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Abstract—Epidemic diseases bring many challenges to univer-
sities. In the case of airborne contagious diseases like COVID-19,
health agencies’ guidelines recommend that people maintain a
physical distance of about 2 meters from each other. Enforcing
such physical distancing on a university campus means that it
will potentially take longer for students to get into and out
of classrooms and buildings on campus. We use real course
registration data from a large US university to study wait times
students would encounter to enter and exit campus buildings
while keeping the recommended 2 meter physical distance, and
show that peak wait times can be longer than 20 minutes. We
propose LBCS, a load-balanced course scheduling algorithm that
intelligently reduces the peak wait time while ensuring that
conflicting classes are scheduled at different times. Through
simulations we show that LBCS can reduce the peak wait time
by a factor of 3×, better than naive alternatives such as shifting
some classes to the weekend or randomly perturbing class start
times.

Index Terms—COVID-19, Epidemic Modeling, Wait Time

I. INTRODUCTION AND RELATED WORK

The COVID-19 pandemic has had a profound impact on
educational institutions around the world. More than 85 col-
leges and universities across the US have reported at least
1,000 cases of COVID-19, and over 680 institutions have
reported at least 100 cases [1]. More than 124,000 public and
private schools, colleges, and universities in the US closed
in April 2020, impacting more than 55 million students [2].
Worldwide, similar disruptions have affected more than 1.7
billion students [3], [4].

In response to the initial COVID-19 outbreak in Spring
2020, a large number of colleges and universities across the
US decided to cancel classes and close student housing [4].
Many universities and colleges moved instruction online.
The transition from in person classes to online instruction
brought many challenges for both students and instructors.
For students, the transition to online instruction exacerbated
challenges associated with access to technology and led to
concerns regarding absenteeism and accommodation of special
needs [4]. For instructors, the transition to online instruction
led to increased concerns regarding student engagement and
evaluation [5], [6].

In Fall 2020, many institutions of higher education in
the US returned to in person instruction. However, this led

Fig. 1: Students waiting in line to enter a classroom building

to a significant increase in new infections. Several colleges
and universities decided to reopen in Fall 2020 and provide
hybrid classes where a portion of the students could attend
classes in person while others attended online, providing a
partial solution to the problems associated with purely online
instruction. In addition, colleges and universities put in place
rules about physical distancing and face-covering use, and
limited social gatherings. Many institutions also put in place
extensive population testing, contact tracing, and quarantining
measures for on-campus students, staff, and faculty. This
combination of measures has had some success in curbing
the spread of COVID-19 on campuses [1].

Reopening a college or university brings many challenges.
Hekmati et al. [7] analyzed risks associated with COVID-19
spread through classroom transmission on a university campus.
In addition to the risk of spreading the virus by holding classes
in person, students should also maintain physical distancing
out of the classrooms to decrease the spread of the virus.
This could potentially lead to long wait times for students
entering and exiting buildings. Although vaccinated students
are less likely to get infected with the original COVID-19
variant even at close physical distances, for the newer and
more transmissible COVID-19 variants like the Delta variant,
keeping the 2 meter physical distancing is recommended to
slow the spread of the virus.

In this work, we propose a model that estimates and
quantifies student wait times, assuming a policy where students
are encouraged to line up and move in an orderly fashion
while keeping d meter distance from other students in order
to orderly enter and exit university buildings. We use the
course schedule of a major US university for evaluating our
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model. We evaluate two naive approaches for reducing the
wait times: randomly shifting class start times and moving
classes from weekdays to weekends. Finally, we propose
Load Balanced Course Scheduling (LBCS), an efficient load-
balancing algorithm to distribute courses over the week and
campus to reduce wait times, also considering minimizing
schedule conflicts for the enrolled students. Our simulations
show that the LBCS algorithm can reduce the ingress and
egress wait times of the buildings by a substantial amount, up
to 3× for very crowded buildings with many classrooms.

The rest of this paper is organized as follows. In section
II, we present the general model for calculating ingress and
egress wait times. Section III presents three naive algorithms
for changing courses schedules in order to decrease wait
times of the relevant buildings. LBCS is presented in Section
IV. Section V describes the simulation methodology used
for evaluating the algorithms. The results are presented and
discussed in Section VI. Finally, we conclude the paper in
Section VII.

