|s, a = 0) =
1, ∀s ∈ S; P (o = j|s = i, a = 1) = Oij . Note that the con-
ditional observation probability here is dependent on the start state
s and actiona, while it depends on end states′ and actiona in
standard POMDP models. Intuitively, defenders’ observation of at-
tack activities today depends on the attack intensity today, not the
transitioned attack intensity tomorrow.
reward function The reward functionR is

R
(

s, s′, a, o
)

=

{

0, a = 0,

R(o), a = 1.

With the transition probability and observation probability,R(s, a)



can be computed. Note that this formulation is also slightlydiffer-
ent due to the different definition of observation probability.

R(s, a) =
∑

s′∈S

P (s′|s, a)
∑

o∈O

P (o|s, a)R(s, s′, a, o)

4.2 Value Iteration for Our Special POMDP
Different from standard POMDP formulation, the belief update

in the special POMDP formulation is

b′(s′) =

∑

s∈S
b(s)P (o|s, a)P (s′|s, a)

P (o|b, a)
(2)

where

P (o|b, a) =
∑

s′∈S

∑

s∈S

b(s)P (o|s, a)P (s′|s, a) =
∑

s∈S

b(s)P (o|s, a)

Note that the belief update process is also consistent with that in
Equation 1. Similar to standard POMDP formulation, we have the
value function

V ′(b) = max
a∈A

(

∑

s∈S

b(s)R(s, a) + β
∑

o∈O

P (o|b, a)V (boa)

)

which can be broken up to simpler combinations of other value
functions:

V ′(b) = max
a∈A

Va(b)

Va(b) =
∑

o∈O

V o
a (b)

V o
a (b) =

∑

s∈S
b(s)R(s, a)

|O|
+ βP (o|b, a)V (boa)

All the value functions can be represented asV (b) = maxα∈D b·α
since the update process maintains this property, so we onlyneed
to update the setD when updating the value function. The setD is
updated according to the following process:

D′ = purge

(

⋃

a∈A

Da

)

Da = purge

(

⊕

o∈O

Do
a

)

Do
a = purge({τ (α, a, o)|α ∈ D})

whereτ (α, a, o) is the|D|-vector given by

τ (α, a, o)(s) = (1/|O|)R(s, a)+βP (o|s, a)
∑

s′∈S

α(s′)P (s′|s, a)

and purge(·) takes a set of vectors and reduces it to its unique min-
imum form (remove redundant vectors that are dominated by other
vectors in the set).

⊕

represents the cross sum of two sets of vec-
tors:A

⊕

B = {α+ β|α ∈ A, β ∈ B}.
The update ofD′ andDa is intuitive, so we briefly explain the

update ofDo
a

2 here:

P (o|b, a)V (boa) = P (o|b, a)max
α∈D

∑

s′∈S

α(s′)P (s′|b, a, o)

= P (o|b, a)max
α∈D

∑

s′∈S

α(s′)

∑

s∈S
b(s)P (o|s, a)P (s′|s, a)

P (o|b, a)

= max
α∈D

∑

s′∈S

α(s′)
∑

s∈S

b(s)P (o|s, a)P (s′|s, a)

= max
α∈D

∑

s∈S

b(s) ·

(

P (o|s, a)
∑

s′∈S

α(s′)P (s′|s, a)

)

Here,P (s′|b, a, o) is the belief of states′ in the next round when
the belief in the current round isb, the agent takes actiona and get
the observationo, which is theb(s′) in Equation 2.

5. PLANNING FROM POMDP VIEW
We have discussed in Section 4.1 that every single target canbe

modeled as a special POMDP model. Given that, we can com-
bine these POMDP models at all targets to form a special POMDP
model that describe the whole problem, and solving this special
POMDP model leads to defenders’exactoptimal strategy. Use the
superscripti to denote targeti. Generally, the POMDP model for
the whole problem is the cross product of the single-target POMD-
P models at all targets with the constraint that onlyk targets are
protected at every round.

state spaceThe state space isS = S
1×S

2× . . .×S
n. Denote

s = (s1, s2, . . . , sn)
action spaceThe action space isA = {(a1, a2, . . . , an)|aj ∈
{0, 1}, ∀j ∈ N,

