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Abstract

We propose a new paradigm for machine
translation that is particularly useful for no-
resource languages (those without any pub-
licly available bilingual or monolingual cor-
pora): LLM-RBMT (LLM-Assisted Rule
Based Machine Translation). Using the
LLM-RBMT paradigm, we design the first
language education/revitalization-oriented ma-
chine translator for Owens Valley Paiute (OVP),
a critically endangered Indigenous American
language for which there is virtually no pub-
licly available data. We present a detailed
evaluation of the translator’s components: a
rule-based sentence builder, an OVP to English
translator, and an English to OVP translator.
We also discuss the potential of the paradigm,
its limitations, and the many avenues for future
research that it opens up.

1 Introduction

Large Language Models like OpenAI’s GPT se-
ries (OpenAI, 2023) have shown remarkable ca-
pability at an impressively wide range of natural
language tasks (Bubeck et al., 2023) including ma-
chine translation (Hendy et al., 2023). These mod-
els work because they are trained on vast amounts
of natural language data, primarily from the inter-
net (OpenAI, 2023). For languages that are low-
resource (languages for which there is little pub-
licly available data) or no-resource (languages for
which there is no publicly available data), models
like these do not perform well on their own (Chowd-
hery et al., 2022; Robinson et al., 2023). There have
been many efforts in improving machine translation
for low-resource languages (see (Ranathunga et al.,
2023) for a comprehensive survey), but no-resource
languages have received much less attention in the
literature.

Over past decades, researchers and community
leaders have led many remarkable efforts in endan-
gered language revitalization (Coronel-Molina and

McCarty, 2016; Taylor and Kochem, 2022) and
reclamation (Baird, 2016). In this paper, we begin
to explore how the impressive general-purpose lan-
guage skills of LLMs might be helpful for these
kinds of efforts by introducing a new paradigm for
low/no-resource machine translation: LLM-RBMT
(LLM-Assisted Rule-Based Machine Translation).
The intuition behind our approach is that, given
the correct tools, humans are good at translating
simple sentences even for languages they do not
know. For example, a common task for students in
a language class is to translate sentences given a
set of words and rules. Given a conjugation table
and a set of verbs a motivated student could proba-
bly translate a list of simple subject-verb (e.g., “I
eat”, “you sing”, etc.) sentences with extremely
high accuracy. Of course, they are limited to only
translating specific kinds of sentences with a lim-
ited vocabulary. Still, the idea is interesting: if
we provide enough context to an LLM like Chat-
GPT, which has been shown to exhibit human-level
performance on many natural language tasks, we
may not need it to actually know (exhibit general
fluency in) the target language we want to translate
to/from. While rule-based translation can likely
never achieve the quality of modern ML transla-
tors for high-resource languages, this technique
has a few potential advantages for low/no-resource
languages. First and most importantly, it requires
no parallel corpus. Also, it is amenable to partial
translation. Humans (and, as we’ll show in this
paper, LLMs) are capable of giving partial trans-
lations when they don’t have all of the necessary
vocabulary. For example, a Spanish student that
doesn’t know the word for “dog” might still be able
to translate the rest of the sentence “the dog ate
the apple yesterday” by saying “el [dog] comió la
manzana ayer”.

In this paper, we leverage LLMs (specifically,
gpt-3.5-turbo and gpt-4 from OpenAI’s GPT se-
ries) to break down natural language sentences into



structured simple sentences compatible with hand-
crafted rule-based translators. We also use them
to turn sentence structured information (in JSON
format) into natural language sentences. Using
this approach, the LLM never interacts directly
with the target language. Rather, we rely on the
LLM to tell us how to use the simple, rule-based
translators to provide a translation as close as pos-
sible to the user’s original input. We use this tech-
nique to build and evaluate two machine translation
tools for Owens Valley Paiute (OVP, also called
Eastern Mono or Monache in linguistics literature,
ISO 639-3 mnr (SIL International, 2024)), a criti-
cally endangered Indigenous American language in
the Uto-Aztecan language family (Moseley, 2010).
The first is a selection-based OVP to English sim-
ple sentence translator and the second is an English
to OVP translator that uses available vocabulary to
construct translations of arbitrary user input sen-
tences. The translators are oriented toward lan-
guage teaching and revitalization. They are not de-
signed to be general-purpose translators, but rather
as tools to help no-resource language learners ex-
press ideas using simple sentence constructions.

1.1 Contributions

The main contributions of this work are1:

1. An extensible OVP sentence builder for con-
structing valid subject-verb and subject-verb-
object sentences in Owens Valley Paiute.

2. An LLM-assisted OVP to English translator
that translates OVP sentence builder sentences
to English with high accuracy.

3. An LLM-assisted English to OVP translator
that translates English sentences to Owens
Valley Paiute using the sentence-builder and
OVP to English translation tools.

4. A novel methodology for the design and eval-
uation of no-resource language translators.

The rest of this paper is organized as follows. We
discuss related work in Section 2. We present the
sentence building tool and OVP to English trans-
lation system in Section 3. Then, in Section 4, we
present the English to OVP translation system and
report results on translation quality for different
types of input sentences using embeddings models

1The code behind all contributions is open-source: https:
//github.com/kubishi/kubishi_sentences

to measure semantic similarity. We conclude the
paper with a summary of contributions and discus-
sion of future research directions in Section 5.

