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Abstract. We propose and study a problem inspired by a common task
in disaster, military, and other emergency scenarios: search and rescue.
Suppose an object (victim, message, target, etc.) is at some unknown
location on a path. Given one or more mobile agents, also at initially
arbitrary locations on the path, the goal is to find and deliver the object
to a predefined destination in as little time as possible. We study the
problem for the one- and two-agent cases and consider scenarios where
the object and agents are arbitrarily (adversarially, even) placed along a
path of either known (and finite) or unknown (and potentially infinite)
length. We also consider scenarios where the destination is either at the
endpoint or in the middle of the path. We provide both deterministic
and randomized online algorithms for each of these scenarios and prove
bounds on their (expected) competitive ratios.
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1 Introduction

In this paper, we study a search and rescue problem where a set of autonomous
agents on a one-dimensional path must cooperate to find and deliver an object
to its destination (another location on the path) in as little time as possible.
Formally, we consider a line with origin 0 onto which n agents with different
speeds and an object which must be delivered to 0 are initially located arbitrar-
ily (adversarially, even). We propose algorithms for scenarios where the object
and agents are placed on the finite intervals [0, 1] and [−1, 1] but also discuss
how slightly modified versions of the algorithms are equally competitive for the
infinite intervals [0,∞) and (−∞,∞). Agents can pick up, carry, and give the
object to other agents (via physical handover) but can only communicate face-
to-face. We assume agents can always move at their maximum speeds and that
direction changes and handovers are instantaneous. In the offline setting, where
the locations of all other agents and the object are known, this problem is equiv-
alent to the Pony Express Communication Problem, for which an optimal offline
algorithm is known [11]. In the online setting, this problem is related to search
problems like the cow-path problem but differs in that we must consider the
time required to deliver the object after it has been found. A strategy that con-
siders the search and delivery components of the problem separately may not
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be optimal. For example, a search algorithm that minimizes the time to find the
object might force agents into worst-case positions for the subsequent delivery.

Our goal is to find online algorithms with minimal competitive ratio. The
competitive ratio of an online algorithm A is the maximum over all problem
instances I of the ratio between the delivery time by A and the delivery time
by an optimal offline algorithm for the same instance. Formally, the competitive
ratio of A is

sup
I

TA,I

T ∗
I

where TA,I is the delivery time of algorithm A on instance I and T ∗
I is the optimal

offline delivery time for instance I. We say an algorithm with a competitive
ratio c is c-competitive. For the problem studied in this paper, a c-competitive
algorithm guarantees the object is delivered to the origin in at most c · T ∗ time,
where T ∗ is the optimal (offline) delivery time had the location of the object
been known to all agents from the start.

The results of the paper are summarized in the following table.

Table 1: Table of results: lower and upper bounds on the competitive ratios
proven for each model studied where W (x) is the product logarithm (Lambert
W function [14]) of x and, for the two-agent scenarios, v is the relative speed of
the slower agent with respect to the faster agent (i.e. if agents have speeds v1
and v2 such that v2 ≤ v1, then v = v2/v1).
Agents Destination Randomized Lower Bound Upper Bound Section

1
endpoint

no 1 +
√

2 1 +
√

2 4.1
yes 5/3 2 4.1

middle
no 5 5 4.2
yes 5/3 1 + 1

2W (1/e)
≈ 2.79556 4.2

2 endpoint no 1 +
√

2 min
(

1 +
√

2, 3−v
1+v

)
5

2 with
radios

endpoint no 1 +
√

2 min
(

1 +
√

2, 3
1+2v

)
5.1

The layout of the paper is as follows. We survey related work in Section 2
and then present some preliminaries on the model and notation in Section 3.
We begin our study in Section 4 by focusing on the problem with a single agent,
considering scenarios with the destination at the endpoint (Section 4.1) and in
the middle (Section 4.2), presenting deterministic and randomized algorithms
for both scenarios. We present preliminary results for the multi-agent case by
studying the problem for agents with no communication ability in Section 5
and then consider the case where agents can communicate (i.e. via radio) in
Section 5.1. Finally, we conclude the paper with a summary of results and a
discussion of areas for future work in Section 6.
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2 Related Work