II. THE WAIT TIME MODEL

In this section, we present the model for estimating the wait
times for students entering and exiting campus buildings in an
orderly fashion. Various parameters are involved in estimating
the ingress and egress rates of students. Here we assume
the students walk with an average speed of sin[m/s] when
entering a building and sout[m/s] when exiting a building, and
have d meters physical distance between them. Given that, the
average ingress rate rin and egress rate rout can be calculated
by:

rin =
d

sin
(1)

rout =
d

sout
(2)

The average number of buildings ingress, and egress points
are being considered as ein and eout, respectively. Addition-
ally, for any given time period t of the day, the number of
students entering and exiting the building is considered to be
nin(t) and nout(t), respectively. The ingress and egress wait
time of a building, given the time of day in the week, can be
calculated as follows:

win(t) =
nin(t)

rin · ein
(3)

wout(t) =
nout(t)

rout · eout
(4)

The time index in the equations (3) and (4) refers to the
discrete time periods of the day of the week. For instance,
we can divide all days in the week into slots with 20 minutes
duration. Here t refers to the desired time slot on a weekday
for calculating the ingress and egress wait time.

Given the ingress and egress wait times for the campus
buildings, we define a new metric called total wait time as

the maximum wait time between the ingress and egress wait
times:

wtotal(t) = max{win(t), wout(t)} (5)

III. NAIVE ALGORITHMS

In order to control and decrease the ingress and egress wait
times, we present two naive algorithms:

• Class start time randomization: Each class time is moved
by a random time chosen uniformly in [−δ, δ].

• Weekend scheduling: Include one or two weekends in the
schedule, such that, n ·x percent of classes are moved to
the weekend, where n is the number of weekends (1 or
2), and x is the ratio of the classes that in each day of
the week will be moved to the weekend.

Any combination of these algorithms could be applied to
reduce the wait times as much as possible. However, each
algorithm has drawbacks. Class start time randomization can
result in conflicts in student class schedules, i.e., some classes
with the same students may be scheduled at overlapping times.
Using weekends presents conflicts with other student (and
instructor) activities.

In addition to these algorithms, reducing in person class
occupancy significantly reduces wait times but presents the
challenges of online education and managing appropriate
selection of students for in person vs. online. In this work,
we view reducing in person class occupancy as orthogonal
and complementary to the scheduling algorithms we consider
and evaluate. Therefore, our evaluations focus on in-person
class attendance.

IV. LOAD BALANCED COURSE SCHEDULING (LBCS)
ALGORITHM

In this section, we present LBCS, an efficient algorithm for
distributing courses across the week and campus buildings to
reduce building ingress and egress wait times. The algorithm
must minimize conflicts in enrolled students’ schedules. For
that purpose, we present the “conflict graph” that aids in course
scheduling with minimum conflicts.

A. Conflict Graph

Given students’ course schedules, we design a conflict graph
that shows how much courses conflict with one another in
terms of having at least k enrolled students in common. We
create a graph whose nodes represents the courses and edges
that represent at least k students in common between the two
nodes. Each edge has an attribute conflict that indicates the
number of students in common between two nodes/courses.
Figure 2 shows the conflict graph for the Fall 2019 course
schedule we used, with k = 5. For visual simplicity, we
only show the conflict graph for k = 51. Fall 2019 schedule
has 5986 courses with 34042 students. Figure 2 shows 3676
courses that have a conflict with each other with k = 5,
implying that creating a load-balanced course schedule in Fall

1Lower values of k show similar features but result in a denser graph that
is harder to visualize.
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2019 requires many considerations in terms of minimizing
student course conflicts.

Fig. 2: Fall 2019 course conflict graph visualization

B. LBCS Steps

Here we present the steps of the LBCS algorithm. The pre-
processing steps involve the following:

1) Create the conflict graph given the course schedule,
based on the procedure described in section IV-A.

2) Create a list of graph nodes called courses, sorted
according to their degree, in descending order. For
nodes with the same degree, sort them according to the
sum of the conflict attribute that each node has with
other nodes. Recall that the conflict attribute shows
the number of common students between two courses
(nodes). In other words, the sum of the conflict attribute
for each course (node) is the number of students who
have a conflict with other courses.

3) Create a list of classrooms with their associated capac-
ities in an ascending order.

Pseudoode for the LBCS algorithm is given in Algorithm
1. The algorithm takes the following inputs:

• conflict graph: Conflict Graph

• courses: List of courses sorted according to their degree
and sum of their edges’ attribute, i.e. conflict

• classrooms: List of classrooms sorted according to their
capacity

• weekdays: Weekdays to be used for scheduling
• start time: Start time of the day
• end time: End time of the day
• th1: Threshold 1 determines the maximum wait time for

students to enter a building for the courses that are small
enough to enter and exit the building in th1 seconds. In
other words, the number of students is less than th1 ·rin ·
ein for the case of entering the building or is less than
th1 · rout · eout for the case of exiting the building.

• th2: Threshold 2 determines the additional possible wait
time for each building in order to schedule large courses
for which the number of students is so large that they can
not enter and exit the buildings in th1 seconds. In other
words, the number of students is greater than th1 ·rin ·ein
for the case of entering the building, or is greater than
th1 · rout · eout for the case of exiting the building.