2 Related Work

The landscape of low-resource machine translation
is vast and constantly growing. A comprehensive
survey on this subject is provided by (Ranathunga
et al., 2023), which outlines the current techniques,
guidance for selecting which techniques to use
for a given language, and future directions for re-
search. Of particular interest within this survey is
the examination of unsupervised neural machine
translation. While there exists promising research
on constructing translators from minimal corpora,
these methods invariably require some natural lan-
guage data and thus have limited applicability to no-
resource languages (such as OVP). The survey also
discusses data augmentation strategies, including
word or phrase replacement-based augmentation
and Back-Translation-based Data Augmentation,
both of which could potentially be integrated with
some of the solutions presented in this paper (in
particular the sentence builder and OVP to English
translator to be presented in Section 3). Such an
exploration is an interesting topic for future work.
Other approaches discussed in the survey such as
supervised learning, transfer learning, and semi-
supervised learning are inapplicable to our scenario
due to the absence of bilingual or monolingual cor-
pora.

Contrary to the prevailing assumption in the liter-
ature that rule-based machine translation (RBMT)
is a relic of the past, there remains active research
and development in RBMT systems tailored for the
most under resourced of languages (Khanna et al.,
2021; Pirinen, 2019; Torregrosa et al., 2019). Re-
cent work has also explored the utilization of Large
Language Models (LLMs) for enhancing transla-
tion capabilities in low-resource languages through
fine-tuning techniques (Lankford et al., 2023). Al-
though this approach has shown promise in im-
proving LLM translation quality for low-resource
languages like (e.g., Irish), its reliance on bilin-
gual corpora make it infeasible for no-resource
languages like OVP. Recently, semantic similarity
has been used to evaluate the quality of Machine
Translation systems (Cao et al., 2022; Song et al.,
2021). We observe that this technique is particu-
larly useful for evaluating the quality of the English
to OVP translator presented in this paper, due to the

https://github.com/kubishi/kubishi_sentences
https://github.com/kubishi/kubishi_sentences


lack of parallel corpora. See (Muennighoff et al.,
2023) for a comprehensive benchmark of different
embeddings models used for computing semantic
similarities.

3 OVP to English Translation

In this section, we present an LLM-assisted
selection-based OVP to English translator. The
first piece of this translation system is a selection-
based OVP sentence builder. The sentence builder
allows users to select each of the following parts
of speech from a list of choices until they form a
valid sentence:

• Subject: The subject of the sentence.
• Subject Suffix: In OVP, noun subjects are al-

ways suffixed with either -ii (if the subject is
proximal to the speaker) or -uu (if the subject
is distant to the speaker).

• Verb: the verb of the sentence.
• Verb Suffix: In OVP, verb suffixes express the

tense/aspect of the verb.
• Object: The object of the sentence (disallowed

if the selected verb is intransitive, optional
otherwise).

• Object Suffix: In OVP, noun objects are al-
ways suffixed with either -(n)eika (if the sub-
ject is proximal to the speaker) or -(n)oka (if
the subject is distant to the speaker).

• Verb Object Pronoun Prefix: In OVP, object
pronouns are prefixed to the verbs they are
the object of. Object pronouns are required
for all transitive verbs. Even when a noun
object is specified, the pronoun is still required
and should match the object suffix (-(n)eika
matches a- or ma- and -(n)oka matches u-).

Not all of these parts of speech are required to cre-
ate a valid sentence in OVP, though. In fact, some
of them are incompatible. For example, if an intran-
sitive verb is chosen, then it cannot have an object
or object pronoun. In other words, the valid choices
a user can make is a function of the choices they
have already made. In our python implementation
for this translator, we process each user selection
and change the list of valid options for each part-of-
speech based on their current selections to ensure
they always create a valid OVP sentence. This is
the rule part of LLM-Assisted Rule-Based Machine
Translation that requires expert knowledge in the
target language to implement. The entire vocabu-
lary available for the users to select among fits on

a single page (and can be found in Appendix C).
After the user creates a valid OVP sentence, we

translate it by first encoding the following sentence
information into an English-only (using vocabulary
definitions) structured simple sentence:

• Subject: noun or pronoun subject in English
• Subject Proximity: proximal if user selected

subject suffix -ii or distant if the user selected
subject suffix -uu

• Object: noun or pronoun object in English
• Object Proximity: proximal if user selected

object suffix -(n)eika or distant if the user
selected object suffix -(n)oka

• Verb: verb in English
• Verb Tense/Aspect: one of past, present, fu-

ture, past-continuous, present-continuous,
present-perfect

Then, we use few-shot prompting to encourage an
LLM to transform the structured English data into a
natural language sentence. Consider the example in
Figure 1 where few-shot training examples (colored
black) tell the LLM how to respond to the actual
structured data for the randomly generated sentence
for “Wo’ada-ii pagwi-noka u-zawa-dü.” (colored
blue). Observe, the LLM is prompted to translate
using only the English, structured version of the
selected sentence.

To evaluate the accuracy of the translator, we
generated 100 random valid OVP sentences by iter-
atively selecting a random choice among available
choices for each of the parts of speech until the
sentence is valid. Of the 100 random sentences
generated, 98 were translated into English accu-
rately using gpt-3.5-turbo model from OpenAI’s
GPT-series. Translations and their accuracy labels
can be found in Appendix A. While impressively
accurate, this translator has many disadvantages.
It only works for simple subject-verb and subject-
verb-object sentences that use the nouns and verbs
available in the system. Also, since pronouns and
suffixes in OVP encode temporal/spatial informa-
tion, translations don’t always capture full meaning
of the sentence. The English translations are cor-
rect, but may be missing useful information. For
example "kamü-uu wo’abi-neika a-düka-ti" trans-
lates to "the jackrabbit is eating the worm", which
is technically correct, but -uu also indicates that the
jackrabbit is not present and the -neika indicates
the worm is present. Then, since -ti can is used
for both the present and past continuous tenses (is



Wo’ada-ii pagwi-noka u-zawa-dü.
system

You are an assistant for translating structured sentences into simple natural English sentences.
user

