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ABSTRACT

The success of Stackelberg Security Games (SSGs) in ceunter
terrorism domains has inspired researchers’ interest plyay
game-theoretic models to other security domains with feegjin-
teractions between defenders and attackers, e.g., wildtidtec-
tion. Previous research optimizes defenders’ strategiesidd-
eling this problem as a repeated Stackelberg game, capttiren
special property in this domain — frequent interactionsyeen
defenders and attackers. However, this research fails ridida
exploration-exploitation tradeoff in this domain causgdte fact
that defenders only have knowledge of attack activitiesaajets
they protect. This paper addresses this shortcoming anddeso
the following contributions: (i) We formulate the problers a
restless multi-armed bandit (RMAB) model to address thil-ch
lenge. (ii) To use Whittle index policy to plan for patrol ategies
in the RMAB, we provide two sufficient conditions for indexiitly
and an algorithm to numerically evaluate indexabilityi) @iven
indexability, we propose a binary search based algorithrintb
Whittle index policy efficiently.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence

General Terms
Security, Algorithms, Performance

Keywords

Exploration-exploitation tradeoff, Restless multi-adhiindit, Whit-
tle index policy, POMDP

1. INTRODUCTION

Given the increasing need for security around the globd; opt
mizing the allocation of a limited number of security resmas re-
mains a crucial challenge. The successful applicationstadks
elberg Security Games (SSGs) for security resource aitotat
counter-terrorism domains [16] have inspired researclerest
in applying game-theoretic models to new “frequent intéoac
security domains with repeated interactions between defsrand
attackers, e.g., wildlife protection domain. Howeverseévo do-
mains are different. In wildlife protection domain, attagoach-
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ing) happens frequently so that it gives defenders (pang)llthe
opportunity to learn attackers’ (poachers’) behavioraigras from
their previous actions and then to plan patrol strategiesrading-
ly; while this learning opportunity does not arise in the ictu-
terrorism domain. Previous research [19, 5] has taken aagarof
this opportunity and has modeled the wildlife protectiomdin as
a repeated Stackelberg game. However, this work assuntegetha
fenders have knowledge of all poaching activities througttbe
wildlife protected area (we will discuss more about thisated
work in Section 7). Unfortunately, given vast geographieaarfor
wildlife protection, defenders do not have knowledge ofghiag
activities in areas they do not protect. Thus, defenderdamed
with the exploration-exploitation tradeoff — whether tofact the
targets that are already known to have a lot of poaching idetv
or to explore the targets that haven’t been protected fongtione.

The exploration-exploitation tradeoff here is differerdrf that
in the non-Bayesian stochastic multi-armed bandit prod&min
stochastic multi-armed bandit problems, the rewards ofyesen
are random variables with a stationary unknown distrilutidow-
ever, in our problem, patrol affects attack activities — epatrol
is likely to decrease attack activities and less patrolkislyi to in-
crease attack activities. Thus, the random variable Higion is
changing depending on player’s choice — more selectiorrdpat
leads to lower reward (less attack activities) and lesxBele(pa-
trol) leads to higher reward (more attack activities). Oa tither
hand, adversarial multi-armed bandit problem [3] is alsbamoap-
propriate model for this domain. In adversarial multi-achirandit
problems, the reward can arbitrarily change while the ktbativi-
ties in our problem are unlikely to change rapidly in a sheriqd.
This makes the adversarial multi-armed bandit model inggmpate
for our domain.

In reality, how patrol affects attack activities would besen-
ably assumed to follow a consistent pattern that can bedéedrom
historical data (defenders’ historical observations). Méael this
pattern as a Markov process and provide the following coutri
tions in this paper. First, we formulate the problem into stless
multi-armed bandit (RMAB) model to handle the limited ohser
ability challenge — defenders do not have observations rimisa
they do not activate (targets they do not protect). Secoredpn-
pose an EM based learning algorithm to learn the RMAB model
from defenders’ historical observations. Third, we usesiblation
concept of Whittle index policy to solve the RMAB model to pla
for defenders’ patrol strategies. However, indexabilgyequired
for the existence of Whittle index, so we provide two suffittieon-
ditions for indexability and an algorithm to numericallyadwate
indexability. Fourth, we propose a binary search basedrighgo
to find the Whittle index policy efficiently.



2. MODEL

2.1 Motivating Domains and their Properties

Our work is mainly motivated by the domain of wildlife pro-
tection such as protecting endangered animals and fishssfbék
19, 5]. Other motivating domains include police patrol tacba
fare-evaders in a barrier-free transit system [21], bopderol [7,
8], etc. The model we will describe in this paper is based on
the following assumptions about the nature of interactlmtsveen
defenders and attackers in these domains. Except the freque
t interactions between defenders (patrollers/police) attacker-
s (poachers/fare-evaders/smugglers), these domaine ahath-
er two important properties: (i) patrol affects attackirgjivaties
(poaching/fare evasion/smuggling); (ii) limited/partdservabili-
ty. We will next use the wildlife protection domain as the exsde
to illustrate these two properties.

Poaching activity is a dynamic process affected by patfqal
trollers patrol in a certain location frequently, it is vdikely that
the poachers poaching in this location will switch to ottoeations
for poaching. On the other hand, if a location hasn’t beerofiat
for a long time, poachers may gradually notice that and $wtibc
this location for poaching.

