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ABSTRACT

We develop a network synthesis scenario, which is built around a concrete perimeter surveillance application, yet
we believe captures a number of the challenges and requirements that are common to other tactical communica-
tion and computational network applications. The proposed scenario addresses the problem of binary population
identification within a perimeter: our goal is to synthesize a sensing and computing network that classifies peo-
ple moving within a given perimeter into one of two categories (e.g., friend or foe). We discuss several open
challenges that we organize across the following clusters: sensor placement, communication network provisioning
and optimization, computational task placement, dynamic re-synthesis and resilience under adversarial settings.
We also briefly discuss approaches that attempt to address such challenges.

1. INTRODUCTION

The proliferation of battlefield sensors can enable the execution of various warfighting functions (such as target
detection, identification, localization, etc.) at unprecedented speed and scale. Recent advances. in particular
on the Internet-of-Things (IoT), have made it possible to envision the deployment of networks containing not
only sensors, actuators, and compute points, but even autonomous mobile robots and UAV’s to support tactical
applications such as perimeter surveillance, search and rescue, and more.

A key challenge in such systems, that is often unexplored or taken for given, is the initial synthesis of such
tactical IoT networks. Yet network synthesis is very important, since sensing, communication and inference all
strongly depend and build on the underlying network topology. Moreover, unlike civilian applications where
network synthesis can be planned well in advance and rely on the availability of high quality hardware, fast
computational units, or fat communication pipes, in military operations we may have a fast developing situation
and need to acquire situational awareness over an area very quickly - using very limited resources. For instance,
we may not have electricity and need to rely on batteries; we may have limited memory; we may need to
operate within a hostile environment where communication channels, computational nodes and sensors may get
destroyed. Further, in a dynamic operating environment, there is an associated challenge of re-synthesizing the
network, as objectives change or as new resources are added/removed/damaged or operating conditions such as
network bandwidth and availability change.

In this paper, we argue that making progress on the various challenges associated with network synthesis
and re-synthesis requires the definition of some common operating scenarios that could be potentially used as
a benchmark for research efforts. In this work, we contribute the definition of one such scenario pertaining to
binary object recognition within a defined perimeter.

The paper is organized as follows. After defining the network synthesis scenario in Section 2, we describe
some of the many challenges that arise in this setting and that need to be addressed in future research in
Section 3. These include challenges associated with sensor placement, network provisioning and optimization,
computational task placement, dynamic re-synthesis, and resilience under adversarial settings.



Figure 1. Illustration of network synthesis scenario pertaining to in-perimeter object detection and binary classification

2. SCENARIO DEFINITION

Our proposed scenario models the problem of binary object identification within a perimeter and is illustrated
in Figure 1. We assume that a map of the area within this perimeter is provided to us, where some areas are
obstructed and we need to cover the remaining “free” area with sensing and computation resources. Our goal
is to synthesize a sensing and computing network that classifies objects (which could be humans or vehicles)
moving within a given perimeter to one of two categories (e.g., friend or foe). In Figure 1, these are the Type 1
(blue) and Type 2 (red) objects.

We consider both static and mobile sensors that range from low-cost simple devices to more capable ones
augmented with computational capabilities. We depict sensors with green circles in Figure 1 - we consider
only static sensors for simplicity of illustration. The data from each sensor is sent to one or more classification
algorithms for processing. Each such algorithm runs on a computation unit, depicted as a brown compute point
in Figure 1. The sensors may connect to one or more compute points (algorithms); moreover, we may have side
information whether some communication links can be trusted (purple), or are risky (orange) which we may
want to take into account in our designs. Each classification algorithm is characterized by several parameters
such as data requirements, memory requirements, processing requirements, and quality of the produced output.
These algorithms, in turn, inform an application that builds and keeps an updated occupancy map indicating
where individuals of each class are present within the perimeter.

In a real-world implementation of this scenario, it would be necessary to further specify hardware and software
availability, as well as requirements on how they may need to be configured together to meet the over-all goal.
There could also be additional specified environmental conditions that can impact network synthesis beyond
obstacles, such as physical constraints on device placement.

Synthesizing a network for this scenario would be evaluated through metrics that benchmark solutions.
These could include both network-level metrics such as throughput, latency, energy-usage, cost, and risk as
well as overall application-level metrics such as the accuracy, sensitivity, and specificity of the binary object
classification.