[{‘part_of_speech’: ‘subject’, ‘positional’: ‘proximal’, ‘word’: ‘wood’}, {‘part_of_speech’:
‘object’, ‘positional’: ‘proximal’, ‘word’: ’dog’}, {‘part_of_speech’: ‘verb’, ‘tense’: ‘present
continuous (-ing)’, ‘word’: ‘see’}]

assistant

This wood is seeing this dog.
user

[{‘part_of_speech’: ‘subject’, ‘positional’: ‘distal’, ‘word’: ‘pinenuts’}, {‘part_of_speech’: ‘ob-
ject’, ‘positional’: ‘distal’, ‘word’: ‘horse’}, {‘part_of_speech’: ‘verb’, ‘tense’: ‘future (will)’,
‘word’: ‘see’}]

assistant

Those pinenuts will see that horse.
user

[{‘part_of_speech’: ‘subject’, ‘word’: ‘mosquito’, ‘positional’: ‘proximal’}, {‘part_of_speech’:
‘object’, ‘word’: ‘fish’, ‘positional’: ‘distal’}, {‘part_of_speech’: ‘verb’, ‘word’: ‘cook’, ‘tense’:
‘present’}]

assistant

This mosquito is cooking that fish.

Figure 1: Few-shot examples for translating “Wo’ada-ii pagwi-noka u-zawa-dü.” using gpt-3.5-turbo.

[x]-ing or was [x]-ing), a better translation would
be “the jackrabbit was eating this worm”. More
advanced rules and better prompt-engineering may
help mitigate this issue.

Despite some expected disadvantages, this trans-
lator has many advantages. First, it is the first ma-
chine translator for OVP. It is also easy to extend
the tool with new nouns and verbs. Also, while
implementing the rules required expert knowledge
of what makes an OVP sentence valid, no expert
knowledge of how the rules map to English was
required (or needed to be programmed), thanks to
the LLM. Finally, we believe this kind of trans-
lation system might be a useful educational tool
that helps students learn how to build simple sen-
tences. It also may be useful as a data augmentation
technique for training neural machine translation
models for low-resource languages.

4 English to OVP Translation

In this section, we present the first English to
Owens Valley Paiute machine translator. Unlike the
OVP to English translator presented in the previous
section, the user can input any sentence in natural
language. The translator works by first using an
LLM to break the input sentence into a set of simple

structured subject-verb and subject-verb-object sen-
tences, discarding any adjectives, adverbs, prepo-
sitions, objects (except for direct objects), etc. We
encourage (through few-shot prompt engineering)
the LLM to preserve as much semantic meaning as
possible between the original sentence and the set
of simple sentences. Consider the example in Fig-
ure 2 where few-shot examples (colored black) tell
the LLM how to respond to a given input sentence
“We are playing and laughing.” (colored blue)2.
Then, we use these structured sentences and avail-
able vocabulary to build valid OVP sentences with
the sentence-building tool described in Section 3.
Once the sentence is built, we use the translator
described in Section 3 to translate the OVP sen-
tences back into English. The idea is that, while
some meaning may have been lost between the
original input sentence and the final output English
sentences, the user can be fairly confident (given
the accuracy of the OVP to English translator) that
the final translations are correct. The entire English
to OVP translation process is depicted in Figure 3.

2We also leverage OpenAI’s function calling capabil-
ity to ensure that responses are consistently formatted.
We refer interested readers to the open-source implemen-
tation’s documentation at https://github.com/kubishi/
kubishi_sentences for full details.

https://github.com/kubishi/kubishi_sentences
https://github.com/kubishi/kubishi_sentences


We are playing and laughing.
system

You are an assistant that splits user input sentences into a set of simple SVO or SV sentences. The
set of simple sentences should be as semantically equivalent as possible to the user input sentence.
No adjectives, adverbs, prepositions, or conjunctions should be added to the simple sentences.
Indirect objects and objects of prepositions should not be included in the simple sentences.
user

I am sitting in a chair.
assistant

[{‘subject’: ‘I’, ‘verb’: ‘sit’, ‘verb_tense’: ‘present_continuous’, ‘object’: null}]
user

I saw two men walking their dogs yesterday at Starbucks while drinking a cup of coffee
assistant

[{‘subject’: ‘I’, ‘verb’: ‘see’, ‘verb_tense’: ‘past’, ‘object’: ‘man’}, {‘subject’: ‘man’,
‘verb’: ‘walk’, ‘verb_tense’: ‘past_continuous’, ‘object’: ’dog’}, {‘subject’: ‘man’, ‘verb’: ‘drink’,
‘verb_tense’: ‘past_continuous’, ‘object’: ‘coffee’}]
user

We are playing and laughing.
assistant

[{‘subject’: ‘we’, ‘verb’: ‘play’, ‘verb_tense’: ‘present_continuous’, ‘object’: null}, {‘subject’:
‘we’, ‘verb’: ‘laugh’, ‘verb_tense’: ‘present_continuous’, ‘object’: null}]

Figure 2: Few-shot training examples for the English to OVP using gpt-3.5-turbo.
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Figure 3: The entire English to OVP translation process. The box with a red, dashed border indicates the set of
sentences in Owens Valley Paiute (the target language) and the box with a blue, dashed border indicates the set of
English sentences they translate to. Ideally, the input sentence, simple sentences, and English output sentences will
have equivalent or very similar semantic meaning.

We evaluate the system by translating a set of
125 sentences. There are five types of sentences in
the dataset (25 of each):

• subject-verb (e.g., “I read” or “she sings”)
• subject-verb-object (e.g., “Mom made dinner”

or “John read a book”)
• two-verb (e.g., “She sings and dances.” or “I

ate while watching TV.”)
• two-clause (e.g., “My brother drove and I

waited.” or “Harry wrote and Ron read.”)