Cooperative mobile agents with communication constraints have been used to
study search, exploration, rendezvous, message delivery, and other problems re-
lated to the search and rescue problem studied in this paper. Cow-path problems,
first introduced in 1964 [2], are especially related to the search component of the
problem we study. In its simplest form, the cow-path problem involves finding
a target on a line with a single agent in as little time as possible. A simple 9-
competitive algorithm has been shown to be optimal [2,21]. As a fundamental
problem in search theory, many variants of the original cow-path problem have
been proposed and solved for different models and using a variety of techniques.
For multi-agent systems, it is sometimes framed as an evacuation problem, where
the goal is to minimize the time for every agent to find and travel to an exit
whose location is unknown [3,17]. The Group Search problem, on the other hand,
requires any one agent to find the target [16]. These problems have been studied
for many different topologies including the bounded line [4], the ring [24,29],
the disk [15], simple polygons [26], for multiple paths (the original problem is a
two-path system - left and right from the starting location of the agent) [25], the
plane [20], in graphs [3], and in trees [19]. Competitive algorithms for multi-agent
systems have been proposed [3,8,15,17,18,20,24,29], sometimes allowing some of
the agents to be faulty [18,24]. A randomized algorithm has also been shown
to dramatically improve the competitive ratio by a factor of almost 2 for the
original problem (and to a lesser extent for the multi-path variant) [25]. Search
for mobile targets has also been studied [6,13,21].

While cow-path problems relate directly with the search component of the
problem studied in this paper, they do not consider the rescue component. The
subsequent delivery that must occur after the object has been found fundamen-
tally changes the problem. Recently, there has been work in data delivery by
systems of mobile agents on the line [7,11], in the plane [10,12], and in graphs by
energy-constrained agents [1,5]. The recently proposed Pony Express Communi-
cation Problem [11], where agents must cooperate to transmit an object from one
endpoint of a line segment to the other, is most similar to the problem we study
in this paper. In the offline setting, where the locations of the object and all
agents are known to every agent ahead of time, our problem is equivalent to the
Pony Express Communication Problem, for which an optimal offline algorithm
exists. Essentially, the search and rescue problem we study here can be described
as the Pony Express Communication Problem where the initial location of the
object is unknown.

We are not aware of any existing work on this problem for the line, though
it has been studied on the disk for the one- [23] and two-agent [22] cases. The
problem considers agents which start at the center of a unit disk and the object
and destination at unknown points on the perimeter of the disk. Algorithms for
different communication models (wireless and face-to-face) have been presented
and their worst-case delivery times proven. Both algorithms have a constant com-
petitive ratio of 1+π, but rely on the assumption that the positive arc-distance
between the exit and target is known ahead of time. In this paper, we make no
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assumptions about the distance of the object and also provide algorithms for
both wireless and face-to-face communication models for the two-agent case.

Much of the existing work on search and rescue, exploration, and other coop-
erative tasks for multi-agent systems consider rather complex models and/or en-
vironments (obstacles, complex communication networks, communication dropouts,
object recognition, urban or disaster environments, etc.). Techniques like queu-
ing theory [9], machine learning [27], and heuristic-based [28] algorithms have
been used to great effect. In this paper, we study the problem under a much
simpler model in order to provide foundational theoretical guarantees with the
hope that they can be used as a basis for future work.

3 Model and Notation

We consider agents that have a constant maximum speed and can start, stop,
change directions, and pick up/hand over the object instantaneously. We assume
agents can only move finite distances (they cannot move an infinitesimal distance
in some direction). Agents may hand over the object to another agent only when
they are collocated (face-to-face). In the offline setting, agents know the position
of the object and the positions/speeds of all other agents at all times. In the
online setting, however, agents do not know the position of the object or the
positions/speeds of other agents. Except in Section 5.1, agents are assumed to
have no ability to wireless communicate with each other. In all other sections,
agents can only communicate with each other through face-to-face encounter.
In both the face-to-face and wireless communication models, agents may share
their entire state with each other instantaneously. We denote the initial position
of the object by s and the (unknown) position of the object by y. For the single
agent case we assume, without loss of generality, that the agent’s speed is 1. For
the two agent case, we use v1 and v2 to denote the speeds of the two agents such
that v1 ≥ v2 > 0. We use v = v2/v1 to denote the relative speed of the slower
agent with respect to the faster agent.

