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ABSTRACT
We present a proof-of-concept low-power IEEE 802.15.4 standard
based bistatic radar system for localizing unknown radio-wave
reflecting objects in an unknown environment. Unlike prior multi-
antenna based approaches, we employ a single standard low power
omnidirectional transmitter with known transmission parameters
and a single rotating directional receiver antenna to collect a set of
directional RSSI samples and, thereafter, exploit the directionality
information of the samples to determine the locations of the re-
flecting objects. To this end, we employ the well-known Maximum
Likelihood Estimator (MLE) to extract required information from
the collected RSSI samples. To test the concept, we have developed a
real hardware prototype of the system. Through a set of simulation
and real experiments, we demonstrate the potential of the proposed
concept. To our knowledge this is the first bistatic radar system
demonstrated with low cost low power off-the-shelf 802.15.4 radios.
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1 INTRODUCTION
Over last decade, Radio Frequency (RF) signal based sensing has be-
come very popular among researchers due to its ubiquitous nature
and wide range of applicability. Researchers have applied RF signal
in many sensing and mapping contexts including but not limited
to robotic mapping of unknown areas [10], indoor localization [9],
and see through capabilities [11]. Radio Signal Strength Informa-
tion (RSSI) is one of the most useful and ubiquitous property of RF
signals. In this work, we propose a low-power RSSI-based bistatic
radar [19] system implemented with IEEE 802.15.4 radios to local-
ize a set of unknown radio-wave reflecting physical objects in a
deployment environment. A bistatic radar [19] is a well known
RF system that is composed of a transmitter and a receiver sepa-
rated by a large distance compared to the distance to an object. A
bistatic-radar employs the difference in the path lengths travelled
by a direct path signal and a multipath signal reflected by an object
to passively localize the object.
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One motivation for our investigation into building a bistatic
radar using commercial off-the-shelf low-power radio devices is
that conventional radar systems are expensive, incur high compu-
tation, and have high power consumption (e.g., even low power
radars such as for automotive systems consume ≥ 2.5 Watts). We
aim to implement a low-power bistatic radar through our proposed
system that can be used for scanning and monitoring dynamic in-
door environments. Moreover, our proposed system is mounted on
a moving controllable robot that can move and scan an unknown
environment. Using a 802.15.4 radio has advantages over conven-
tional radar because it is low-power (∼ 10 mW), smaller in size, and
low-cost. However, RSSI based mapping is often deemed difficult
and erroneous in indoor environments due to presence of multipath
components [15, 16]. Instead of viewing multipath as a detriment,
our work focus on separating the multipath components and use
them to find the reflecting objects in a manner similar to a bistatic
radar.

RF signal based localization and mapping have been extensively
studied in the existing literature. In this context, the work of Mostofi
et al. [7, 11] on mapping of an environment using two moving RF
transceivers robots is relevant. In their works, the robots follow a
predetermined set of paths for collecting a set of RF samples which
are later processed using the concept of compressible sampling to
map obstacles. They exploit the attenuation introduced by differ-
ent obstacles to map them. Our goal is slightly different as we are
interested in passively localizing the objects/surfaces by extracting
multipath components from the received signal at a single receiver
while the transmitter and receiver remain in line of sight with re-
spect to each other. This also separates our work from the standard
RF Sensor Network based passive localization works [14] where a
fixed network of RF devices monitor changes in the RF communication
channel properties in order to passively localize an object. There also
exist some passive localization works that employ UWB radios
and MIMO systems to localize objects. Aditya and Molisch [3] pre-
sented one such solution where a set of transmitters and receivers
use the blocking characteristics of pairwise communication links to
passively localize objects. Gulmezoglu, Guldogan, and Gezici have
proposed a similar UWB radio based solution in [6]. There also exist
some works that use RFID [18] and multiple receiving antennas for
localization. The work of Tan, Chetty, and Jamieson [17] on using
8-element uniform circular phased arrays for through-wall passive
sensing and mapping is also relevant. The proposed system, called
TrueMapper, was built on top of costly, power consuming USRP
radios. Fadel et al. [1, 2] have worked on a custom solution called
RF-capture that employs a directional antenna array to sense hu-
man motions. They capture the reflections off a human body with
each antenna transceiver in the array, which are later processed
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jointly to generate an image. Chetty, Smith, and Woodbridge [5]
also presented a wifi based multi-static radar system for through-
the-wall passive sensing. There also exist some systems [8] that
use phase information of the RF signal along with RSSI to imple-
ment synthetic aperture radar (SAR) based imaging and localization.
However, most of the cheap, commercially available RF modules
do not provide access to the phase information. What separates our
work is the application of a single RF transmitter-receiver antenna
pair instead of multiple antennas or antenna arrays to achieve passive
localization of reflecting objects with acceptable performance that can
be implemented with low-cost off-the-shelf hardware.