3. OPEN CHALLENGES

At a bird’s eye view, the open questions include where to place heterogeneous sensors, computing, and network
resources; how to configure and provision the network and route data; where to place the classification and
occupancy algorithms; how to approach multi-objective optimization goals; how to distribute computational
tasks; how to gracefully re-synthesize the network in the presence of mobile nodes or perimeter updates; and how
to protect against and operate under adversarial attacks. We next discuss in more detail some of these questions
and provide indicative references to related work.



3.1 Sensor Placement

One key aspect of the network synthesis problem is the ability to quickly synthesize the location of sensors
to maximize sensing quality and coverage while being mindful of constraints imposed by the need to use the
network to offload data for processing. Moreover, algorithms for network synthesis need to be fast since changes in
tactical environments may require the network to be quickly re-synthesized, and need to be flexible to potentially
incorporate already deployed assets.

Traditionally, sensor placement is addressed using fixed sensing region models for each sensor and then using
geometry to cover a maximal number of locations of interest, or by applying randomized placements with pre-
specified distributions, which are effective in particular sensing scenaria.1,2 Similarly, typical communications
models for wireless sensor networks are disc models or binary connectivity conditions, which may be poor models
in practice.3 Modern applications require new and diverse sensing devices demanding more flexible and accurate
sensing and communication models. Thus, a main question becomes, how to formulate the network synthesis as
an optimization problem, that allows for fast and efficient solution, and can potentially also provide optimality
guarantees.

In formulating an optimization problem, we can consider one of two approaches: formulate a continuous
optimization problem where the location of each sensor is described through continuous coordinate variables,
or partition the area (for instance in grid squares) and formulate a discrete optimization problem that specifies
which squares are occupied by sensors and which are not. Each of these approaches has advantages and disad-
vantages; for instance, the continuous formulation may make more challenging the formulation of some of desired
constraints, such as bounding the number of hops to a compute unit; while the discrete optimization problem may
make more challenging aspects such as computational efficiency. An approach to address the second is provided
in.4 This approach leverages submodularity and generalizes the usual approach to submodular function maxi-
mization with near-optimal sensing utility guarantees in.5 Moreover, it allows for a richer class of constraints,
when compared to the standard method in6 that handles single connectivity and cardinality constraints. From a
performance perspective, the proposed approach compares favorably to the state of the art iterated submodular
knapsack algorithm in7 as indicated by the experiments. Additionally, in8 we can find an approach addressing
the first and an attempt at merging the two using mixed-integer linear programming.

In both cases, there are a number of associated interesting questions that might be worth exploring, that
include the following: (i) can we derive theoretical performance guarantees; (ii) although our optimization
problem may output a specific location, the actual deployment would be approximate; what is the sensitivity to
such displacements; (iii) how to incorporate robustness to adversarial attacks; (iv) how to achieve a deployment
that may serve more than one mission objective; (iv) what is the scalability of the proposed algorithms; (v) how
to efficiently re-synthesize when the perimeter area slightly changes (e.g. new obstacles appear, slight variation
of the area covered occurs); and (v) how to effectively deploy potentially mobile sensors.

3.2 Communication Network Provisioning and Optimization

Protocols for wireless communication for sensor networks have been well studied in the literature; a prevalent
approach is to maintain a (dynamic) tree that connects the sensors to the sink, see for instance.9–14 Additional
techniques, such as using network coding to increase robustness, have also been explored.15

However, the problem of how to synthesize a wireless network, in terms of topology placement, is less well
understood. Consider the case where a source and a destination have a fixed position and we want to see where
to place relays to support their communication. What is the optimal topology seems to depend on what are
the communication capabilities of the sensors; for instance, if physical layer cooperation is possible, the optimal
topologies can be very different than when it is not.16 Similarly, whether sensor nodes can leverage broadcasting
or not, or how much state they can keep, can affect what is the optimal topology.

In our particular setup, we do not have a single source communicating with a single destination, but instead
we have multiple sources (sensors) communicating with a single destination (sink); the open questions in this
case include: (i) if we have the possibility to add “helper” relay nodes, that would support the communication,
where should these be placed? (ii) if we can also slightly alter the location of the sources, so that the sensing



Figure 2. Dispersed computing enables the mapping and scheduling of complex applications expressed as task graphs on
to a compute network

performance degrades within a given margin, can we design efficient algorithms that do so and achieve significant
benefits in terms of connectivity?