The LBCS algorithm schedules the courses in the conflict
graph according to their degree in descending order, i.e.,
the courses with the highest number of conflicts with other
courses. If two courses (nodes) have the same degree, the
algorithm sorts them according to the sum of the conflict
attribute that each node has with other nodes. Recall that
the conflict attribute shows the number of common students
between two courses (nodes). In other words, the sum of
the conflict attribute for each course (node) is the number
of students who have a conflict with other courses. Note
that in order to avoid conflict, the courses connected in the
conflict graph will not be scheduled at the same time. For
a given course, the wait time required for students in that
classroom to enter and exit the building course wait time is
calculated. Next, the algorithm finds the classrooms that have
enough capacity to accommodate course’s students. Then,
a compatible classroom is selected with the lowest capacity
that can accommodate course at the earliest start time in
the week and examine whether the selected (room, time)
is available. If not, the next possible class time is selected
and checked, and so on. If no time works, the classroom is
updated to the next compatible one, and the search for class
time starts at the earliest time again. Once we find a proper
(room, time), if the total wait time of the room’s building at
time is less than th1 or the total wait time of that building
at time is less than th2 + course wait time, the schedule
of the course at (room, time) is finalized. Suppose neither
of the two conditions is valid for (room, time). In that case,
the tuple and its corresponding wait time are stored, and the
algorithm moves to the next possible time and classroom and
calculates their wait times in order to find the (room, time)
that has the minimum possible wait time. Note that th2 helps
with the case if the size of a class is so large that it cannot
fit in th1. In the case that no (room, time) are available to
schedule course, the algorithm returns -1, indicating that the
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load balancing schedule is not feasible for the given inputs.

V. SIMULATION METHODOLOGY

We performed simulations to evaluate the course scheduling
algorithms based on their generated wait times. For evaluation,
we used the Fall 2019 course registration data of a large US
university. The dataset included information for all enrolled
students at the university. We considered only classes that were
held in person (most of them were, as the dataset predates the
COVID-19 pandemic). In Fall 2019, there were 5986 courses
with 34042 students on campus in the dataset.

We evaluated building wait times of four different algo-
rithms. The first algorithm shows the original scheduling wait
times used by the university. The next two are the naive
algorithms: the random start time and transfer to the weekend.
The fourth is LBCS. The presented evaluation examines each
algorithms separately; as noted earlier, the algorithms could
be combined to potentially achieve even lower building wait
times.

We used two metrics to visualize the wait times. The first
metric shows the distribution of the maximum building wait
times during the week, allowing for readily identifying peak
wait times and the most impacted buildings. The second metric
is the plot of a specific building wait time over the course of
the week. We plotted the wait time of all buildings, showing
the peak values of wait times of all buildings and days of the
week.

In the simulations, we assumed that each building has two
ingress points and two egress points, i.e., ein = eout = 2;
all four can have lines of students active at the same time.
Additionally, we assumed that students go in and out of the
building in an orderly fashion, maintaining a physical distance
of 2 meters d = 2[m] from students ahead and behind them in
the line. In the simulation, each student moved at an average
rate of 1 meter per second, sin = sout = 1[m/s]. This speed
is slightly below the average walking speed of 1.38 meters
per second for young persons from 20 to 29 years old [8],
accounting for slower movement that may be anticipated in
careful line behavior during physical distancing. Consequently,
on average, 1 student will enter (or exit) per ingress (or,
respectively, egress) point every 2 seconds, rin = rout = 0.5.
Given these parameters, we calculate the ingress and egress
wait time of each building using equations (3), (4).

In original scheduling, we present the building wait times
from the original dataset. In the random start time scheduling
algorithm, we simulated the algorithm for different time shifts
of [−t,+t] minutes for t from 10 to 90 minutes with incremen-
tal steps of 10 minutes. Figure 3 shows the peak waiting time
of the random start time scheduling algorithm for different
time shifts, i.e., t. As we can see, for t = 30 minutes, we are
getting the minimum peak wait time. Therefore, we will use a
uniform random time shift of 30 minutes for further analysis
of this algorithm. In the transfer to the weekend scheduling
algorithm, we are transferring n · x courses from each day of
the week to the weekends, where n is the number of weekends
(1 or 2), and x is the ratio of the classes that in each day of

Fig. 3: Random start time scheduling algorithm analysis: peak
wait time vs time shift

Fig. 4: Transfer to weekend scheduling algorithm analysis:
peak wait time vs transfer ratio

the week will be moved to the weekend. In this simulation,
we used n = 2 to reduce the peak wait times as much as
possible. Figure 4 shows the peak wait time of the transfer
to the weekend scheduling algorithm by swiping the transfer
ratio, i.e., x, from 0 to 0.5 with 0.1 incremental steps. As
we can see, x = 0.1 provides the minimum peak wait time.
Therefore, in further simulations of transfer to the weekend
algorithm, we assume that n ·x = 20% of the courses in each
day of the week will be transferred to the weekends.