In this proof-of-concept work, we propose a system with a single
rotating directional antenna that scans the environment for dif-
ferent orientation of the antenna and collects a set of directional
RSSI samples from a single omnidirectional transmitter. Next, we
feed these directional RSSI samples in form of a RSSI vector to a
MLE based estimation module that iterates through different po-
tential combinations of the transmitter and reflectors locations to
find the location combination that is most probable to generate
the collected RSSI vector. Currently, the processing of the signal is
executed offline in MATLAB. However, in future, we aim to achieve
the processing in a commercially available sensor motes such as
Openmote [12] platform. We also developed a prototype system on
top of a controllable robot with the vision that in future the sensing
system with controlled motion can achieve a low-complexity, bet-
ter granularity passive localization and mapping compared to the
multiple antenna based systems. We performed a set of simulation
and real-world experiments to prove the concept and to analyze the
performance of the MLE based estimation algorithm. Our results
suggest that the errors in the position measurements of the reflec-
tors are lower when the distance between the transmitter-receiver
pair (d) is either comparable or higher than the distances between
the reflectors and the receiver (do ). This is attributable to the fact
that for a closely spaced transmitter-receiver pair the direct-path
component is too strong compared to the multipath components.

2 PROBLEM FORMULATION
In this section, we explain the problem formulation and our pro-
posed system design in details. Let there exist a set of N reflecting
point objects1 in a 2D unknown environment with known dimen-
sions, say DG ×DG square region. Denote the location of the point
reflectors as XR = {X i

R
= (x i

R
; yi
R

) |i = 1; · · ·N }. Our objective is to
estimate the unknown N and also the unknown location set XR .

Our proposed system consists of a single directional antenna
based receiver (Rx ) with known gain pattern, ga = {д(−180+i ·δ ) :
i ∈ Z and i ∈ [0, 360/δ )} where δ is the angular scanning granu-
larity and д(ϕ ) refers to the antenna gain along ϕ direction, and a
single omnidirectional antenna based transmitter (Tx ). Now, let the
environment be modelled as a 2D discrete grid space with origin at
the receiver location and positive y-axis direction of the 2D space
being the 0◦ orientation of the receiver. The length of a side of each
grid (dG ) is a parameter to control the granularity of the estimation.
The number of grid point is n2G with the set of locations denoted as
XG = {X i

G = (x i
G ; yi

G ) |i = 1; · · ·n2
G }. Let us assume that the reflector

1For simplicity, we ignore the dimensions of the reflecting objects and represent them
by the points of reflection on the objects.

locations and the transmitter location are restricted to the set of the
grid points, XG . Let us also denote the locations of the transmitter
and the receiver as XTx and XRx , respectively, and the distance
between the Tx -Rx pair as d . The directional rotating receiving
antenna collects a set of RSSI samples2 for different angular ori-
entation of the antenna, starting from −180◦ (orientation toward
negative y axis of the 2D reference frame) to 180◦ in steps of δ◦, to
generate a RSSI vector, ro = {r (−180+i ·δ ) : i ∈ Z and i ∈ [0, 360/δ )}.
This RSSI vector is used by the proposed MLE based reflector local-
ization algorithm, detailed in Section 3.

For the wireless channel modelling, we use standard log-normal
fading model [16]. For directional antenna, the model can be de-
scribed as follows.

PRx (θ ) = C :д(θ ) :PTx :10Ψ=10 · d−γ
(θ )

(1)

where PRx (θ ) is the received signal power along direction θ with
respect to the antenna orientation, д(θ ) is the directional gain of
receiving antenna, C is a constant, PTx is the transmitter power,
d(θ ) is the distance travelled by signal incident along angle θ , γ
is the path loss exponent, and Ψ ∼ N (0,σ 2) is the log normal
fading noise with variance σ 2. If the signal is a reflected signal,
there will be some attenuation by the reflecting object which we
denote byA (κ), where κ is the angle of incidence on the reflecting
object. However, for simplicity we take a constant value A as the
attenuation constant. Also note that the coefficient of reflection is
just 1 for the direct path component. Now, for each orientation of
the receiver antenna, say, θo with respect to positive y-axis, the
measured RSSI is actually a sum of different multipath components
and can be represented as follows.

r ′θo
=

X
θ ∈[−180◦;180◦ )

C :A :д(θ−θo ) :PTx :10Ψ=10 · d−γ
(θ )

(2)

where θ actually signifies the angle of the multipath component
with respect to the positive y axis (i.e, the rotating antenna’s base
orientation). Now using (2) for each possible set of reflector loca-
tions, XR , and transmitter location, XTx , we can mathematically es-
timate the resulting RSSI vector as rv = {r ′

(−180+i ·δ )
: i ∈ Z and i ∈

[0, 360/δ )}. Now the objective can be summarized as follows:
find the most likely location set XR such that, for a known (or un-
known) location of the transmitter XTx , the probability P(rv = ro) is
the highest, where ro is the RSSI observation vector and the cardinality
of the set XR i.e., N , is also unknown.