In the wildlife protection domain, both patrollers and ploars
do not have perfect observation of their opponents’ actidrtss
observation imperfection lies in two aspects: (i) limitdzbervabil-
ity — patrollers/poachers do not know what happens at lonati
s they do not patrol/poach; (ii) partial observability — nadier-
s/poachers do not have perfect observation even at losathay
patrol/poach — the location might be large (e.g2kan x 2km
area) so that it is possible that patrollers and poachersotsee
each other even if they are at the same location.

These two properties make it extremely difficult for defeisde
optimally plan their patrol strategies. For example, ddé&s may
find a target with a large number of attack activities at thgirfo@ng
so they may start to protect this target frequently. Afteedqa of
time, attack activities at this target may start to decrehse to
the frequent patrol. At this time, defenders have to decitetier
to keep protecting this target (exploitation) or to switchother
targets (exploration). However, defenders do not have ledye
of attack activities at other targets at that moment, whiekes this
decision making extremely difficult for defenders.

Fortunately, the frequent interactions between defenaledsat-
tackers make it possible for defenders to learn the effepatfl
on attackers from the historical data. With this learnedcffde-
fenders are able to estimate attack activities at targegsdb not
protect. Based on this concept, we model these domains at-a re
less multi-armed bandit problem and use the solution cdnakep
Whittle index policy to plan for defenders’ strategies.

2.2 Formal Model

We now formalize the story in Section 2.1 into a mathematical
model that can be formulated as a restless multi-armed tyraodti-
lem. There are n targets that are indexed\bs {1, ...,n}. De-
fenders have: patrol resources that can be deployed to these
targets. At every round, defenders choégargets to protect. Af-
ter that, defenders will have an observation of the numbattatk
activities for targets they protect, and no information fargets
they do not protect. The objective for defenders is to degidieh
k targets to protect at every round to catch as many attackers a
possible.

Due to the partial observability on defenders’ side — deéesd
observation of attack activities is not perfect even fogeds they
protect, we introduce a hidden variable attack intensitictvrep-

resents the true degree of attack intensity at a certaietta@ear-
ly, this hidden variable attack intensity cannot directtydbserved
by defenders. Instead, defenders’ observation is a randoiable
conditioned on this hidden variable attack intensity, dwallarger
the attack intensity is, the more likely it is for defendes®bserve
more attack activities during their patrol.

We discretize the hidden variable attack intensity intdevel-

s, denoted bys = {0,1,...,ns — 1}. Lower: represents lower
attack intensity. For a certain target, its attack intgnsansitions
after every round. If this target is protected, attack isigrtransi-
tions according to &, x n transition matrixI™!; if this target is not
protected, attack intensity transitions according to @t x n
transition matrixZ®. The transition matrix represents how patrol
affects attack intensity —Z'* tends to reduce attack intensity and
TY tends to increase attack intensity. The randomness inahe tr
sition matrix models attackers’ partial observability alissed in
Section 2.1. Note that different targets may have differ@msition
matrices because some targets may be more attractive therka
(for example, some locations may have more animal resoumces
the wildlife protection domain) so that it is more difficutirfattack
intensity to go down and easier for attack intensity to go up.

We also discretize defenders’ observations of attackitiesvin-
to n, levels, denoted bp = {0,1,...,n, — 1}. Lowers repre-
sents less attack activities defenders observe. Note dfahders
will only have observation for targets they protectnA x n, ob-
servation matrixO determines how the observation depends on the
hidden variable attack intensity. Generally, the largerattack in-
tensity is, the more likely it is for defenders to observe enattack
activities during their patrol. Similar to transition miats, differ-
ent target may have different observation matrices.

While defenders get observations of attack activitiesrdyutheir
patrol, they also receive rewards for that — arresting peestfare-
evaders/smugglers bring benefit. Clearly, the reward diefiesnre-
ceive depends on their observation and we thus define thedewa
function R(0), 0 € O — largers leads to higher rewaré(z). For
example, ifo = 0 represents finding no attack activity and= 1
represents finding attack activities, th&{0) = 0, R(1) = 1.
Note that defenders only get rewards for targets they protec

To summarize, for the targets defenders protect, defemggén
observation depending on its current attack intensityttgeteward
associated with the observation, and then the attack iityeman-
sitions according td™*; for the targets defenders do not protect,
defenders do not have any observation, get rewandd the attack
intensity transitions according t6°. Figure 1 demonstrates this
process. In this model, the state discretization lewebbservation
discretization leveh, and reward functiorRR(o) are pre-specified
by defenders; the transition matric&$ and7°, observation ma-
trix O and initial beliefr can be learned from defenders’ previous
observations. We will briefly discuss the learning algaritim Sec-
tion 2.3. After those parameters are learned, this modetisdlat-
ed into a restless multi-armed bandit model to plan for didesi
strategies.
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Figure 1: Model lllustration



2.3 Learning Model From Defenders’ Previ-
ous Observations

Given defenders’ action historya;} and observation history
{o0:}, our objective is to learn the transition matricg$ and 7°°,
observation matriO and initial beliefr. Due to the existence of
hidden variableq s; }, expectation-maximization (EM) algorithm
is used for learning. We show the update steps here and thitsdet
are in the online appendix

rldt) = P(s1 = i|z;0%)