4 A Single Agent

First, we study the problem for the case of a single agent. In this case, we can
without any loss of generality assume the agent’s speed to be 1. In other words,
we simply define a unit of time to be the amount of time it takes for the agent
to traverse the unit interval.

4.1 Destination at the Endpoint

In this section, we consider the interval [0, 1] where the destination is at 0 and
the agent’s initial position is s ≥ 0. Then, we discuss how the results extend to
the unbounded interval [0,∞).
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Deterministic Algorithms We start by showing a lower bound for any deter-
ministic online single-agent algorithm.

Theorem 4.1. Any online algorithm for the single-agent case has competitive
ratio at least 1 +

√
2.

Proof. Suppose the agent starts at position 1
2 . It is clear that any valid algo-

rithm must eventually reach both endpoints 0 and 1 (otherwise there would
exist instances of the problem, with the object at either 0 or 1, where the agent
never finds the object). First, consider an algorithm which reaches 1 before 0.
By adversarially placing the object at 0, the agent cannot deliver it before time
2
(
1
2

)
+ 1

2 = 3
2 while an optimal algorithm would have delivered the object in

time 1
2 , resulting in a competitive ratio of 3.

Now let’s consider algorithms that reach endpoint 0 first. Let x be the largest
visited point on the interval

[
1
2 , 1

)
. In other words, the agent travels first to x and

then to 0. As an adversary, we can choose to place the object either at y ∈ (x, 1]
or at 0. If we choose the former, the delivery time of any algorithm is at least(
2x− 1

2

)
+ 2y while the optimal delivery time is

(
y − 1

2

)
+ y. If we choose the

latter, however, the delivery time of any algorithm is at least
(
x− 1

2

)
+ x while

the optimal delivery time is 1
2 . Since we have the power to choose whichever is

worse for the algorithm, the competitive ratio can be written:

max

(
sup
y>x

[
2x− 1

2 + 2y

2y − 1
2

]
,
2x− 1/2

1
2

)
= max

(
sup
y>x

[
1 +

2x

2y − 1
2

]
, 4x− 1

)
(1)

= max

(
8x− 1

4x− 1
, 4x− 1

)
≥ 1 +

√
2 (2)

Observe supy>x

[
1 + 2x

2y− 1
2

]
= 8x−1

4x−1 since 2x
2y− 1

2

is decreasing with respect to y.

Then, the inequality above follows since 8x−1
4x−1 is decreasing on

(
1
2 , 1

)
, 4x − 1 is

increasing on
(
1
2 , 1

)
, and they intersect at x = 1

2 +
1

2
√
2
. Thus, for any algorithm

(which determines a value for x), the competitive ratio is at least 1 +
√
2.

Now, we present Algorithm 1 and prove it to be optimal.

Algorithm 1 Online algorithm for agent starting at s ∈ [0, 1]

1: x← min
(

1, s
(

1 + 1√
2

))
2: move along path s→ x→ 0→ 1, returning to 0 with the object once it is found

Theorem 4.2. Algorithm 1 has a competitive ratio of at most 1 +
√
2.

Proof. Essentially, the algorithm involves traveling right toward 1 until reaching

a point x = min
(
1, s

(
1 + 1√

2

))
, then traveling all the way to 0 (delivering the
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0 1

s

x = min
(
1, s

(
1 + 1√

2

))

Fig. 1: The dashed line represents movement of agent executing Algorithm 1.
The agent travels from its starting position at s to the point x, then to 0, then
to 1 and back to 0 again. Once the agent encounters the object along this path
it returns to 0 (not drawn).

object if it found it along the way). If the agent still does not have the object,
it traverses the entire interval to the object (all the way to 1 if necessary) and
back (Figure 1). Using a similar method as was used in proving Theorem 4.1,
there are three interesting cases:

Case 1: s = 0. In this case, x = 0 and the algorithm clearly performs
optimally, since it simply moves right until finding the object and then moves
back to 0.

