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ABSTRACT
In this short paper, wepropose a newdirection of cross-cutting research for prediction and control of
spreading COVID-19 viruses over a human social network. Such a network consists of human agents
whose behaviors are highly uncertain and biased. To predict and control such an uncertain network,
we need to employ various researches such as control theory, signal processing, machine learning,
andbehavioral economics. In this article,we introduceour recent research results andpropose future
research topics to overcome the COVID-19 pandemic.
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1. Introduction

Optimal control is a fundamental theory in robotics. It
givesmathematically strict ways of designing control sys-
tems, for example, a robotic manipulator with minimum
time to achieve a given task [1], stabilizing bilateral tele-
operators under network time delays [2], and designing
human-like dynamic running motion [3]. The perfor-
mance achievable by optimal control highly depends on
the accuracy of the mathematical model used to char-
acterize the object to be controlled. Thus, optimal con-
trol has been mainly applied to physical systems such as
mechanical and electrical systems that can be modeled
very precisely.

Optimal control is also being applied to human
social networks, viewed as cyber-physical-human systems
(CPHS) [4], and in particular such ideas have been dis-
cussed in the context of the COVID-19 pandemic [5].
Controlling these networks is not easy since they consist
of human agents whose behaviors are highly uncertain.
Thus, we cannot directly apply conventional optimal con-
trol to these systems by treating people in the network as
physical systems such as electricmotors. Instead, we need
to design effective interventions to change human behav-
iors and achieve a global goal within the CPHS, such as
reducing the infection rate in the network. This is not

CONTACT M. Nagahara nagahara@ieee.org

only a control problem but also an important problem
in behavioral economics. In this short paper, we pro-
pose a new direction of cross-cutting research: control,
intervention, and behavioral economics over networks.

Figure 1 illustrates the cyber-physical-human system
we consider in this paper. The ‘Data/Network Analy-
sis’ block in Figure 1 constructs network models from
observed data. This leverages the fact that it now has
become possible to collectmassive amounts of data about
human behaviors from various sources, such as open
online surveys [6] and sensor measurements. Methods
to estimate networks from these data have been widely
studied in the fields of signal processing and machine
learning [7–13]. These methods rely on mathematical
priors for the data on underlying network structures (e.g.
signal smoothness on the network), and then, they esti-
mate the most likely (potentially time-varying) network
from observed data.

Next, based on network models learned from data, we
design interventions to ‘control’ the network (‘Interven-
tion Design’ block in Figure 1). The main purpose of this
paper is to propose an intervention design, for which we
adopt three approaches:

• model-based optimal control for social distancing,
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Figure 1. Cyber-physical-human system for control of virus
spreading.

• experiment-based incentive design with causal infer-
ence,

• and learning-based incentive design withmulti-armed
bandits (MAB).

These methods are related to each other. For example,
the model-based approach can give a theoretical limit
of achievable performance of control to the experiment-
and learning-based approaches.

Model-based approach: By constructing networked
epidemic models from observed data, we can predict
the propagation of viruses in human social networks for
designing effective control strategies. To achieve this goal,
we can leverage the results from the emerging research
field of network epidemiology [14], which provides var-
ious frameworks and tools for modeling, analysis, and
control of epidemic processes taking place in complex
networks. One of the trends in this field is to utilize tools
from systems and control theory for better understand-
ing epidemic spreading processes [15]. For example, we
have recently shown that the time-variability of human
contact networks can be efficiently captured [16] by using
the theory of Markov jump linear systems, a model of
stochastic dynamical systems studied in the systems and
control theory [17]. We have also shown that modeling
of epidemic processes as positive systems [18] allows us
to use geometric programming [19] to design effective
interventions on epidemic processes [20].

Experience-based design: In behavioral economics,
causal inference is a powerful tool for incentive design
[21] for estimation of effectiveness of incentives. More
recently, the method has been applied to engineering
problems. For example, a recent study [22] reports an
application of behavioral economics to energy man-
agement systems. In this research, we investigated the
effectiveness of monetary and non-monetary incentives
through a field experiment.

Learning-based design: Apart from the two
approaches mentioned above, we can also adopt analysis
and design by simulation and learning. In one ongo-
ing work, we are simulating the epidemic spread on a
large college campus, using data about student class-
room enrollments to determine which individuals (stu-
dents and teachers) are likely to encounter each other,
when, and where. Taking into account a model for
indoor airborne dispersion of virus particles and con-
sequent infection, we are able to analyze how the num-
ber of cases would grow over the course of a week,
and how the growth of infections is affected by fac-
tors such as mask-wearing, and reduced occupancy of
courses [23]. Another opportunity that presents itself
in this context is to leverage machine learning algo-
rithms, such as multi-armed bandits to design incentives
that are effective at reducing contacts and spreading of
infections.