∑

j∈N
aj = k}, which represents that onlyk tar-

gets can be protected at a round. Denotea = (a1, a2, . . . , an)
observation spaceThe observation space isO = O

1 ×O
2 ×

. . .×O
n. Denoteo = (o1, o2, . . . , on)

conditional transition probability The conditional transition
probability isP (s′|s, a) =

∏

j∈N
P j(s′j |sj , aj).

conditional observation probability The conditional observa-
tion probability isP (o|s, a) =

∏

j∈N
P j(oj |sj , aj).

reward function The reward function isR(s, s′, a, o) =
∑

j∈N

R(sj , s′j , aj , oj)
Naively, the modified value iteration algorithm discussed in Sec-

tion 4.2 can be used to solve this special POMDP formulation.
However, this POMDP formulation suffers from curse of dimen-
sionality — the problem size increases exponentially with the num-
ber of targets. Thus, the computational cost of value iteration algo-
rithm will soon become unaffordable as the problem size grows.

Silver and Veness [15] have proposed POMCP algorithm, which
provides high quality solutions and is scalable to large POMDP-
s. The POMCP algorithm only requires a simulator of the prob-
lem so it also applies to our special POMDPs. At a high level, the
POMCP algorithm is composed of two parts: (i) it uses a particle
filter to maintain an approximation of the belief state; (ii)it draw s-
tate samples from the particle filter and then use MCTS to simulate
what will happen next to find the best action. It uses a particle filter
to approximate the belief state because it is even computationally
impossible in many problems to update belief state due to theex-
treme large size of the state space. However, in our problem,the
all-target POMDP model is the cross product of the single-target
POMDP models at all targets. The single-state POMDP model is

2Actually the only difference of value iteration algorithm for the
special POMDP formulation compared with that for the standard
POMDP formulation is the different update ofDo

a.



small so that it is computationally inexpensive to maintainits be-
lief state. Thus, we can easily sample the statesi at targeti from its
belief state and then compose them together to get the state sample
s = (s1, s2, . . . , sn) for the all-target POMDP model.

The details of MCTS in POMDP are available in [15] so we omit
it here. Although the POMCP algorithm shows better scalability
than the exact POMDP algorithm, its scalability is also limited be-
cause the action space and observation space are also exponential
with k in our problem. Consider the problem instance ofn = 10,
k = 3 andno = 2, the number of actions is

(

10
3

)

= 10∗9∗8
1∗2∗3

= 120

and the number of observations is
(

10
3

)

∗ 23 = 960. Since actions
and observations are the branches in the MCTS, the tree size will
soon become extremely large when planning more rounds ahead.
This leads to two problems: (i) it will soon run out of memory when
planning more rounds ahead; (ii) a huge number of state samples is
needed to establish the convergence. Thus, the POMCP algorithm
only applies to problem instances with smallk. Our experimen-
tal evaluation shows that the POMCP algorithm is unable to plan
3 horizons forward (runs out of memory) for the problem instance
of n = 10, k = 3 andno = 2. It means that for large problem
instances, the POMCP algorithm is reduced to myopic policy (only
look one round ahead when planning).

6. EXPERIMENTAL EVALUATION
In this section, we will firstly evaluate the Whittle Index Policy

in Section 6.1 and then evaluate the RMAB model in Section 6.2.
The performance is evaluated in terms of the cumulative reward
received within the first20 rounds with discounting factorβ = 0.9.
All results are averaged over500 simulation runs.

6.1 Evaluation of Whittle Index Policy
We will compare the Whittle Index policy with four baseline al-

gorithms:
Random: The defenders randomly choosek targets to protect at

every round.
Myopic: The defenders choosek targets with the highest imme-

diate reward to protect at every round.
Exact POMDP: The defenders uses the modified value itera-

tion algorithm to solve the special POMDP problem discussedin
Section 5 to plan for patrol strategies at every round. Note that it
only works for small-scale problems and is theexactoptimal patrol
strategy defenders may take

POMCP: The defenders uses POMCP algorithm to solve the
special POMDP problem discussed in Section 5 to plan for patrol
strategies at every round.