• complex (e.g., “Rachel and Monica share
an apartment.” or “Romeo and Juliet loved
deeply.”)

We translated all 125 sentences using both the gpt-
3.5-turbo and gpt-4 models from OpenAI’s GPT-
series, resulting in a total of 250 translations.

To measure the quality of each translation, we
compute the semantic similarity between the input
sentence and:

• the set of simple sentences generated by the
LLM-powered segmenter (denoted simple).



• the set of simple sentences with unknown vo-
cabulary removed (denoted comparator). In-
tuitively, this represents the best the translator
can achieve given the vocabulary it has access
to. For example, suppose the verb “wash” is
not in our available vocabulary. Then the com-
parator sentence for the simple sentence “The
woman is washing” would be “The woman is
[VERB]-ing”

• the “round-trip” English translation (denoted
backwards). This is the sentence produced
using by translating the translated sentence (in
OVP) to English using the method described
in Section 3.

The usefulness of these measurements depends
greatly on the function used to compute seman-
tic similarity. We compute semantic similarity by
generating embeddings for sentences (using some
embeddings model) and computing the normalized
cosine similarity between these embeddings. For
our application, we want semantically similar sen-
tences to have small normalized cosine similarity,
independent of other linguistic features like syntax.
For example, an ideal semantic similarity function
would rank “an apple is eaten by a man” more sim-
ilar to “a man eats apples” than the sentence “a
woman drinks coffee”, despite the latter sentence
being essentially grammatically equivalent to the
target sentence.

We evaluated seven different embeddings mod-
els for this purpose and measured the semantic simi-
larity between twelve target sentences and a ranked
list of 10 sentences for each ranging from most to
least semantically similar (sentences can be found
in Appendix B). For each target sentence, we com-
pare the ground-truth ranking of the 10 sentences
to the ranking determined by the semantic simi-
larity scores yielded by a particular embeddings
model. We measure the similarity between the two
rankings using two metrics: average displacement
(average distance between a sentence’s position in
the computed ranking and its position in the target
ranking) and RBO (Rank-biased Overlap (Webber
et al., 2010)). Table 1 tabulates the results of this
evaluation. Results indicate that the all-MiniLM-
L6-v2 embeddings model perform well with re-
spect to both Average Displacement and RBO. For
this reason, we run the rest of our experiments
using this embeddings model for computing the
semantic similarity between sentences.

We computed the semantic similarity between

all pairs of sentences in the dataset to establish a
baseline for comparison. The mean semantic sim-
ilarity between a pair of unrelated sentences was
µ ≈ 0.574 with a standard deviation of σ ≈ 0.061.
Furthermore, the distribution appears to be rela-
tively Gaussian (a histogram can be found in Ap-
pendix E). Intuitively, this suggests that semanti-
cally unrelated sentences are very unlikely to have
a semantic similarity score of above µ + 3σ (i.e.,
greater than 0.757).

A good translation, then, should score high on
all three semantic similarity metrics. For example,
the translation

I am swimming.
Simple Semantic Similarity
I am swimming. 1
Comparator
I am swimming. 1
Target
Nüü pahabi-ti.
Backwards
I am swimming. 1

(model: gpt-3.5-turbo)

is perfect. There are other interesting cases too,
though. For example, when the comparator score
is low but simple and backwards scores are high,
the translator appears to do well with the vocab-
ulary available, but is only able to give a partial
translation. For example, the translation

Birds will migrate and return.
Simple Semantic Similarity
A bird will migrate.
The bird will return. 0.955
Comparator
A bird will [VERB].
The bird will [VERB]. 0.778
Target
[migrate]-wei tsiipa-uu.
[return]-wei tiipa-uu.
Backwards
That bird will migrate.
That bird will return. 0.944

(model: gpt-4)

has a high simple score, since the “Birds will mi-
grate and return” is quite similar (semantically) to
“A bird will migrate. The bird will return.”. The
comparator score is much lower, however, since



Average
Displacement RBO

Embeddings Model mean std mean std
text-embedding-ada-002 (OpenAI, 2024a) 0.967 0.442 0.885 0.053
all-MiniLM-L6-v2 (Reimers and Gurevych, 2020) 0.933 0.323 0.884 0.050
text-embedding-3-small (OpenAI, 2024b) 1.000 0.362 0.882 0.051
text-embedding-3-large (OpenAI, 2024b) 0.917 0.463 0.882 0.054
paraphrase-MiniLM-L6-v2 (Reimers and Gurevych, 2020) 1.150 0.410 0.870 0.054
bert-base-uncased (Reimers and Gurevych, 2019) 1.600 0.703 0.777 0.100
spacy/en_core_web_md (Explosion, 2024) 1.833 0.466 0.760 0.090

Table 1: Quality of different embeddings models in measuring semantic similarity between sentences. A lower
average displacement and higher RBO indicate a better embeddings model for this purpose.

the words for “migrate” and “return” are not avail-
able in the vocabulary. The backwards score is
good because the sentence “[migrate]-wei tsiipa-
uu. [return]-wei tiipa-uu.”, when translated using
the OVP to English translator described in Sec-
tion 3, becomes “That bird will migrate. That bird
will return”, which is almost equivalent to the sim-
ple sentence. This example also highlights an ad-
vantage to our approach. No-resource language
learners can use this system to understand how sen-
tences should be structured even if it doesn’t have
all of the vocabulary necessary to generate the en-
tire translation. Furthermore, users can be fairly
confident that the OVP target sentence is accurately
translated into the English backwards sentence, due
to the accuracy of the OVP to English translator.