1

Tilj(d+l) _ tT;ll:a,T:illP(St =1, 5t+.1 = j|$§9d)
t=1:ar=1 P(st = i|z;07)

Ti(;(d+1) _ sza{athiolp(st =1, 3t+‘1 = j|$§9d)
t=1:a;=0 P(s; = ilz;0%)

(d+1) _ Zz:l:atzl P(st = ilz; ed)I(Ot =7)
e ZZ:l:atzl P(St = 7,|$, Qd)
where 6¢ is the 7, 7", 7°, O last step andP(s: i|lz; 6%)

and P(s: i,st41 = jlz;0%) are computed through forward-
backward algorithm.

o)

3. RESTLESS BANDIT FOR PLANNING

In this section, we will formulate the model discussed int®ec
2.2 as a restless multi-armed bandit problem and plan defend
strategies using the solution concept of Whittle indexgyoli

3.1 Restless Multi-armed Bandit Problems

In this section, we will briefly introduce the restless mialtmed
bandit problems (RMABSs) and their main solution concept #hi
tle index policy. In RMABs, each arm represents an independe
Markov machine. At every round, the player choosesut of n
arms & < n) to activate and receives the reward determined by
the state of the activated arms. After that, the statealloirms
will transition to new states according to certain Markansition
probabilities. The problem is called “restless” becausestiates of
passive arms will also transition like active arms. The afrthe
player is to maximize his cumulative reward by choosing \whic
arms to activate at every round. It has shown by Papadinitrio
and Tsitsiklis that it is PSPACE-hard to find the optimal &gy to
general RMABSs [13].

An index policy assigns an index to each state of each arm to

measure how rewarding it is to activate an arm at a partictide.
At every round, the index policy chooses to pick tharms whose
current states have the highest indices. Since the inder afra
only depends on the properties of this arm, index policy cedu
ann-dimensional problem te 1-dimensional problems so that the
complexity is reduced from exponential withto linear withn.
Whittle proposed a heuristic index policy for RMABs by con-
sidering the Lagrangian relaxation of the problem [18].d$ lheen
shown that Whittle index policy is asymptotically optimatder
certain conditions ak andn tend toco with k/n fixed [17]. When
k andn are finite, extensive empirical studies have also demon-
strated the near-optimal performance of Whittle index qolil,
6]. Whittle index measures how attractive it is to activateaam
based on the concept of subsidy for passivity. It gives thsisy
m to passive action (not activate) and the smaltesthat would
make passive action optimal for the current state is defindakbt

http://iteamcore.usc.edu/people/yundigia/web%20pagets/AA
MAS2016Appendix.pdf

the Whittle index for this arm at this state. Whittle indexXipp
chooses to activate thiearms with the highest Whittle indices. In-
tuitively, the larger then is, the larger the gap is between active
action (activate) and passive action, the more attradtigefor the
player to activate this arm. Mathematically, denbig(z;a = 0)
(Vin(z; a = 1)) to be the maximum cumulative reward the player
can achieve until the end if he takes passive (active) aetighe
first round at the state with subsidym. Whittle index(z) of
statex is then defined to be:

I(z) 2 inf{m : Vin(z;0 = 0) > Vin(z : a

=1}

However, Whittle index only exists and Whittle index policgn
only be used when the problem satisfies a property known agind
ability, which we define below. Defin@(m) to be the set of states
for which passive action is the optimal action given subsidy

d(m) 2 {z: Vin(z;0 =0) > Vin(z: a = 1)}

DEFINITION 1. Anarm isindexable i (m) monotonically in-
creases fronf) to the whole state space as increases from-oo
to +o00. An RMAB is indexable if every arm is indexable.

Intuitively, indexability requires that for a given staits,optimal
action can never switch from passive action to active aatiih
the increase ofn. The indexability of an RMAB is often difficult
to establish and computing Whittle index can be complex.

3.2 Restless Bandit Formulation

It is straightforward to formulation the model discussedbit-
tion 2.2 into a restless multi-armed bandit problem. Evargét is
viewed as an arm and defenders chobssms to activate/( tar-
gets to protect) at every round. Consider a single arm (farigés
associated with s (hidden) states;, observationsps x ns transi-
tion matricesI"* and7®, n, x n, observation matriXO and reward
function R(0),0 € O as is described in Section 2.2. For the arm
defenders activate, defenders get an observation, getdesao-
ciated with the observation, and the state transitionsrdaug to
T*. Note that defenders’ observation is not the state. Institad
is a random variable conditioned on the state, and reveais so
formation about the state. For the arms defenders do nobteti
defenders do not have any observation, get rewaadd the state
transitions according t&®.