The computation of Whittle Index policy and exact POMDP al-
gorithm involve solving special POMDPs using the modified value
iteration algorithm as is discussed in Section 4.2. We implement
the modified value iteration algorithm by modifying the POMDP
solver written by Anthony R. Cassandra3. The detailed algorithm
we use for value iteration is the incremental pruning algorithm [4].

There are two parameters in the POMCP algorithm: the number
of state samples and the depth of the tree, i.e., the number ofrounds
we look ahead when planning. With the increase of the number of
state samples, the performance of the POMCP algorithm improves;
while the runtime also increases at the same time. Thus, for afair
comparison, during our experiment, we choose the number of state
samples so that its runtime is similar to that of Whittle index pol-
icy. For the depth of the tree, we choose the one with the largest
cumulative reward.

3http://pomdp.org/code/

Small Scale: Compare with Exact POMDP Algorithm We
then evaluate these five planning algorithms in a small problem in-
stance withn = 2, k = 1, ns = 2 andno = 2. The result is shown
in Table 1. From the table, we can see that our Whittle index poli-
cy and POMCP algorithm perform very close to the optimal Exact
POMDP solution and are much better than the myopic optimal pol-
icy and random policy, demonstrating their high solution quality.

Table 1: Planning Algorithm Evaluation in Solution Quality for
Small-scale Problem Instances

Random Myopic Optimal POMCP Exact POMDP Whittle Index

2.6534 3.1384 3.1694 3.1798 3.1740

Large Scale:We then evaluate our planning algorithms in a larg-
er problem instance withn = 10. Figure 3(a) shows the solution
quality comparison whenns = 2 andno = 2. The x-axis shows
the number of defenders (k) and the y-axis shows the cumulative
reward. From this figure, we can see that Whittle index policyper-
forms better than the POMCP algorithm and myopic optimal poli-
cy, and all of these three algorithms perform much better than the
random policy. One thing to note is that the POMCP algorithm
shows poor scalability with regard tok — it is unable to plan3
horizons forward (runs out of memory) withk = 3. Figure 3(b)
shows the solution quality comparison whenns = 3 andno = 3,
and demonstrates similar patterns as Figure 3(a).
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Figure 3: Planning Algorithm Evaluation in Solution Qualit y
for Large-scale Problem Instances

An Example When Myopic Policy FailsWe can see from Fig-
ures 3(a) and 3(b) that the myopic policy performs only slightly
worse compared with the Whittle index policy. Here we provide
an example where the myopic policy performs significantly worse.
Consider the case with2 targets and1 defender.

For target0:

T 0 =

[

0.95 0.05
0.05 0.95

]

T 1 =

[

0.99 0.01
0.1 0.9

]

O =

[

0.9 0.1
0.2 0.8

]

For target1:

T 0 =

[

0.4 0.6
0.1 0.9

]

T 1 =

[

0.7 0.3
0.4 0.6

]

O =

[

0.7 0.3
0.3 0.7

]

Figure 4 shows the performance of different algorithms. In this
case, the myopic policy performs similar to the random policy, and
is much worse compared with Whittle Index policy.

Runtime Analysis of Whittle Index Policy: Figure 5 analyzes
the runtime of Whittle index policy. The x-axis shows the num-
ber of targets (n) and the y-axis shows the average runtime. From
the figure, we can see that the runtime increases linearly with the
number of targets. This is because Whittle index policy reduces
ann-dimensional problem ton 1-dimensional problems so that the
complexity is linear withn. Another observation is that the number
of defenders (k) does not affect the runtime a lot for a givenn.
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Figure 4: Example when Myopic Policy Fails
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Figure 5: Runtime Analysis of Whittle Index Policy: ns =
2, no = 2

6.2 Evaluation of RMAB Modeling
In this section, we will compare our RMAB model with the algo-

rithms (UCB, SWUCB, EXP3) used in [7] with a group of simulat-
ed attackers. The performance is evaluated in terms of the cumula-
tive reward received within the first20 rounds after several rounds
learning (β = 0.9).