Finally, in the LBCS algorithm, given operations of a
university about 6000 courses and about 34000 students on
campus, it is impossible to create a load-balanced schedule
with much lower building wait times without conflicts. There-
fore, we created the conflict graph by considering k = 5,
only connecting nodes in the graph that have at least 5
students in common. Furthermore, thresholds 1 and 2 were
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Algorithm 1 Load Balanced Course Scheduling (LBCS) Algorithm

Input: conflict graph, courses, classrooms, weekdays, start time, end time, th1, th2
for course in courses do
course wait time← #students× rate/#entrances
course sessions← sessions in course
for session in course sessions do
rooms← compatible rooms in classrooms with course
min slot.wait time←∞
min slot.time← start time
for room in rooms do

for day in weekdays do
if day already used for scheduling course then

continue
end if
time← start time
for time in (start time, endtime) do
ingress time← the ingress wait time of the classroom building at time
egress time← the egress wait time of the classroom building at time
total wait time← max(ingress time, egress time)
if total wait time < min slot.wait time and room is available at time and course does not conflict with
the courses scheduled at time then
min slot.waittime← total wait time
min slot.time← time
if total wait time ≤ th1 or total wait time ≤ course wait time+ th2 then

schedule course at time
end if

end if
end for

end for
end for
if min slot.wait time 6=∞ then

schedule course at time
else

return -1
end if

end for
end for

set to 120 and 30 seconds, respectively. These parameters
were chosen empirically to be the smallest such that the
LBCS algorithm results in feasible schedules. We used only
weekdays (Monday to Friday) for evaluating load-balanced
scheduling and considered the start and end of the days as
8 AM and 10 PM, respectively. Note that in the original and
also random start time scheduling algorithm, we also used only
weekdays from 8 AM and 10 PM. But, weekend scheduling
algorithm had this advantage compared to others as it also
used the weekends for the scheduling.

VI. RESULTS AND DISCUSSION

Figure 5 shows the distribution of maximum wait times for
the buildings using the four different scheduling algorithms for
the Fall 2019 course registration dataset. Table I summarizes
the information in Figure 5 by providing the peak wait times
and the average of peak wait times for each algorithm. Further,

Figure 6 shows the wait time versus the time of day for the
buildings with the highest wait time.

As can be seen in Figures 5 and 6 and in Table I, the original
scheduling has a peak wait time of 21.32 minutes and average
peak of 3.10 minutes. Of the three scheduling algorithms,
LBCS performs the best by reducing the peak wait time to 7.16
minutes and an average peak of 1.17 minutes. This wait time is
about three times lower than the original scheduling approach
used by the university. The other two scheduling algorithms
also reduce the wait time compared to the original approach,
with the random start time algorithm performing better of
the two, by reducing the peak wait time to 10.83 minutes
and the average peak wait time to 1.97 minutes. Transfer to
weekend strategy performed the worst and could not reduce
the wait times effectively. Naturally, even lower wait times can
be achieved by using the hybrid scheduling where classroom
occupancy is reduced through online instruction.
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((a)) Original ((b)) Random Start Time

((c)) Transfer to Weekend ((d)) LBCS

Fig. 5: Maximum peak wait time distributions

((a)) Original ((b)) Random Start Time

((c)) Transfer to Weekend ((d)) LBCS

Fig. 6: wait time over one day for the worst case building

TABLE I: Scheduling Algorithms’ Building Wait Times

Maximum Peak wait
Time (mins)

Average Peak
wait time (mins)

Original 21.32 3.10
Random Start Time 10.83 1.97
Transfer To Weekend 17.51 3.07
LBCS 7.16 1.17

VII. CONCLUSION

This paper discussed the challenges that health guidelines
and policies may bring for universities. In the case of very
contagious diseases like COVID-19, public health guidelines
recommend maintaining physical distance of about 2 meters
between people. Enforcing this in the context of colleges and
universities results in potentially impractical ingress and egress
wait times for classroom buildings. This paper compared four
different classroom scheduling approaches in order to identify
the approach that minimizes wait time. A comprehensive load-
balanced course scheduling algorithm, LBCS, was presented
to distribute courses across the week and campus so as to
minimize the building wait times while respecting student
course conflicts. We performed a comprehensive evaluation
by using the Fall 2019 course registration data for a large
US university. Our data demonstrate that the LBCS algorithm
reduces the building wait time up to 3× compared to actual
pre-pandemic university scheduling.
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