Since defenders can not directly observe the state, defende
maintain a beliefb of the states for each target, based on which
defenders make decisions. The belief is updated accorditiget
Bayesian rules. The following equation shows the beliefatiepd
when defenders protect this target£ 1) and get observationor
defenders do not protect this target 0).

b'(s") = N> e b(8)0soTiy, a=1
Dees b(8) Ty a0
s€S ss’» R

wheren is the normalization factor. When defenders do not pro-
tect this targetd = 0), defenders do not have any observation, so
their belief is updated according to the state transitide; 'When
defenders protect this target & 1), their belief is firstly updated
according to their observation (brew (s) = nb(s)Oso according
to Bayes’ rule), and then the new belief is then updated aecor
ing to the state transition rulet’(s’) = 3>, g bnew(s)Toy =
> ees Mb(8)0soThy = 1Y g b(5)Oso Ty

We now present the mathematical definition of Whittle index f
our problem. Denoté/,,(b) to be the value function for belief s-
tateb with subsidym; V., (b;a = 0) to be the value function for
belief stateb with subsidym and defenders take passive action;

@)



Vin(b;a = 1) to be the value function for belief stabewith sub-

PROPOSITION 1. If m < R(0) — p2reU=FO) ¢ (m) = ¢;

sidy m and defenders take active action. The following equations if m > R(n, — 1), ®(m) is the whole belief state space.

show these value functions:

Vm(b a = 0) =m—+ va(bazo)
Vin(bja=1) =Y b(s) Y _ OsoR(0)
sES 0€0
+ 8D b(5)0s0Vin(by—1)
0cO seS
Vin(b) = max{Vp,(b;a = 0), Vin(b;a = 1)}

When defenders take passive action, they get the immediate r

ward m and theS-discounted future reward — value function at
new beliefb,—o, which is updated fronb according to the case

a = 0 in Equation 1. When defenders take active action, they get

the expected immediate rewadd, ¢ b(s) >~ .o OsoR(0) and

the B-discounted future reward. The future reward is composed of

different observation cases -, ¢ b(s)Os, is defenders’ proba-
bility to have observatiom at belief staté, andV;,, (b —,) is the
value function at new beligf,_, that is updated fromh according
to the case = 1 with observatiorv in Equation 1. The value func-
tion V;,,(b) is the maximum ofV;,,(b;a = 0) and V. (b;a = 1).
Whittle index(b) of belief stateb is then defined to be :

1(b) 0) > Vi(b:a=1)}

The passive action sét(m), which is the set of belief states for
which passive action is the optimal action given subsidis then
defined to be:

d(m) 2 {b: Vin(bja =

2 inf{m : Vin(bja =

0) > Vn(b:a=1)}

3.3 Sufficient Conditions for Indexability

In this section, we provide two sufficient conditions for éxd-
bility whenn, = 2 andn, = 2. Denote the transition matrices to
beT? andT, observation matrix to be. Clearly in our problem,
O11 > Oo1, Ogo > O1p (higher attack intensity leads to higher
probability to see attack activities when patrolling@yy;, > T¢;,
Too > Tios T > T, T > TV, (positively correlated arms).

Definea £ max{TY — T, TH — Toy }. Since itis a two-state
problem withS = {0, 1}, we use one variable to represent the
belief state:x £ b(s = 1), which is the probability of being in
statel.

DefineTy (z) = «T1; + (1 — )Ty, which is the belief for the
next round if the belief for the current round dsand the active
action is taken. Similarlyl'o(z) = 277y + (1 — )75, Which is
the belief for the next round if the belief for the currentmduis
and the passive action is taken.

We present below two theorems demonstrating two sufficient

conditions for indexability. The proof is in the online apjokx.

THEOREM 1. Wheng < 0.5, the process is indexable, i.e., for
any beliefz, if Vin (z;a = 0) > Vin(z;a = 1), thenV,,,/(z;a =
0) > Vyw(zsa=1),Ym' >m

THEOREM 2. Whena8 < 0.5andI'; (1) < I'o(0), the process
is indexable, i.e., for any belief, if Vi, (z;a = 0) > Vin(z;a =
1), thenV,./(z;a = 0) > Vo (z50 = 1), Ym’ >m

3.4 Numerical Evaluation of Indexability

For problems other than those that have been proved to be-inde

able in Section 3.3, we can numerically evaluate their inbdity.
We first provide the following proposition.

PROOF. If m < R(0) — g IO denoteV,, (b;a =
0) = m + BWo; Vin(b;a = 1) = R(o) + W1, whereW; and
Wy represent the maximum future reward. Sifte < M%g,l)
(achieving reward?(n, — 1) at every round)\/, > 11?%06) (achiev-
ing rewardR(0) at every round)R(o) > R(0), we haveV;, (b;a =
1) = Vin(b;a =0) = R(o) — m + S(W1 — Wy) > R(0) —m +
pRO-RGo—D) > 0. Thus, being active is always the optimal
action for any state so thét(m) = .

If m > R(no, — 1), then the strategy of always being passive
dominates other strategies dgm) is the whole belief state s-
pace. O

Thus, we only need to determine whether thelget.) monoton-
ically increases fom C [R(0)— B0 R(n,—1)]. Nu-
merically, we can discretize this limited range and then evaluate
if ®(m) monotonically increases with the increase of discretized
m. Given the subsidyn, ®(m) can be determined by solving a
special POMDP model whose conditional observation prdipabi
is dependent on start state and action. We will discuss the al
rithm in detail in Section 4. This algorithm returns a gewhich
containsns-length vectorsiy, do, . . ., d|p|. Every vectord; is as-
sociated with an optimal actiony. Given the belieb, the optimal
action is determined by°”* = ¢;, i = argmax; b"d;. Thus,
O(m) = Us.e,—o{b: b7 di > b"dj, Vj}.