3 MAXIMUM LIKELIHOOD ESTIMATION
In this section, we describe our maximum likelihood estimation [4]
based approach for localizing a set of reflector objects. First, let us
simplify the problem by restricting our focus to a single reflector
scenario with known transmitter location, XTx . Next, we calculate
the log likelihood of each of the grid point X i

G to be the reflector
location, XR , as follows:

log L (ro |XR = X i
G ; XTx )

=
X

θo ∈[−180◦;180◦ )
logP(r ′θo

= rθo |XR = X i
G ; XTx ) (3)

where we use Eqn (2) to estimate the probability P(r ′θo
= rθo |XR =

X i
G ; XTx ). Then we choose the grid position with the maximum

2 We do not employ the RF phase information as it is not readily available (unlike
RSSI) in most of the cheap, low power off-the-shelf radios.



Figure 1: Illustration of our bistatic radar equivalent system

value of the likelihood function as the estimated reflector location.
XR = argmax

X i
G

log L (ro |XR = X i
G ; XTx ) (4)

This requires O(n2G ) numbers of likelihood estimations where the
number of grid points, n2G , depends on the search granularity, dG ,
and the size of the environment, DG . Now, if the location of the
transmitter XTx is also unknown, the MLE formulation can be
written as follows.
{X ; XTx } = argmax

{X i
G ;X j

G }

log L (ro |XR = X i
G ; XTx = X j

G )

= argmax
{X i

G ;X j
G }

X
θo ∈[−180◦;180◦ )

logP(r ′θo
= rθo |XR = X i

G ; XTx = X j
G )

(5)

where i, j ∈ {1,n2G }. This requires O(n4
G ) numbers of likelihood esti-

Figure 2: Probability heat map of different possible positions of the
reflector for known position of transmitter (0; 3) and receiver (0; 0).

mation. Generally speaking, for a known number of reflectors
(N ), the MLE based approach iterates through different subsets
of the grid points, XG , as the possible set of the transmitter and
reflector(s) locations and calculates the likelihood probability of
the observation vector rv. Through comparing these likelihoods of
the measured RSSI vector, we obtain the most likely location set

for the reflectors and the transmitter. Now, if N is also unknown,
we need to perform likelihood for a range of values of N as well. In
such contexts, the MLE formulation can be expressed as follows.

{X ; XTx ; N } = argmax
{XR ;X j

G ;k }

log L (ro |XR; XTx = X j
G ; N = k )

= argmax
{XR ;X j

G ;k }

X
θo ∈[−180◦;180◦ )

logP(r ′θo
= rθo |XR; XTx = X j

G ; N = k )

(6)
where XR ⊂ Xk

G is a k dimensional vector with n2kG possible values
for N = k and j ∈ {1,n2G }.

4 PERFORMANCE EVALUATIONS
4.1 Simulation Experiment Results
To verify the localization performance of the MLE algorithm, we
performed a set of simulation experiments. The simulated RSSI data
were generated based on the standard path loss model [16] with
log normal fading noise Ψ with a maximum standard deviation of
σ 2 = 5. The path loss exponent, γ , was set to be 1.856 in order to
match our real experiments, detailed later. The transmitter power
PTX is set to be 7dBm to match the maximum transmission power of
Openmotes [12] used in real experiments. To simulate the resultant
RSSI for an environment with reflecting objects (XR ), the simulated
RSSI values for the transmitter was superposed with simulated mul-
tipath RSSI values contributed by each of the reflective surfaces. We
use a granularity of δ = 1.8◦ to match the granularity of our real sys-
tem implementation. The grid granularity, dG , is set to be 1m since
the standard RSSI based localization errors are in the order of me-
ters. The distance traveled by multipath components are calculated
using cosine rule as follows: dr =

q
d2 + d2

o − 2:d :do :cos (θo ) + do

where d is the distance between the transmitter and the receiver,
do is the distance between the reflector and the receiver, and θo is
the angle formed by the transmitter and the reflecting object, at the
receiver (illustrated in Figure 1).
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Figure 3: Error Statistics for varying distance between Tx and Rx
while the reflector is kept fixed at (3; 3)

We performed the simulation experiment for a single reflector
with known location of the transmitter as well as with unknown
location of the transmitter. In Figure 2, we present the probability
heat map for a single reflector with known transmitter location. In
this instance, the transmitter was placed at (0, 3) while the receiver
was located at (0, 0). The reflector was placed at (3, 3). Figure 2
shows that the grid locations close to the actual position of the
reflector have higher probability according to MLE than any other
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