The simple score being low indicates that a sig-
nificant portion of the input sentence’s meaning
is lost during segmentation (due, for example, to
the input sentence containing adverbs, adjectives,
prepositions, etc. that don’t fit anywhere in a sim-
ple subject-verb or subject-verb-object sentence).
For example, the translation

My brother and I went hiking.
Simple Semantic Similarity
Brother went. I went. 0.794
Comparator
[SUBJECT] went. I went. 0.608
Target
mia-ku [brother]-uu. nüü mia-ku.
Backwards
The brother went. I went. 0.806

(model: gpt-3.5-turbo)

lost meaning in the first step segmenting the input
sentence into simple sentences because it chose to

use the verb "to go" instead of "hike" which is the
main topic of the sentence. Perhaps a better way to
have segmented this sentence would be: “Brother
hiked. I hiked”. It may be possible to encourage
the LLM to prefer “topic” verbs through prompt
engineering.

Another interesting case is when the simple and
comparator scores are high and only the backwards
score is lower. This is observed in cases where
there is ambiguity in OVP where there is not in
English. For example, in the translation

She is cooking.
Simple Semantic Similarity
She is cooking. 1
Comparator
She is cooking. 1
Target
Uhu sawa-ti.
Backwards
He is cooking. 0.836

(model: gpt-4)

“she” turns to “he” in the backwards translation
because OVP does not have gendered pronouns.
Despite the lower backwards score, this translation
is accurate.

In general, both gpt-3.5-turbo and gpt-4 models
do well with respect to the simple and backwards
semantic similarity scores. Table 2 summarizes the
mean semantic similarity scores for each model
and type of sentence. Figure 4 depicts results for
subject-verb sentences. Plots for the rest of the re-
sults can be found in Appendix D. That the simple
and backwards scores are consistently higher than
the comparator scores suggests that the translator
can be greatly improved simply by expanding its



I will cook.

He visited.

I read.

He works.

They are climbing.

I am swimming.

They danced.

I ate.
We are playing.

She smiled.

They were laughing.

I was running.

She sings.

She is cooking.

Birds were chirping.

They will travel.

We traveled.

We will celebrate.

Birds will migrate.

Dogs are chasing.

Dogs bark.

He was painting.

She will study.

She was typing.

Plants grow.
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Figure 4: Results for subject-verb sentences. The dark, medium, and light gray bands represent the baseline
similarity (between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.

Mean
Model Type Sim.
gpt-3.5-turbo subject-verb 0.941

two-verb 0.906
subject-verb-object 0.869
two-clause 0.879
complex 0.829

gpt-4 subject-verb 0.941
subject-verb-object 0.866
two-verb 0.905
two-clause 0.877
complex 0.830

Table 2: Translation qualities by model and sentence
type: mean semantic similarities between input sentence
and the simple, comparator, and backwards sentences
produced during translation.

vocabulary. It is also interesting to note that the
cheaper, weaker model performs quite well3.

5 Conclusion

In this paper, we present the first translation tool
for Owens Valley Paiute (a critically endangered
Indigenous American language) and, in doing so,
propose a new methodology for low/no-resource
machine translation: LLM-RBMT (LLM-Assisted
Rule-Based Machine Translation). Due to a lack of
bilingual or monolingual corpora, we use semantic

3The cost to run generate all translations was $0.09 using
gpt-3.5-turbo and $5.48 using gpt-4.

similarity to measure the quality of translations,
and observe interesting cases where the translator
performs well, where it performs well given the
vocabulary (primarily verbs and nouns) available
to it, and where it performs poorly due to current
implementation limitations.

This research opens up many directions for fu-
ture work. First, expanding the translation tool
(e.g., by adding more vocabulary, building versions
for other languages, etc.) will make it more useful
for the communities it is meant to serve. We are
currently working to add more complex sentence
structures to test the limits of this methodology.
Building this system required expert knowledge of
the target language. It may be interesting to ex-
plore how large language models might be able to
help with this task as well (e.g., in finding patterns
and implementing RBMT logic) to make it easier
for non-experts (and even experts in the language
who are less comfortable writing code) to build
these kinds of translators. Finally, other methodolo-
gies for leveraging LLMs for low/no-resource ma-
chine translation should be explored. For example,
a RAG (retrieval augmented generation) (Lewis
et al., 2020) approach that searches a knowledge-
base for known sentence structures, vocabulary,
grammar rules, etc. and uses them to perform zero-
shot translation might work well. The remarkable
general-purpose language skills that LLMs exhibit
make them a promising tool in helping revitalize
critically endangered languages.
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Appendices
A OVP to English Translator Results

sentence translation label
tei-zawa-ku ihi This cooked us. 1

isha’-uu tüba-neika ai-hibi-pü That coyote has drunk these pinenuts. 1
tüba-uu tsibui-dü Those pinenuts climb. 1

ta-w̃ui-gaa-wei mahuw̃a "They are going to write to us, you and I." 1
wo’ada-uu aaponu’-oka u-zawa-ti The mosquito is cooking the apple. 1

tübbi-uu tüwoobü-neika a-yadohi-pü The rock has talked to the earth. 1
payahuupü-uu katü-ti That river is sitting. 1

kwisha’i-wei üü You will sneeze. 1
isha’-ii tübbi-neika mai-w̃ui-gaa-wei This coyote is going to write these rocks. 1

toni-uu wünü-ti The wickiup is standing. 1
isha’pugu-neika ihi mai-dama’i-ku This found these dogs. 1

wo’ada-neika ihi mai-dama’i-gaa-wei This will find these mosquitoes. 1
tabuutsi’-uu tüba-noka u-buni-ku The cottontail saw those pinenuts. 1