Givenmg < m1, our aim is to check whethdr(mg) C ®(m1).
Use the superscriptor 1 for setD, vectord, actione to distinguish
between the returned solutions with subsidy andm,. The fol-
lowing mixed-integer linear program (MILP) can be used tede
mine whethe®(mg) C ®(ma).

|D°|

E Zzez -

i=1

|D

. 11
min zi€e;

b,20,21,£0 ¢l

s.t. bie[O,l],VieS, > bi=1

i€S

20 €{0,1},Vie {1,2,...,|D°[},

S
bTd} <€, vie{1,2,...,|D°}
<) + M1 —2Y),Vie{1,2,...,|D°}

z €{0,1},Vie {1,2,...,[D'[} D =1

b'd; <&\ Vie{l,2,...,|D'|}
¢ <bldi + M(1—2), Vi€ {1,2,...,|D'[}

If the result of the above MILP i8 or 1, ®(mo) C ®(ma1). In
the MILP, M is a given large numbey is the belief statezo/1
is a binary variable that indicates whettidrd{’* > b7d)’",V;
(1 indicates yes and indicates no)£%/* is an auxiliary variable

that equalsmax; b7d"’*, 1271 29/19/1 is the optimal action
for the problem with sub5|dm0/1 If the result of this MILP isD
or 1, it means that there does not exist a betieinder which the
optimal action for the problem with subsidy, is passive (0) and
the optimal action for the problem with subsidy; is active (1).
This meansb(mo) C &(my).

3.5 Computation of Whittle Index Policy



Given the indexability, Whittle index can be found by doinigia
nary search within the range C [R(O)—BR(”%)ER(O), R(no—
1)]. Given the upper boundb and lower boundb, the problem
with middle point 2L as passive subsidy is sent to the special
POMDP solver to find the optimal action for the current beliéf
the optimal action is active, then the Whittle index is geedhan
the middle point sdb < £t8; or elseub + 2%, This bina-
ry search algorithm can find Whittle index with arbitrary giston.
Naively, we can compute the Whittle index policy by compgtin
thee-precision indices of all arms and then picking tharms with
the highest indices.

However, since we are actually only interested in whicarms

4. COMPUTATION OF PASSIVE ACTION
SET

In this section, we will discuss the algorithm to computepibs-
sive action setb(m) with the subsidym. This problem can be
viewed as solving a special POMDP model whose conditional ob
servation probability is dependent on start state and ractioile
the conditional observation probability is dependent od state
and action in standard POMDPs. Figure 2 demonstrates the dif
ference. The left figure represents special POMDPs and ghe ri
figure represents standard POMDPs. In both cases, the arigin
tate iss, the agent takes actiom and the state transitions t0
according toP(s’|s,a). However, the observatiomthe agent get
during this process is dependentsoaanda in our special POMDPs;

have the highest Whittle index and we do not care what exactly \yhile it depends o’ anda in standard POMDPs.

their indices are, we can do better than this naive methoihik
demonstrated in Algorithm 1.

Algorithm 1 Algorithm to Compute Whittle Index Policy

1: function FINDWHITTLEINDEXPOLICY
2. b+ R(0) — g2t BO) b« R(n, — 1)

3: A+ 0,5+ {1,2,...,n}

4: while |A| < k do

5: S1 +— @, So 1]

6: fori € Sdo

7: a’”* + POMDPSOLVE(P;, Ltub)
8: if a°P* = 1then

9: S1 < Sl U{Z}

10: else

11: So <+ So U{Z}

12: end if

13: end for

14: if |S1] <k — |A| then

15: A+ AUS1, S+ S-S
16: ub %

17: else

18: S+ S-S50

19: I +— lbtub

20: end if

21: end while

22: return A

23: end function

In Algorithm 1, A is Whittle index policy to be returned and is
set to be) at the beginning.S is the set of arms that we have not
known whether belong td or not and is set to be the whole set of
arms at the beginning. Before it finds témrms (the loop between
Line 4 and Line21), it tests all the arms ¥ about their optimal
action with subsidy“22 . If the optimal action igl, it means this
arm’s index is higher tha#22 and we add it te51; if the optimal
action is0, it means this arm’s index is lower thélﬁ;r—”’ and we add
itto Sp (Lines6 — 13). At this moment, we know that all arms in
S1 have higher indices than all arms$. If there is enough space
in A to include all arms i1, we addS; to A, remove them from
S and set the upper bound to B&-® because we already know
that S1 belongs to Whittle index policy set and all the rest arms
have the index lower tha#” (Lines 14 — 16). If there is not
enough space id, we removeS, from S and set the lower bound
to be “2+ pecause we already know ths§ does not belong to
Whittle index policy set and all the rest arms have the indghér
than “2+® (Lines17 — 19)

. o
observation

state

Figure 2: Special POMDPs vs Standard POMDPs

Despite this difference, the solution concept of valueaiien
algorithm in standard POMDPs can be used to solve our special
POMDP formulations with appropriate modifications. We wiil-
cuss the special POMDP formulation for our problem in Sectio
4.1 and present the modified value iteration algorithm intiSec
4.2.