Case 2: s ≥ 2 −
√
2. In this case, x = 1 and so placing the object at y < s

maximizes the competitive ratio (since any y ≥ s would result in an optimal
delivery time):

(x− s) + x

s
=

2− s

s
≤ 1 +

√
2

Case 3: 0 < s < 2 −
√
2. In this case, s < x < 1 and the maximum

competitive ratio is achieved either by placing the object at some position y < s
or at some position y > x (since any s ≤ y ≤ x would result in an optimal
delivery time):

max

(
sup
y>x

[
(2x− s) + 2y

(y − s) + y

]
,
(x− s) + x

s

)
= max

(
4x− s

2x− s
,
2x− s

s

)
= max

(
1 +

√
2, 1 +

√
2
)

(3)

= 1 +
√
2

where Equation (3) follows since x = s
(
1 + 1√

2

)
in this case. Thus, Algorithm 1

has a competitive ratio of at most 1 +
√
2.

This result is particularly interesting when compared to the search and de-
livery problems separately. First, observe that for the search problem with no
lower bound on the distance of the target to the agent’s starting location, there
is no competitive online algorithm! The agent must move some distance either
left or right to begin with - whatever that distance is, we can place the object
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an arbitrarily small fraction of the distance in the other direction, making the
competitive ratio of the algorithm arbitrarily large. The delivery problem on
the line segment, on the other hand, is trivial with one agent - just go to the
object and then the destination. A competitive online algorithm for the search
and rescue problem, however, does exist and is not trivial!

It’s important to understand that Algorithm 1 does not minimize the worst-
case delivery time of the object. In fact, a simple algorithm of just going to
1 and then back to 0 terminates in at most time 2 (when the object is at 1)
while Algorithm 1 can take up to 2 +

√
2 time (when s = 2 −

√
2 − ϵ for some

arbitrarily small ϵ > 0 and the object is at 1). Rather, Algorithm 1 minimizes
the delivery time compared to the optimal delivery time if the location of the
object were known. The aforementioned simple algorithm, on the other hand,
might take time 2 to deliver an object that could have been delivered almost
instantaneously! Algorithm 1 guarantees this never happens — an object that
can be delivered in time t optimally will be delivered in at most (1+

√
2)t time.

So Algorithm 1 (and any other which minimizes competitive ratio in general)
might be described as an algorithm that minimizes the regret that an agent has
after discovering the location of the object.

There is another even more important scenario where an algorithm’s com-
petitive ratio is more useful than its worst-case runtime: when the worst-case
runtime is unbounded. Consider the situation where an agent no longer knows
the length of the path ahead of it — only its initial distance to 0. In the extreme
case, the object could be anywhere on the interval [0,∞). In this case, there is
no simple exhaustive search algorithm that terminates in bounded time because
the path could go on forever (or in a more realistic scenario, for a really, really
long time)! Even for this extreme case, Algorithm 2 (a slight modification of
Algorithm 1 which simply removes the upper bound on the agent’s search to
the right of s), will still deliver the object to its destination in 1 +

√
2 times the

optimal time.

Algorithm 2 Online algorithm for agent starting at s ∈ [0,∞)

1: x← s
(

1 + 1√
2

)
2: move along path s→ x→ 0→∞, returning to 0 with the object once it is found

Corollary 1. Algorithm 2 has a competitive ratio of 1 +
√
2.

Proof. Follows directly from the proof for Algorithm 1.

Using Randomization The analysis for Algorithm 1 involved reasoning about
how an adversary might place the object at worst-case positions along the line-
segment. By using randomization, we can mitigate the damage an adversary can
do by not committing to a predictable, deterministic algorithm. First, we prove
a lower bound on how well a randomized algorithm can do:
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Theorem 4.3. Every randomized online algorithm for the single-agent case has
an expected competitive ratio of at least 5/3.