maishibü-neika uhu ai-nia-ti He/she/it is reading these corn. 1
koopi’-ii wükada-noka ui-nia-ku This coffee read those bird snakes. 1

tuunapi-uu waakü-pü That food has worked. 1
katünu-ii koopi’-oka ui-nobini-wei This chair will visit those coffees. 1

aingwü-neika mahu ma-nia-dü He/she/it reads the squirrel. 1
maishibü-uu wükihaa-gaa-wei That corn is going to smile. 1
isha’-uu isha’-oka ui-zawa-wei That coyote will cook those coyotes. 1

aingwü-ii tsibui-dü This squirrel climbs. 1
katünu-ii tübbi-neika ma-buni-wei This chair will see this rock. 1

wükada-uu tsibui-ku The bird snake climbed. 1
wo’ada-uu paya-neika ma-hibi-ti The mosquito is drinking the water. 1

pagwi-neika mahu ma-w̃ui-pü He/she/it has written/is writing this fish. 1
tabuutsi’-uu isha’pugu-neika mai-nobini-gaa-wei That cottontail is going to visit those dogs. 1

paya-neika mahu mai-hibi-gaa-wei He/she/it is going to drink this water. 1
nishua’i-pü nüü I am laughing. 1

aaponu’-ii küna-neika a-düka-pü This apple has eaten this wood. 1
katü-dü uhu He/she/it sits. 1

mukita-uu isha’pugu-noka u-naki-ti The lizard is chasing the dog. 1
isha’-oka üü ui-dama’i-ku You found those coyotes. 1
pahabichi-uu wükihaa-dü That bear smiles. 1

pahabichi-ii wo’abi-noka ui-naka-dü This bear hears those worms. 1
habi-ku ihi This lay down. 1

tümui-ku taa You and I wrote. 1
üwi-ku ihiw̃a These slept. 1

tübbi-uu ta-naka-ku "That rock heard us, you and I." 1
wo’ada-uu tei-gwana-dü That mosquito smells us. 1

tümui-dü mahuw̃a They write. 1
üwi-dü nüügwa We are sleeping. 1
tsibui-ti mahu He/she/it is climbing. 1

mukita-uu tsibui-pü That lizard has climbed. 1
payahuupü-uu toyabi-neika ma-zawa-gaa-wei The river is going to cook the mountain. 1



nobi-uu kwisha’i-ku That house sneezed. 1
kamü-uu wükihaa-dü That jackrabbit smiles. 1

toni-uu katü-wei That wickiup will sit. 1
aingwü-uu katünu-noka u-zawa-gaa-wei The squirrel is going to cook that chair. 1

paya-uu pasohobü-neika ai-buni-wei That water will see those trees. 1
toyabi-ii tsibui-ku The mountain climbed. 1

tsibui-wei taa You and I will climb. 1
pugu-uu wo’abi-neika ai-naki-ku That horse chased those worms. 1

mukita-uu wai-noka u-nobini-gaa-wei The lizard is going to visit the rice. 1
wükihaa-ti mahu He/she/it is smiling. 1

tüsüga-ii tüwoobü-neika ma-naki-gaa-wei This weasel is going to chase this earth. 1
yadoha-ku uhuw̃a They talked. 1

pahabichi-ii pugu-noka ui-nia-ku The bear read those horses. 1
paya-uu katünu-noka ui-yadohi-gaa-wei Water is going to talk to those chairs. 1

pagwi-ii wo’abi-noka ui-düka-ti This fish is eating those worms. 1
tabuutsi’-uu tübinohi-ku That cottontail played. 1

tünia-ku nüü I read. 1
poyoha-pü ihiw̃a These are running. 0

mukita-uu yotsi-wei That lizard will fly. 1
tabuutsi’-uu tübbi-neika ma-buni-pü That cottontail has seen this rock. 1
isha’pugu-ii tüba-neika ai-nobini-ku This dog visited these pinenuts. 1

isha’-uu katü-dü That coyote sits. 1
pasohobü-ii tsiipa-noka ui-naka-ku The tree heard those birds. 1

kamü-uu mukita-neika ma-zawa-wei That jackrabbit will cook this lizard. 1
tuunapi-uu tümui-gaa-wei That food is going to write. 1

wai-uu aingwü-neika ai-naka-pü That rice has heard those squirrels. 1
tsiipa-uu pugu-noka ui-naka-pü The bird has heard those horses. 1

pagwi-ii wükihaa-gaa-wei These fish are going to smile. 1
tei-nobini-dü uhuw̃a They visit us. 1

paya-neika ihi ma-dama’i-dü This finds this water. 1
isha’pugu-neika nüügwa ma-düka-ku We ate this dog. 1

tabuutsi’-uu hubiadu-dü The cottontail sings. 1
kwadzi-ii yadoha-wei This tail will talk. 1

isha’pugu-uu mukita-neika ai-naka-ti That dog is hearing these lizards. 1
pasohobü-noka üü u-zawa-gaa-wei You are going to cook that tree. 1

tsiipa-noka uhu u-buni-pü He/she/it has seen or is seeing that bird. 1
tuunapi-neika mahu mai-gwati-ku He/she/it hit the foods here. 0
isha’-eika nüügwa ai-w̃ui-gaa-wei We are going to write coyotes. 1

pasohobü-uu toyabi-neika ma-hibi-pü The tree has drunk the mountain. 1
aingwü-uu aaponu’-eika ai-naka-ti The squirrel is hearing these apples. 1
tabuutsi’-uu wai-noka u-yadohi-pü The cottontail has talked to the rice. 1
katünu-noka mahuw̃a ui-gwati-dü They are hitting those chairs. 1
tüwoobü-neika uhuw̃a mai-buni-ti They are seeing these earths. 1