4.1 Special POMDP Formulation

The special POMDP formulation for our problem is straightfo
ward.
state spaceThe state space 8= {0,1,...,ns — 1}.
action spaceThe action space iA = {0, 1}, wherea = 0 rep-
resents passive action (do not protect) ané 1 represents active
action (protect).
observation spacel he observation space@® = {—1,0,1,...,n,—
1}. It adds a “fake” observation = —1 to represent no observa-
tion when taking action = 0. It's called “fake” because defenders
have probabilityl to observen = —1 no matter what the state is
when they take action = 0, so this observation does not provide
any information. When defenders take action= 1, they may
observe observatior®\{—1}.
conditional transition probability The conditional transition prob-
ability P(s'|s, a) is defined to beP(s" = j|s = i,a = 1) = T}
andP(s' = j|s =i,a = 0) = T}).
conditional observation probability The conditional observation
probability P(ols, a) is defined to beP(o = —1|s,a = 0) =
1,¥s € S; P(o = j|s = i,a = 1) = O;;. Note that the con-
ditional observation probability here is dependent on the state
s and actiona, while it depends on end staté and actiona in
standard POMDP models. Intuitively, defenders’ obseovatif at-
tack activities today depends on the attack intensity todat/the
transitioned attack intensity tomorrow.
reward function The reward functiorR is

, _ )0, a=0,
R(s,s',a,0) = {R(o), I

With the transition probability and observation probailR(s, a)



can be computed. Note that this formulation is also sligtiffer-
ent due to the different definition of observation probayili

= Z P(s'|s,a) Z P(ols,a)R

s'es ocO

(s,s',a,0)

4.2 Value Iteration for Our Special POMDP

Different from standard POMDP formulation, the belief ufa
in the special POMDP formulation is

Y es b(s)P(o]s, a)P(s'|s,a)

P(olb,a) @

b'(s') =

where

= b(s)

sES

=22 b

s’eS seS

P(olb, a) P(o|s,a)P(s'|s,a) P(o|s,a)

Note that the belief update process is also consistent wéhin
Equation 1. Similar to standard POMDP formulation, we hdnee t
value function

= mea‘ic (Z b(s

sES

8®+ﬁ§:PM@®W£O

0cO

which can be broken up to simpler combinations of other value
functions:

V'(b) = max Va(b)
=3 Vo)
0eO
b(s)R(s,a
WWO:ZQQﬁ%}i—l+ﬂPwawvwm

All the value functions can be represented’d$) = maxaep b-«
since the update process maintains this property, so wernadg
to update the sdd when updating the value function. The dgis
updated according to the following process:

D = purge( U Da>
acA
D, = purge(@ D3>
0O
DZ = purge({T(a, a, 0)|Oé € D})

wherer (¢, a, 0) is the| D|-vector given by

(1/|ODR(s,a)+BP(ols,a) Y a(s')P(s'|s,a)

s'es

(e, @,0)(s) =

and purgé) takes a set of vectors and reduces it to its unique min-
imum form (remove redundant vectors that are dominated fogrot
vectors in the set)dP represents the cross sum of two sets of vec-
torssA@ B ={a+plac A, B e B}

The update ofD’ and D,, is intuitive, so we briefly explain the

update ofD2? here:

P(olb,a)V(b;) = P(o|b, a) max Z (s'|b, a,0)
5 ’es
b(s)P(ols,a)P(s'|s,a)
olb, @) maxx > _ af P(olb, a)
s’es
= max Zb P(o|s,a)P(s'|s,a)
s'es s€eS

(ols,a) Z a(s')P(s'|s,a)>

=max » b(s)- <P
a€eD
sES s'es

Here, P(s'|b, a, o) is the belief of state’ in the next round when
the belief in the current round is the agent takes actianand get
the observatiom, which is theb(s’) in Equation 2.

5. PLANNING FROM POMDP VIEW

We have discussed in Section 4.1 that every single targebe€an
modeled as a special POMDP model. Given that, we can com-
bine these POMDP models at all targets to form a special POMDP
model that describe the whole problem, and solving thisiapec
POMDP model leads to defendeeXactoptimal strategy. Use the
superscript to denote target. Generally, the POMDP model for
the whole problem is the cross product of the single-tar@viB-

P models at all targets with the constraint that ohljargets are
protected at every round.

state spaceThe state space 8 = S* x 82 x ... x S™. Denote
s=(s"s%...,8") ‘
action spaceThe action space iA = {(a’,a?,...,a™)|a’ €

{0,1},V5 € N, 30,y a’ = k}, which represents that onlytar-
gets can be protected at a round. Denote (a',a?,...,a")

observation spaceThe observation space @ = O x 02 x

. x O®. Denoteo = (o*,0%,...,0")

conditional transition probability The conditional transition
probability isP(s'[s,a) =[], Pi(s")s7,a?).

conditional observation probability The conditional observa-
tion probability isP(o|s, a) = [T,y P’ (o’|s7, a?).

reward function The reward function is?(s, s’,a,0) = 3>_,y
R(s?,5" a? o)

Naively, the modified value iteration algorithm discusse&éc-
tion 4.2 can be used to solve this special POMDP formulation.
However, this POMDP formulation suffers from curse of dimen
sionality — the problem size increases exponentially withium-
ber of targets. Thus, the computational cost of value i@natlgo-
rithm will soon become unaffordable as the problem size grow

Silver and Veness [15] have proposed POMCP algorithm, which
provides high quality solutions and is scalable to large PXBM
s. The POMCP algorithm only requires a simulator of the prob-
lem so it also applies to our special POMDPs. At a high levs, t
POMCP algorithm is composed of two parts: (i) it uses a partic
filter to maintain an approximation of the belief state; ifigiraw s-
tate samples from the particle filter and then use MCTS tolsitau
what will happen next to find the best action. It uses a parfitter
to approximate the belief state because it is even computty
impossible in many problems to update belief state due t@xhe
treme large size of the state space. However, in our proliesn,
all-target POMDP model is the cross product of the singtgeta
POMDP models at all targets. The single-state POMDP model is

2Actually the only difference of value iteration algorithrarfthe
special POMDP formulation compared with that for the stadda
POMDP formulation is the different update bX;.



small so that it is computationally inexpensive to maintigrbe-
lief state. Thus, we can easily sample the statt target from its
belief state and then compose them together to get the siages
s=(s',s%...,s") for the all-target POMDP model.