Proof. Consider the scenario where the agent is at some position s < 1
2 and the

object is placed on the interval (s, 2s] uniformly at random with probability 2/3
and at 0 with probability 1/3. Observe in the former case, the expected position
of the object is (2s + s)/2 = 3s/2. Since the object cannot be in the interval
(0, s], any optimal online algorithm must involve the agent either moving along
the path s → 0 → 1 or along the path s → x → 0 → 1 (returning to 0 as soon as
the object is found, of course) for some x ∈ (s, 1]. If the agent moves to 0 first,
then the expected competitive ratio is

1

3
· 1 + 2

3
·
(
2(3s)/2 + s

2(3s)/2− s

)
=

1

3
+

2

3

(
3s+ s

3s− s

)
= 5/3

If instead, the agent moves to some position x ∈ (s, 2s], then the probability that
the agent finds the object (in optimal time) on (s, x] is 2

3 · x−s
s . On the other

hand, the probability that the object is in the interval (x, 2s] is 2
3 · 2s−x

s . Given
this situation, observe that the expected position of the object in this case is
(2s+ x)/2. Thus the competitive ratio can be written:

1

3
· 2x− s

s
+

2

3

(
x− s

s
· 1 + 2s− x

s
· 2x− s+ 2(x+ 2s)/2

2(x+ 2s)/2− s

)
=

s2 + 11sx− 2x2

3s2 + 3sx

which has a maximum value of 5/3 (at both x = s and x = 2s). Thus, any de-
terministic algorithm for this distribution of inputs has an expected competitive
ratio of at least 5/3. Finally, by Yao’s Minimax Principle [30], every randomized
algorithm must have an expected competitive ratio of at least 5/3.

Now, we present a simple randomized algorithm: with probability 1
2 , the

agent will simply execute an algorithm very similar to Algorithm 1, otherwise
the agent will move directly to 0 and then, if it still hasn’t found the object,
move towards 1 until it does and then return to 0.

Algorithm 3 Online randomized algorithm for agent starting at s ∈ [0, 1]

1: Let p be a random bit
2: if p = 0 then
3: move along path s→ min(2s, 1)→ 0→ 1, returning to 0 with the object once

it is found
4: else
5: move along path s→ 0→ 1, returning to 0 with the object once it is found

Theorem 4.4. Algorithm 3 has an expected competitive ratio of 2.

Proof. First, we consider the case where s < 1/2. Observe the object is either
in the interval (0, s), (s, 2s], or (2s, 1]. The goal of the adversary now is to place
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the object in the interval which maximizes the expected competitive ratio. For
example, if the object is in the first interval, then the algorithm is optimal with
probability 1/2 (the agent goes towards 0). Otherwise, it has a competitive ratio

of 2(2s)−s
s = 3. The adversary is not required to commit to a deterministic

strategy, however. Consider a mixed strategy where the adversary places the
object in (0, s) with a probability of q, in (s, 2s] with a probability of r, and in
(2s, 1] with a probability of 1 − q − r. Let CR denote the competitive ratio of
Algorithm 3. Then the expected competitive ratio can be written:

E[CR] =
1

2

(
q · 1 + r · 2y2 + s

2y2 − s
+ (1− q − r)

2y3 + s

2y3 − s

)
+

1

2

(
q · 2(2s− s) + s

s
+ r · 1 + (1− q − r)

2y3 + 3s

2y3 − s

)
E[CR] ≤ 1

2

(
q · 1 + r · 3 + (1− q − r)

5

3

)
+

1

2

(
q · 3 + r · 1 + (1− q − r)

7

3

)
= 2

where y2 and y3 are the expected positions of the object in cases 2 and 3,
respectively. The above inequality follows from worst-case values (those which
maximize the competitive ratio) y2 approaches s (from above) and y3 approaches
2s (from above).

Now we must consider the case where s ≥ 1/2. In this case, there are only two
intervals in which the adversary may place the object. Let q′ be the probability
the object is in [0, s) (case 1) and 1 − q′ the probability it is in (s, 1] (case 2).
Then the competitive ratio can be written:

E[CR] =
1

2

(
q′ · 1 + (1− q′) · 2y

′
2 + s

2y′2 − s

)
+

1

2

(
q′ · 2− s

s
+ (1− q′) · 1

)
E[CR] ≤ 1

2
(q′ · 1 + (1− q′) · 3) + 1

2
(q′ · 3 + (1− q′) · 1) = 2

where y′2 is the expected position of object in case 2. The above inequality follows
from the worst-case value (that which maximizes the competitive ratio) where
y′2 approaches s (from above).