koopi’-uu hukaw̃ia-ti Coffee is walking. 1
küna-ii ni-naka-ti This wood is hearing us. 1

toyabi-neika taagwa ma-buni-gaa-wei We are going to see this mountain. 1
isha’pugu-ii üwi-dü This dog sleeps. 1

pagwi-neika ihi mai-naka-gaa-wei This will hear these fish. 1
kwadzi-ii toni-neika ai-gwati-gaa-wei This tail is going to hit those wickiups. 1



paya-ii tuunapi-noka u-düka-ti This water is eating that food. 1
mukita-uu tümui-gaa-wei That lizard is going to write. 1

pahabichi-uu küna-neika ma-zawa-ku The bear cooked the wood. 1
isha’pugu-uu tabuutsi’-eika a-zawa-dü That dog is cooking this cottontail. 1
katünu-uu pahabichi-noka u-naki-ku The chair chased the bear. 1

küna-uu waakü-gaa-wei That wood is going to work. 1
pugu-neika mahu ai-naka-ku He/she/it heard these horses. 1

Table 3: One hundred randomly generated sentences (using the OVP sentence building tool described in Section 3)
and translated (using the OVP to English translator described in Section 3) labeled 1 if the translation is accurate
and 0 otherwise.

B Semantic Similarity Sentences

Base Sentence Other Sentences
(in order of most to least semantically similar to Base Sentence)

She sings. He sings.
He/she/it sings.
She performs a song.
A song is being sung by her.
She hums a tune.
She listens to music.
She dances.
She eats.
The cat sleeps.
Mountains echo silently.

The dog fell. The dog fell yesterday.
A dog stumbled.
The puppy tripped over.
The cat is running.
An animal is in motion.
The bird flies.
Leaves fall in autumn.
He reads a book.
Clouds cover the sky.
Apples on the moon are hungry.

The man ate an apple. The apple was eaten by the man.
A man consumes a fruit.
The boy nibbles on an apple.
Someone is eating.
He drinks water.
The woman ate a pie.
A cat chases a mouse.
Trees grow in the forest.
The car is red.
Stars twinkle at night.

The sun rises in the east. The east welcomes the sunrise.
Sunrise occurs in the east.
Day breaks in the east.
The moon sets in the west.
The stars shine at night.



Clouds gather before rain.
The wind changes direction.
Leaves fall in autumn.
Snow covers the mountains.
A book rests on the table.

Birds fly south for the winter. For winter, birds head south.
Migratory birds travel south when it gets cold.
Birds migrate to warmer climates during winter.
Fish swim upstream.
Bears hibernate in winter.
Flowers bloom in spring.
The earth orbits the sun.
Trees lose their leaves in fall.
The sky is blue.
A cat sleeps on the couch.

I read a book yesterday. Yesterday, I finished reading a book.
A book was read by me yesterday.
I watched a movie last night.
I’ll visit the library tomorrow.
She writes a letter.
He cooks dinner.
They are painting a house.
The sun sets in the evening.
A dog barks at night.
The car needs fuel.

The cake was delicious. Delicious was the cake.
The dessert tasted great.
We enjoyed the tasty cake.
The pie is sour.
Coffee complements breakfast.
Leaves rustle in the wind.
A bird sings outside.
Children play in the park.
Traffic is heavy today.
The phone is ringing.

Lightning precedes thunder. Thunder follows lightning.
First comes lightning, then comes thunder.
The storm brings lightning and thunder.
Rain refreshes the earth.
The sun warms the ground.
A river flows to the sea.
Mountains reach towards the sky.
A cat chases a mouse.
Books fill the shelf.
The clock ticks steadily.

She painted a beautiful picture. A beautiful picture was painted by her.
The painting she created is beautiful.
She sketches a portrait.
He writes a poem.
They are filming a movie.
Birds nest in spring.



Flowers wilt in the heat.
Kids play video games.
Cars fill the parking lot.
The sun sets late in summer.

The computer is broken. A broken state afflicts the computer.
The machine isn’t working.
We need to repair the computer.
The phone’s battery is dead.
Lights flicker during a power outage.
A book lies open on the desk.
Water boils at 100 degrees Celsius.
A cat purrs contentedly.
The door creaks when opened.
Birds migrate in autumn.

He solved the puzzle quickly. The puzzle was quickly solved by him.
Quickly, he found the solution to the puzzle.
She completes the crossword.
The mystery remains unsolved.
A race against time.
Flowers are sold at the market.
The river cuts through the valley.
A key unlocks the door.
Leaves turn red in autumn.
The train arrives at noon.

The stars twinkle at night. At night, the stars shimmer.
Twinkling stars fill the night sky.
Night unveils a sky full of stars.
The moon glows brightly.
Clouds mask the moon.
The sun sets, stars appear.
A comet streaks through the sky.
Fireflies glow in the dark.
Crickets chirp in the evening.
A candle flickers in the window.

Table 4: Base sentences and other sentences ordered by their semantic similarity to the base sentence (as determined
by authors).