Finally, we mention some recent researches on social
networks and health. Social networks are significant
influences on a wide range of behaviors. Contact net-
works provide the vector for disease spread [24], and
throughout history have changed the course of human
development [25,26]. Social networks have also been
demonstrated to have strong influences on many health
behaviors [27] such as obesity [28], adolescent tobacco
use [29], contraceptive choices [30], physician behav-
ior [31], and country health policy adoption [32]. The
pathways and mechanisms for these influences vary
and include imitation, persuasion, peer pressure, mod-
eling, and so on. In general, the associations between
individual health behaviors and that of one’s peers
are quite strong, rivaling the effects of socio-economic
status.

2. Intervention over networks

To control the spread of viruses over a human social
network, we need to design interventions that can be
effective in changing human behaviors in the network.
A lockdown is an extreme example of a possible inter-
vention that drastically reduces connections, which leads
to the reduction of infection rate, but at the same time,
negatively (and significantly) impacts the local and global
economy.

Decision makers have many interventions to choose
from, and these have a wide variety of strictness, fre-
quency and incentives. Beyond simulations, interven-
tions are required to be effective in the real world. As
mentioned, human behaviors are highly uncertain and
biased, and thus developing interventions (control strate-
gies) that work well, requires using both engineering and
social science tools and concepts.
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Therefore, we propose novel design and analysis
methods of interventions/incentives, based on model-
based (Section 2.1), experiment-based (Section 2.2), and
learning-based (Section 2.3) methods as mentioned in
the previous section.

2.1. Optimal social distancing

Although vaccines are coming out and governments are
working hard to distribute them as fast as possible, the
main tool being used to contain and suppress the cur-
rent pandemic is still mostly social distancing [33,34],
in which healthy individuals avoid contact with infected
(and potentially infected) individuals in order to protect
themselves against the disease spread. Social distancing
would also be a key major tool for coping with future
pandemics of emerging diseases, as it is not realistic to
prepare vaccines for unknown diseases in advance. How-
ever, the current social distancing strategies are often per-
formed without a solid scientific evidence, and the quan-
titative evaluation of the strategies remains a difficult
task. For this reason, a solid mathematical approach to
design an effective social distancing strategy is required
to develop effective responses to the current pandemic
and to improve preparedness for similar situations in
future. In this context, we have been working to identify
how a limited resource should be allocated over a social
network to encourage social distancing for the optimal
containment of epidemics [20,35]. An interesting find-
ing is the existence of a threshold phenomenon, where
the optimal resource investments for social distancing
is zero for edges whose edge-centrality is below a cer-
tain number (see Figure 2 for an illustration). However,
these preliminary results focus on the most basic epi-
demic model called the susceptible-infected-susceptible
(SIS) model and assume a complete knowledge of the
network structure.

Continuing our research effort, we are planning to
generalize these preliminary results to more realistic
epidemic models such as the SIDARTHE model [36]
by building on our attempt to analyze the susceptible-
infected-recovered (SIR) model [37]. In order to account
for the unavoidable uncertainty in modeling human
social networks, we will further incorporate our ongo-
ing research on robust control for positive systems [38].
The developed mathematical tools will be applied to,
for example, real time feedback control of crowd den-
sity in public areas. To realize such control, we will
need to learn from the information available about
current crowd density to develop a model of the dis-
ease spread so that optimal social distancing can be
achieved by interventions such as temporarily restrict-
ing entrance to certain areas. We are also planning

Figure 2. A threshold phenomenon in the optimal investments
on edges for social distancing. Horizontal axis: the centrality of an
edgemeasuredby theproduct of degrees of its endnodes. Vertical
axis: the optimal investment on an edge for promoting social dis-
tancing. The optimal investment found via convex optimization
[20] are zero for edges with centrality below about 20 (see the
inset figure). The underlying network structure is created by the
Barabási-Albert model.

to develop a mathematical framework to limit the
frequency of interventions by leveraging our ongoing
research on event-triggered control [39] and sparse
control [40–42]. Yet another important direction of
research is to incorporate the new-normal social dis-
tancing strategies that societies have taken in the cur-
rent pandemic [43,44] into our theoretical development.
The diversity in the strategies would urge us to develop
flexible frameworks able to accommodate the various
types of temporal changes in the structure of social
networks.