The expected competitive ratio of Algorithm 3 is significantly lower than the
competitive ratio of the deterministic Algorithm 1, especially with respect to the
lower bound on the competitive ratio of any randomized algorithm.

Remark 1. A slight modification of Algorithm 3 for the unbounded interval
[0,∞) (simply replace 1 in the paths with ∞) has the same expected com-
petitive ratio since the second scenario discussed in the proof for Theorem 4.4
is essentially eliminated and the analysis for the first scenario is equivalent.

4.2 Destination in the Middle

Up until this point, we’ve only considered scenarios where the destination is at
an endpoint. In this section, we consider situations where the object may be on
either side of the destination.
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Deterministic Algorithms We start by showing the necessity of an additional
assumption for this variant of the problem: the agent’s initial position cannot be
at 0 (the destination).

Lemma 4.1. For any initial configuration where the agent starts at 0 and the
object is on one of two paths emanating from 0, there is no competitive algorithm.

Proof. Any algorithm must involve the agent doing one of two things at time
t = 0:

1. wait for some time t′

2. move some distance d′ > 0 down one of the paths

In the first case, an adversary may simply place the object along any of the paths
an arbitrarily small distance d/2 away from 0 (so the optimal delivery time is
d). The competitive ratio in this case is at least t′/d, which is arbitrarily large
as d → 0. In the second case, an adversary may place the object an arbitrarily
small distance d/2 away from 0 along any path except the one the agent traveled
down. Again, the competitive ratio is at least d′/d, which is arbitrarily large as
d → 0 (since d′ > 0).

Thus, we assume, without loss of generality that the agent starts at some
position s > 0 (all proofs follow for s < 0 via a symmetrical argument). We
present an online “zig-zag” algorithm (Algorithm 4) which involves the agent
searching a distance 2s to the left (crossing 0) and returning to s, then a distance
4s to the right and returning to s, then a distance 8s to left and returning to s,
and so on, doubling its search distance in each round (Figure 2). In other words,
the agent follows the trajectory s → −s → 5s → −7s → 15s → . . ..

Algorithm 4 Online Algorithm for agent starting at s ̸= 0

1: i← 1
2: x← −s
3: while object not found do
4: move toward x
5: if arrived at x ̸= s or an endpoint then
6: x← s
7: else if arrived at s then
8: i← i + 1
9: x← s + (−1)i · 2is

10: Return to 0 with object

Now, we will show an upper bound of 5 on its competitive ratio, then prove
it is optimal.

Theorem 4.5. Algorithm 4 has a competitive ratio of 5.
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−1 1s0

Fig. 2: The dashed line represents movement of agent executing Algorithm 4.
The agent travels from its starting position at s to the point −s, then to 5s, and
so on. Upon finding the object, the agent returns to 0 (not drawn).

Proof. In Algorithm 4, the agent starts at s and moves left and right in alter-
nating rounds, doubling the distance it travels each round. In round i = 1, 2, . . . ,
the agent moves a distance 2is (left in odd rounds and right in even rounds) out
and back to s (for a total of 2i+1). In the case an endpoint is reached, the agent
would turn around rather than finish travelling the full distance of the round.
However, to simplify the analysis it is easier to consider the alternate algorithm
A′ such that the agent does not turn around early and travels a distance 2i (out
and back) no matter what, traveling beyond the endpoint if necessary. It is clear
that our original algorithm cannot perform worse than A′ and in cases where
an endpoint is never reached before finding the object, the two algorithms are
identical. Thus, any upper bound on the competitive ratio of A′ is also an upper
bound on Algorithm 4. For the following analysis, assume the algorithm we are
referring to is A′.