The details of MCTS in POMDP are available in [15] so we omit
it here. Although the POMCP algorithm shows better scatgbil
than the exact POMDP algorithm, its scalability is also tedibe-
cause the action space and observation space are also Btipbne
with & in our problem. Consider the problem instance.of 10,

k = 3 andn, = 2, the number of actions i) = 1228 — 120
and the number of observations(ijg)) « 23 = 960. Since actions
and observations are the branches in the MCTS, the tree dize w

soon become extremely large when planning more rounds ahead

This leads to two problems: (i) it will soon run out of memoriien
planning more rounds ahead; (ii) a huge number of state sl
needed to establish the convergence. Thus, the POMCPtalgori
only applies to problem instances with small Our experimen-
tal evaluation shows that the POMCP algorithm is unable am pl
3 horizons forward (runs out of memory) for the problem inst&an
of n = 10, k = 3 andn, = 2. It means that for large problem
instances, the POMCP algorithm is reduced to myopic pobay(
look one round ahead when planning).

6. EXPERIMENTAL EVALUATION

In this section, we will firstly evaluate the Whittle Index|Ry
in Section 6.1 and then evaluate the RMAB model in Section 6.2
The performance is evaluated in terms of the cumulative réwa
received within the firs20 rounds with discounting factgt = 0.9.
All results are averaged ova00 simulation runs.

6.1 Evaluation of Whittle Index Policy

We will compare the Whittle Index policy with four baselinke a
gorithms:

Random: The defenders randomly chookéargets to protect at
every round.

Myopic: The defenders choogetargets with the highest imme-
diate reward to protect at every round.

Exact POMDP: The defenders uses the modified value itera-
tion algorithm to solve the special POMDP problem discudsed
Section 5 to plan for patrol strategies at every round. No# it
only works for small-scale problems and is thectoptimal patrol
strategy defenders may take

POMCP: The defenders uses POMCP algorithm to solve the
special POMDP problem discussed in Section 5 to plan foiopatr
strategies at every round.

The computation of Whittle Index policy and exact POMDP al-
gorithm involve solving special POMDPs using the modifiebliga
iteration algorithm as is discussed in Section 4.2. We implet
the modified value iteration algorithm by modifying the PORID
solver written by Anthony R. CassandraThe detailed algorithm
we use for value iteration is the incremental pruning attoni[4].

There are two parameters in the POMCP algorithm: the number

of state samples and the depth of the tree, i.e., the numbeuodls

we look ahead when planning. With the increase of the number o
state samples, the performance of the POMCP algorithm wegro
while the runtime also increases at the same time. Thus, flr a
comparison, during our experiment, we choose the numbeat s
samples so that its runtime is similar to that of Whittle nagel-

icy. For the depth of the tree, we choose the one with the $arge
cumulative reward.

3http://pomdp.org/code/

Small Scale: Compare with Exact POMDP Algorithm We
then evaluate these five planning algorithms in a small prabh-
stance withh = 2,k = 1, ns = 2 andn, = 2. The result is shown
in Table 1. From the table, we can see that our Whittle indéix po
cy and POMCP algorithm perform very close to the optimal Exac
POMDP solution and are much better than the myopic optimial po
icy and random policy, demonstrating their high solutioaléy.

Table 1: Planning Algorithm Evaluation in Solution Quality for
Small-scale Problem Instances

POMCP
3.1694

Exact POMDP
3.1798

Whittle Index
3.1740

Random
2.6534

Myopic Optimal
3.1384

Large Scale:We then evaluate our planning algorithms in a larg-
er problem instance with = 10. Figure 3(a) shows the solution
quality comparison when, = 2 andn, = 2. The x-axis shows
the number of defenderg) and the y-axis shows the cumulative
reward. From this figure, we can see that Whittle index pagbiey
forms better than the POMCP algorithm and myopic optimaitpol
cy, and all of these three algorithms perform much better the
random policy. One thing to note is that the POMCP algorithm
shows poor scalability with regard o — it is unable to plar8
horizons forward (runs out of memory) with = 3. Figure 3(b)
shows the solution quality comparison when= 3 andn, = 3,
and demonstrates similar patterns as Figure 3(a).
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Figure 3: Planning Algorithm Evaluation in Solution Quality
for Large-scale Problem Instances

An Example When Myopic Policy FailsWe can see from Fig-
ures 3(a) and 3(b) that the myopic policy performs only gligh
worse compared with the Whittle index policy. Here we previd
an example where the myopic policy performs significantlysgo
Consider the case withtargets and defender.