As part of any algorithm that decides where to place nodes to optimize for communication, we need to be
able to efficiently calculate min-cut values. Even though a min-cut value calculation between a single source and
a single destination are polynomial in the size of the network,17–22 for a sensor network with multiple sources,
we need to be able to calculate min-cut values between any subset of the sources and the destination - thus an
exponential number of calculations. How to achieve this efficiently is an open problem. Moreover, if broadcasting
or physical layer cooperation is enabled, we need to be able to calculate information theoretic min-cut values
efficiently; first steps towards this are explored in,23 but this is also an area not well understood.

Finally, the question of re-synthesis, when for instance communication links get blocked or fail, and we have
the possibility to not only alter how we route the information over the existing communication network, but
also potentially to add new nodes, or change the position of existing ones, is also not well explored. Data-driven
methods, such as the approach we tried in24 that uses reinforcement-learning, could potentially help in this
direction.

3.3 Computational Task Placement

When the computational application pertaining to processing the raw sensor data into actionable information is
more complex, it may be represented in the form of a computational task-graph. Mapping the task graph on to
a given set of networked computing resources is a challenging problem, traditionally arising in the context of grid
computing, and more recently addressed in the domain of dispersed computing (see figure 2). Classical scheduling
algorithms such as HEFT,25 randomized algorithms,26 evolutionary algorithms,27 and newer variants28–31 have
been designed to optimize the placement of tasks in particular nodes, while accounting for data dependencies,
with respect to metrics such as makespan and throughput. Recent work has focused on developing a framework
called Jupiter, that enables orchestration of containerized tasks over heterogeneous hybrid edge-cloud resources
and dynamic networks.32

Additional considerations include the placement of computations onto hardware accelerators such as neural
accelerators or edge GPUs in order to improve the efficiency and speed of computations.33–35 Algorithms for
multiplexing task computations onto a set of edge accelerators, which may be possibly heterogeneous, are needed
while respecting the resource and communication requirements of tasks.36

From a network synthesis perspective, an important question to explore in this connection is how to configure
and provision a tactical network that enables efficient mapping of computation on to the available resources while
balancing other considerations such as cost and risk. Recent work has started to address this question through
a general multi-objective network synthesis framework for dispersed computing.37



3.4 Dynamic re-synthesis

The placement of computational tasks onto edge nodes will need to be re-synthesized periodically to handle
dynamics such as workload changes, change in resource requirements, or change in user requirements.36 While
a full synthesis of the task graph can be performed using the above algorithms, an incremental approach where
the placement of only a subset of the tasks is modified based on the dynamics is more efficient and faster.
Such an approach will need to determine what subset of the tasks are no longer seeing good performance and
determine how to efficiently move them to new edge nodes with adequate resources so as to meet application’s
end-to-end requirements. There has been some work in the task graph scheduling problem for networks that are
dynamic due to faulty nodes,38,39 changes to the task graph or network (i.e. newly deployed compute-nodes,
performance degredation, etc.),40–42 compute-node mobility, and/or differences between planning and runtime
environments.43

A related question is how to perform this dynamic re-synthesis in the presence of unknown stochastic or
otherwise dynamic links. For unknown stochastic links, recent work has explored the use of multi-armed bandit
formulations and corresponding algorithms for this problem.44 While some existing cloud systems are equipped
with schedulers that adapt to changes in communication strength between network nodes,45–48 the problem of
re-synthesizing a network to support a specific application has received less attention in the literature.

3.5 Resilience under Adversarial Settings

In a tactical environment, going beyond performance optimization, network synthesis must also explicitly con-
sider providing resilience against an adversary.49 The adversary may seek to disrupt network operations through
active jamming, by injecting fake traffic (including false sensor readings), eavesdropping, or by damaging sen-
sors, compute points and network relays.50 Securing against such adversarial attacks requires first of all the
application of traditional and innovative solutions to provide confidentiality (both for stored and in-transit data
as well as computations, using techniques such as homomorphic encryption or secure hardware including trusted
execution environments), integrity (through the use of hashing and other cryptographic primitives and systems)
and availability (e.g. resilience to jamming and DDoS attacks). Further, it also requires careful introduction of
redundancy during network synthesis to maximize the ability to survive and sustain network operations, such as
by ensuring diverse multi-path connectivity between key nodes or by applying Byzantine fault tolerant consensus
approaches that can tolerate arbitrary failures of subsets of nodes. Another class of techniques to improve re-
silience to adversarial attacks is to incorporate mobile nodes (which could be robots or UAVs), tasked to ensure
that the network is configured/reconfigured as needed.51,52
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