Without loss of generality, suppose s > 0 (a symmetric argument follows
when s < 0). Let y be the position of the object. Then there are three interesting
cases: when −s ≤ y ≤ s, when y > s, and when y < −s. The first case is the
simplest to analyze. Since −s ≤ y < s, the object is found in round 1 and is
clearly optimal. For the second case, if the object is found in round 2, then
s < y < 5s and the competitive ratio is

3s+ 2y

2y − s
≤ 5 (4)

since the left-hand side of Inequality (4) is decreasing with respect to y and
y > s. Otherwise, y > 5s and so the object must be found in some even round
k > 2. Also, observe 2k−2s < y− s (otherwise the object would have been found

in an earlier round), implying 2k < 4(y−s)
s . The delivery time of A′, then, is

TA′ =

k−1∑
i=1

2i+1s+ 2y − s = 2s
(
2k − 2

)
+ 2y − s

TA′ < 2s

(
4(y − s)

s
− 2

)
+ 2y − s = 10y − 13s,
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while the optimal delivery time is 2y − s, thus the competitive ratio is at most
(10y − 13s)/(2y − s) ≤ 5. Finally, when y < −s, the object must be found in
some odd round k > 2. Then, we have 2k−2s < s + |y| (otherwise the object
would have been found in an earlier round just as in the first case), implying

2k < 4(s+|y|)
s . The delivery time of A′ in this case is

k−1∑
i=1

2is+ 2|y|+ s = 2s(2k − 2) + 2|y|+ s

< 2s

(
4(s+ |y|)

s
− 2

)
+ 2|y|+ s = 10|y|+ 5s,

while the optimal delivery time is 2|y|+ s. Thus the competitive ratio is at most
(10|y|+ 5s)/(2|y|+ s) ≤ 5.

Remark 2. Note that algorithm A′ is exactly the algorithm for the unbounded
case, so the competitive ratio of at most 5 applies to both the bounded and
unbounded cases.

Theorem 4.6. Every online algorithm for the single-agent, line model must
have a competitive ratio of at least 5.

Proof. Consider a scenario where the agent is placed at some arbitrarily small
distance s > 0 away from 0 and the object is at least a distance 2s from s. Any
algorithm must involve a sequence of positive distances x1, x2, x3, . . . such that
the agent moves left (or right) a distance x1 and back to s, then right (or left)
a distance x2 and back to s, and so on. Clearly any optimal online algorithm
of this form must satisfy xi+2 > xi and any algorithm with a competitive ratio
of 5 or better must satisfy xi ≤ 3xi−1 where x1 ≥ 2s (since the object at least
a distance 2s from s). Thus, xi < 2s · 3i−1 for all i ≥ 2 and so the number of
required turning points for an optimal online algorithm can be made arbitrarily
large (by setting s to be arbitrarily small).

For some sequence of turning points, suppose the object is found on the
kth round (k can be arbitrarily large by the argument above) and observe the
competitive ratio can then be written

sup
k,y,s

∑k−1
i=1 2xi + 2y ± s

2y ± s
= sup

k

∑k−1
i=1 xi + xk−2

xk−2

= 1 + sup
k

∑k−1
i=1 xi

xk−2
≥ 1 + sup

k

∑k−1
i=1 ri

rk−2
= 1 + sup

k

rk − r

(r − 1)rk−2

where r > 1 (the expansion factor). The above inequality follows from Corollary
7.11 of Section 7.2 of [21] (following the method for proving the 9-competitive

search on an infinite line in Section 8.2.1 of [21]). Then, since rk−r
(r−1)rk−2 is in-

creasing with respect to k (its derivative r3−k ln r
r−1 is greater than 0 for any r > 1),
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we can simplify the competitive ratio to

1 + sup
k

rk − r

(r − 1)rk−2
= 1 + lim

k→∞

rk − r

(r − 1)rk−2
= 1 +

r2

r − 1

which has a minimum value of 5 for r = 2.

Using Randomization Again, the analysis of Algorithm 4 involved reasoning
about worst-case positions of the object. The following algorithm and subsequent
upper bound are very similar to the well-known optimal randomized algorithm
for the cow-path search problem [25]. The algorithm is essentially a standard
zig-zag algorithm (like Algorithm 4) except that the starting search direction
and initial search distance are randomized. In the following Algorithm 5, the
random bit p determines the initial search direction and the random number
ϵ ∈ (0, 1) determines the initial search distance (which is rϵs for some constant
r > 1).