For targe®:

o_[095 0057, [099 001], [09 01
r _{0.05 0.95 }T _{ 01 0.9 }0_{0.2 0.8]
For targetl:

o[04 06 ,_[07 03 _[o07 03
r _{0.1 0.9] r _{0.4 0.6] 0_{0.3 0.7]

Figure 4 shows the performance of different algorithms.hia t
case, the myopic policy performs similar to the random yoknd
is much worse compared with Whittle Index policy.

Runtime Analysis of Whittle Index Policy: Figure 5 analyzes
the runtime of Whittle index policy. The x-axis shows the rum
ber of targets+) and the y-axis shows the average runtime. From
the figure, we can see that the runtime increases linearly v
number of targets. This is because Whittle index policy cedu
ann-dimensional problem te 1-dimensional problems so that the
complexity is linear withn. Another observation is that the number
of defendersk) does not affect the runtime a lot for a given
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6.2 Evaluation of RMAB Modeling

In this section, we will compare our RMAB model with the algo-
rithms (UCB, SWUCB, EXP3) used in [7] with a group of simulat-
ed attackers. The performance is evaluated in terms of timelleu
tive reward received within the fir@0D rounds after several rounds
learning 8 = 0.9).

Figure 6(a) demonstrates how the performance changes with d

ifferent learning rounds and,(n.). It shows that when learning
rounds is smaller10), the model withn, = n, = 2 perform-

s the best. This is because the model with highgin,) suffers
overfitting with limited data at this time. When the data itare
tively abundant (learning rounds ¥00), the model with higher
ns(no) performs better. However, we noticed that the difference is
not significantly large.

Figure 6(b) shows that comparison of our RMAB model with the
Random/UCB/SWUCB/EXP3 algorithms. When learning rounds
is smaller (00), our RMAB model performs similar to UCB algo-
rithm, and is better than other algorithms. When learninghds

tradeoff for defenders: informally, should the defendéuclte re-
sources to protect targets that have already been visitgdhave
been observed to have suffered a lot of attacks or shouldIshe a
locate resources to protect targets that have not visited fong
time and hence where there are no observations of attacksn&e
while significant work in security games has focused on uager
ty over attackers’ observations of defender actions [2@] reverse
problem has received little attention. Specifically, gifesquent
interactions with multiple attackers, the defender héfagesob-
servation uncertaintyn observing all of the attacker actioesen
in the targets she does patroAddressing this uncertainty in the
defender’s observation is important when estimating kttao tar-
gets and addressing the exploration-exploitation trddeof

The limited observability property and exploration-extation
tradeoff is also noticed by Klima in the domain of border phtr
where the border is large area [7, 8]. They model the probkasa
tochastic/adversarial multi-armed bandit problem and(siéging-
window) UCB algorithm [2]/EXP3 algorithm [3] to plan for pa-
trollers’ strategies. However, the stochastic bandit fdation fails
to model patrol’s effect on attackers’ actions while theexduarial
bandit formulation fails to capture attackers’ behaviqaittern.

Zhang et al. [22] focus on deterring crimes in urban areasoby p
lice patrol. They use Dynamic Bayesian Network (DBN) to mode
criminals’ response to police patrol. They learn the DBN elod
from real-world crime data and then plan police patrol adtay
to the DBN model. Their work does not deal with the explonatio
exploitation tradeoff since victims would mostly reportnees to
police so the police does not suffer from limited/partiasetvabil-
ity issue in this domain.

There is a rich literature on indexability of restless maltned
bandit problem. Glazebrook et al. [6] provide some indesddin-
ilies of restless multi-armed bandit problems. Nino-Mata][pro-
pose PCL-indexability and GCL-indexability and show thagyt
are sufficient conditions for indexability. Liu and Zhao @pply
the concept of RMABSs in dynamic multichannel access. Inrthei
model, every arm is a two-state Markov chain and the playgr on
knows the state of the arm he chooses to activate. They pheve t
indexability of their problem and find the closed-form sautfor
the Whittle index. In [12], Ny et al. also consider the samassl|
of RMABSs but motivated by the application of UAV routing. Bhi
problem shares some similarity with our problem but our b

s becomes larger, our RMAB model shows significant advantage js more difficult in the following aspects: (i) we cannot ditly ob-

over other algorithms.
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Figure 6: Evaluation of RMAB Modeling
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7. RELATED WORK

Previous research in Green Security Games [19, 5, 14] suffer
from two major limitations. First, this research fails tgtare the
defender'dack of observation of attacks- in the real world, given
a large area to patrol, the defender only has observatioataufks
on the limited set of targets she patrolled in any given rouside
does not have full knowledge of all of attackers’ actionsssuemed
in [19, 5, 14], leading to an unaddressed exploration-étgilon

serve the states (POMDP vs. MDP); (ii) different actionglléa
different transition matrices in our model; (iii) we allowrfmore

states and observations. A further extension to this waskudises
the case with probing errors where the player’s observattmut

the state might be incorrect [10]. This concept is similawtat

we assume in our model, but the detailed settings are differe

8. CONCLUSION

This paper presents a new solution framework for security do
mains with frequent interactions and limited/partial atvasility.
The motivating domains include wildlife protection domgolice
patrol to catch fare-evaders, border patrol, etc. We mdusde
domains as an RMAB to handle the limited/partial obserigbil
challenge. We provide an EM based learning algorithm tonléze
RMAB model and use the solution concept of Whittle index @pli
to solve the RMAB model for planning optimal patrol strategi
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