C Vocabulary



tüka eat
puni see
hibi drink

naka hear
kwana smell
kwati hit

yadohi talk to
naki chase

tsibui climb
sawa cook

tama’i find
nia read
mui write

nobini visit

(a) Transitive Verbs

katü sit
üwi sleep

kwisha’i sneeze
poyoha run

mia go
hukaw̃a walk

wünü stand
habi lie down

yadoha talk
kwatsa’i fall

waakü work
wükihaa smile
hubiadu sing
nishua’i laugh

tsibui climb
tübinohi play

yotsi fly
nüga dance

pahabi swim
tünia read
tümui write

tsiipe’i chirp

(b) Intransitive Verbs

isha’ coyote
isha’pugu dog

kidi’ cat
pugu horse

wai rice
tüba pinenuts

maishibü corn
paya water

payahuupü river
katünu chair
toyabi mountain

tuunapi food
pasohobü tree

nobi house
toni wickiup
apo cup

küna wood
tübbi rock

tabuutsi’ cottontail
kamü jackrabbit

aaponu’ apple
tüsüga weasle
mukita lizard

wo’ada mosquito
wükada bird snake
wo’abi worm
aingwü squirrel

tsiipa bird
tüwoobü earth

koopi’ coffee
pahabichi bear

pagwi fish
kwadzi tail

(c) Nouns

ku completive (past)
ti present ongoing (-ing)

dü present
wei future (will)

gaa-wei future (going to)
pü have x-ed, am x-ed

(d) Object Suffixes

nüü I
uhu he/she/it

uhuw̃a they
mahu he/she/it

mahuw̃a they
ihi this

ihiw̃a these
taa you and I

nüügwa we (exclusive)
taagwa we (inclusive)

üü you
üügwa you (plural)

(e) Subject Pronouns

ii (proximal)
uu (distal)

(f) Subject Suffixes

i me
u him/her/it (distal)

ui them (distal)
ma him/her/it (proximal)

mai them (proximal)
a him/her/it (proximal)

ai them (proximal)
ni us (plural, exclusive)
tei us (plural, inclusive)
ta us (dual), you and I
ü you (singular)

üi you (plural), you all

(g) Object Pronouns

eika (proximal)
oka (distal)

(h) Object Suffixes

Table 5: Vocabulary available in sentence building system.
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I will cook.

He visited.

I read.

He works.

They are climbing.

I am swimming.

They danced.

I ate.
We are playing.

She smiled.

They were laughing.

I was running.

She sings.

She is cooking.

Birds were chirping.

They will travel.

We traveled.

We will celebrate.

Birds will migrate.

Dogs are chasing.

Dogs bark.

He was painting.

She will study.

She was typing.

Plants grow.
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Figure 5: Results for subject-verb sentences. The dark, medium, and light gray bands represent the baseline
similarity (between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.

The bird chased a worm.

The bear caught a fish.

Tom caught a fish.

Rachel loves coffee.

The sun heats the earth.

The dog ate soup.

Susan sings songs.

Romeo wrote a letter.

John read a book.

The teacher gave a lecture.

The captain steered the ship.

Mike watched a movie.

Harry received a letter.

Jack found a pail.

Paul plays the guitar.

The writer finished a story.

Mom made dinner.

The lion hunted a deer.

Anna baked a cake.

The king wore a crown.

Batman caught a thief.

The chef prepared a meal.

Alice opened a door.

Linda bought a dress.

My brother drives a car.
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Figure 6: Results for subject-verb-object sentences. The dark, medium, and light gray bands represent the baseline
similarity (between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.



They danced and laughed.

We are playing and laughing.

I will cook and eat.

She sings and dances.

They are climbing and exploring.

We will celebrate and dance.

I read and write.

He visited and enjoyed.

Birds were chirping and flying.

I am swimming and relaxing.

They were laughing and joking.

She smiled and waved.

I was running and listening to music.

Birds will migrate and return.

We traveled and discovered.

They will travel and explore.

He works and studies.

She is cooking and tasting.

I ate while watching TV.

Dogs are chasing and barking.

He was painting and humming.

Dogs bark and wag their tails.

She will study and pass.

She was typing and sipping coffee.

Plants grow and bloom.
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Figure 7: Results for two-verb sentences. The dark, medium, and light gray bands represent the baseline similarity
(between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.

The bird chirped and the squirrel jumped.

The dog ate soup and the cat ran.

Susan sang and I read.

Mike cooked and his sister danced.

Rachel danced and Monica sang.

The bear roared and the fox hid.

Tom slept and Jerry watched.

Harry wrote and Ron read.

Jack climbed and Jill followed.

The king sat and the queen stood.

Alice laughed and Bob cried.

Mom laughed and dad cried.

Anna swam and Elsa skated.

The teacher spoke and the student listened.

The writer typed and the poet thought.

Romeo called and Juliet answered.

The captain shouted and the crew responded.

The chef baked and his assistant cleaned.

Paul jumped and Peter ducked.

Batman swung and Robin landed.

The sun shone and the moon glowed.

The lion hunted and the tiger rested.

John traveled and Mary studied.

Linda painted and her friend sketched.

My brother drove and I waited.
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Figure 8: Results for two-clause sentences. The dark, medium, and light gray bands represent the baseline similarity
(between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.



The bird and the squirrel played.

The bear and the fox foraged for food.

Linda and her friend dance gracefully.

The dog and the cat were eating soup.

Susan and I will watch a movie.

The chef and his assistant prepared a feast.

Paul and Peter play the guitar.

The writer and the poet collaborated on a book.

The captain and the crew sailed the seas.

The teacher and the student were discussing.

Batman and Robin fought crime.

The lion and the tiger roared.

Tom and Jerry chase each other.

Alice and Bob solve puzzles.

Anna and Elsa share a bond.

The king and the queen ruled wisely.

Mike and his sister study together.

The sun and the moon are celestial bodies.

Rachel and Monica share an apartment.

Romeo and Juliet loved deeply.

John and Mary are traveling.

Mom and dad are celebrating their anniversary.

Harry and Ron faced many challenges.

Jack and Jill went up the hill.

My brother and I went hiking.
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Figure 9: Results for complex sentences. The dark, medium, and light gray bands represent the baseline similarity
(between unrelated sentences in the dataset) +/- one, two, and three standard deviations, respectively.
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Figure 10: Distribution of semantic similarity scores between all pairs of sentences in the dataset.
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