Figure 6(a) demonstrates how the performance changes with d-
ifferent learning rounds andns(no). It shows that when learning
rounds is smaller (100), the model withns = no = 2 perform-
s the best. This is because the model with higherns(no) suffers
overfitting with limited data at this time. When the data is rela-
tively abundant (learning rounds =1000), the model with higher
ns(no) performs better. However, we noticed that the difference is
not significantly large.

Figure 6(b) shows that comparison of our RMAB model with the
Random/UCB/SWUCB/EXP3 algorithms. When learning rounds
is smaller (100), our RMAB model performs similar to UCB algo-
rithm, and is better than other algorithms. When learning round-
s becomes larger, our RMAB model shows significant advantage
over other algorithms.
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Figure 6: Evaluation of RMAB Modeling

7. RELATED WORK
Previous research in Green Security Games [19, 5, 14] suffers

from two major limitations. First, this research fails to capture the
defender’slack of observation of attacks— in the real world, given
a large area to patrol, the defender only has observations ofattacks
on the limited set of targets she patrolled in any given round. She
does not have full knowledge of all of attackers’ actions as assumed
in [19, 5, 14], leading to an unaddressed exploration-exploitation

tradeoff for defenders: informally, should the defender allocate re-
sources to protect targets that have already been visited and have
been observed to have suffered a lot of attacks or should she al-
locate resources to protect targets that have not visited for a long
time and hence where there are no observations of attacks. Second,
while significant work in security games has focused on uncertain-
ty over attackers’ observations of defender actions [20], the reverse
problem has received little attention. Specifically, givenfrequent
interactions with multiple attackers, the defender herself facesob-
servation uncertaintyin observing all of the attacker actionseven
in the targets she does patrol. Addressing this uncertainty in the
defender’s observation is important when estimating attacks on tar-
gets and addressing the exploration-exploitation tradeoff.

The limited observability property and exploration-exploitation
tradeoff is also noticed by Klíma in the domain of border patrol
where the border is large area [7, 8]. They model the problem as a s-
tochastic/adversarial multi-armed bandit problem and use(sliding-
window) UCB algorithm [2]/EXP3 algorithm [3] to plan for pa-
trollers’ strategies. However, the stochastic bandit formulation fails
to model patrol’s effect on attackers’ actions while the adversarial
bandit formulation fails to capture attackers’ behavioralpattern.

Zhang et al. [22] focus on deterring crimes in urban areas by po-
lice patrol. They use Dynamic Bayesian Network (DBN) to model
criminals’ response to police patrol. They learn the DBN model
from real-world crime data and then plan police patrol according
to the DBN model. Their work does not deal with the exploration-
exploitation tradeoff since victims would mostly report crimes to
police so the police does not suffer from limited/partial observabil-
ity issue in this domain.

There is a rich literature on indexability of restless multi-armed
bandit problem. Glazebrook et al. [6] provide some indexable fam-
ilies of restless multi-armed bandit problems. Nino-Mora [11] pro-
pose PCL-indexability and GCL-indexability and show that they
are sufficient conditions for indexability. Liu and Zhao [9]apply
the concept of RMABs in dynamic multichannel access. In their
model, every arm is a two-state Markov chain and the player only
knows the state of the arm he chooses to activate. They prove the
indexability of their problem and find the closed-form solution for
the Whittle index. In [12], Ny et al. also consider the same class
of RMABs but motivated by the application of UAV routing. This
problem shares some similarity with our problem but our problem
is more difficult in the following aspects: (i) we cannot directly ob-
serve the states (POMDP vs. MDP); (ii) different actions lead to
different transition matrices in our model; (iii) we allow for more
states and observations. A further extension to this work discusses
the case with probing errors where the player’s observationabout
the state might be incorrect [10]. This concept is similar towhat
we assume in our model, but the detailed settings are different.

8. CONCLUSION
This paper presents a new solution framework for security do-

mains with frequent interactions and limited/partial observability.
The motivating domains include wildlife protection domain, police
patrol to catch fare-evaders, border patrol, etc. We model these
domains as an RMAB to handle the limited/partial observability
challenge. We provide an EM based learning algorithm to learn the
RMAB model and use the solution concept of Whittle index policy
to solve the RMAB model for planning optimal patrol strategies.
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