2.2. Causal inference and field experiments based
on behavioral economics

As mentioned above, a cyber-physical-human system
(CPHS) consists of humans as agentswhose behaviors are
observed from sensors through the Internet. An example
of CPHS is an urban traffic signal control system based
on networked vehicle data from Internet-connected sen-
sors [45]. A challenging problem is to estimate and con-
trol such a CPHS with human behaviors that are highly
uncertain and biased. To solve this problem, we adapt
methods in behavioral economics for analyzing interven-
tions (monetary and non-monetary incentives). A nov-
elty of this research is to design interventions that can
change the behaviors of humans who interact with each
other in the network, an approach we call network-aware
design of interventions.
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Our ongoing work studies the impacts of monetary
and non-monetary incentives on energy-saving behav-
iors using a field experiment conducted in Japan [22].
In this research, a novel method of causal inference, the
causal forest, was proposed and the difference between
monetary and non-monetary incentives was revealed.

We will extend this method to develop network-aware
causal inference and estimate the effect of interventions
in the context of epidemic control. In particular, we
will investigate how different incentives work for various
types of networks with different space and time scales.
For example, we plan a field experiment in Kanmon
Strait Museum in Kitakyushu by using the social distanc-
ing detection system developed by Mishima OA Systems
[46]. We will use monetary incentives (e.g. reduction of
entrance fees ormuseum gifts) and non-monetary incen-
tives (e.g.showing a heat map on a digital signage set
on the museum floor) to encourage behavioral change.
We then validate the effectiveness of these incentives for
changing the network state (e.g. the maximum density in
the heat map, the maximum degree of the network, and
sparsity).

2.3. Online learning for individualized incentives

Online learning techniques, particularly multi-armed
bandits (MAB), offer a way to learn the best choices in an
environment that yields stochastic feedback. In the classic
MAB formulation, there are n arms, each of which yields
a random reward from an unknown distribution [47].
The playermust select an arm at each time based on prior
observations, with the goal of maximizing the expected
total reward over time. The classic metric for perfor-
mance is called regret, measured in case of independent
arms as the gap between the rewards collected by a player
following a particular policy and that obtained by a genie
that has knowledge of the arm reward distributions. In
case of independent arms, it is known that the cumula-
tive regret of the best policy grows logarithmically with
time, which implies that the time-averaged regret goes to
0 asymptotically (i.e. over time, the player is able to get a
time-averaged reward that is the same as the genie). Sev-
eral policies with provable logarithmic regret have been
designed [47–49].

Building on our prior work on designing and ana-
lyzing algorithms and novel applications of multi-armed
bandits including extensions to combinatorial and net-
work settings [50–53], we propose to formulate the prob-
lem of incentivizing people in a community in a simi-
lar way. Consider a given set of incentives. In the sim-
plest formulation, the goal is to identify which particular
incentive is the most effective at maximizing the desired
benefit (e.g. with respect to ensuring that people stay

home, minimizing contact with others during high epi-
demic risk times), by applying different incentives over
time, observing their impact (a form of stochastic feed-
back given variations in individual responses) and adapt-
ing to spendmore timeusing themost effective incentives
while still periodically sampling the less effective incen-
tives to account for the possibility of misleading samples
in light of the stochastic feedback. A more sophisticated
formulation could yield as an output a complex com-
binatorial collection of incentives, each personalized to
different clusters of individuals; this could be posed as a
joint clustering and contextual-bandit problem. We plan
to explore the practical design of such an online learning-
based incentive system by investigating how to incorpo-
rate feedback and observations through sensors as well as
manual inputs or survey responses from users.

2.4. Stability

Since the system proposed in this paper is a feedback
control system including humans in the loop, we need
to analyze and guarantee the global stability of the sys-
tem. To do this, we can adapt the passivity-based approach
[54] to our cyber-physical-human system. It is well-
known that the feedback connection of two passive sys-
tems is again passive. That is, we only need to know
if the systems are both passive, even if the systems
are highly uncertain and difficult to obtain the precise
models.

3. Conclusion

In this short paper, we have discussed a new direction of
cross-cutting research to overcome the COVID-19 pan-
demic.We proposed the design of interventions based on
mode-based optimal control design, experiment-based
causal inference for effectiveness analysis of incentives,
and learning-based incentive design. To overcome the
COVID-19, cross-cutting collaboration is necessary. For
this, other technologies in robotics are also important.
For example, social robots can be used as an implementa-
tion of effective incentives that change human behaviors
in the cyber-physical-human system. This idea has been
already proposed in e.g.[55]. The important point to use
robots in the COVID-19 epidemic is that robots are free
from virus infections. This viewpoint has been discussed
in recent papers [56,57].

Also, our approach considers the human-social net-
work as an “input-output” system (or a “blackbox”). If we
can observe and utilize the internal states of humans, e.g.
mental states, positive/negative, aggressive/defensive, the
control performancemay be significantly improved, as in
the state-space approach in control [58].
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