Algorithm 5 Online randomized algorithm for agent starting at s ̸= 0 with
expansion rate r > 1

1: let p be a random bit
2: sample ϵ uniformly at random from the interval (0, 1)
3: i← 1
4: x← s + (−1)i−p · ri+ϵs
5: while object not found do
6: move toward x
7: if arrived at x ̸= s or an endpoint then
8: x← s
9: else if arrived at s then

10: i← i + 1
11: x← s + (−1)i−p · ri+ϵs

12: Return to 0 with object

Theorem 4.7. The expansion rate r = 1
W (1/e) ≈ 3.59112 yields an expected

competitive ratio of 1 + 1
2W (1/e) ≈ 2.79556 for Algorithm 5 where W (x) is the

product logarithm (Lambert W function [14]) of x.

Proof. Just as in the proof for Theorem 4.5, we consider the alternate algorithm
A′ such that the agent does not turn around early upon reaching an endpoint. It
is clear that our original algorithm cannot perform worse than A′ and in cases
where an endpoint is never reached, the two algorithms are identical.

Let d = s · rk+δ denote the position of the object where 0 ≤ δ < 1. By
executing Algorithm 5, the agent moves a distance ri+ϵ to the left and right
in alternating rounds i = 1, 2, . . .. Consider the round when the agent moves a
distance s · rk for the first time. If the agent moves rk distance for the first time
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in the opposite direction of the object, then it will definitely find the object in
round k + 1. The expected competitive ratio in this case can be written:

E

[∑k
i=1 s · 2ri+ϵ + 2d± s

2d± s

]
= E

[∑k
i=1 2r

i+ϵ + 2rk+δ ± 1

2rk+δ ± 1

]

= E

[
1 +

2rϵ
(
rk+1 − r

)
(2rk+δ ± 1) (r − 1)

]

= 1 +
2
(
rk+1 − r

)
(2rk+δ ± 1) (r − 1)

· E [rϵ]

= 1 +
2
(
rk+1 − r

)
(2rk+δ ± 1) ln r

since E[rϵ] =
∫ r

1
x 1
x ln rdx = r−1

ln r .

On the other hand, if the agent moves a distance s · rk for the first time in
the direction of the object, it will find it on round k if ϵ ≥ δ and on round k+2
otherwise. Let B be the event that ϵ ≥ δ, then the expected competitive ratio
can be written:

E

[
Pr[B]

[∑k−1
i=1 s · 2ri+ϵ + 2d± s

2d± s

]
+ (1− Pr[B])

[∑k+1
i=1 s · 2ri+ϵ + 2d± s

2d± s

]]

= E
[
Pr[B]

[
1 +

2rϵ(rk − r)

(2rk+δ ± 1) (r − 1)

]
+ (1− Pr[B])

[
1 +

2rϵ(rk+2 − r)

(2rk+δ ± 1) (r − 1)

]]
= Pr[B]

[
1 +

2(rk − r)

(2rk+δ ± 1) (r − 1)
· E [rϵ|B]

]
+ (1− Pr[B])

[
1 +

2(rk+2 − r)

(2rk+δ ± 1) (r − 1)
· E

[
rϵ|B

]]
= Pr[B]

[
1 +

2(rk − r)(r − rδ)

(2rk+δ ± 1) (r − 1) ln rPr[B]

]
+ (1− Pr[B])

[
1 +

2(rk+2 − r)(rδ − 1)

(2rk+δ ± 1) (r − 1) ln rPr[B]

]
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since E[rϵ|B] =
∫ r

rδ
x 1
Pr[B]·x ln rdx = r−rδ

ln rPr[B] and E[rϵ|B] =
∫ rδ

1
x 1
Pr[B]·x ln r

dx =

rδ−1
ln rPr[B]

. Then the expression can be further simplified:

= 1 +
2(rk − r)(r − rδ)

(2rk+δ ± 1) (r − 1) ln r
+

2(rk+2 − r)(rδ − 1)

(2rk+δ ± 1) (r − 1) ln r

= 1 +
2

(2rk+δ ± 1) (r − 1) ln r

(
(rk − r)(r − rδ) + (rk+2 − r)(rδ − 1)

)
= 1 +

2

(2rk+δ ± 1) (r − 1) ln r
(r − 1)(rδ+k + rd+k+1 − rk+1 − r)

= 1 +
2(rδ+k + rd+k+1 − rk+1 − r)

(2rk+δ ± 1) ln r

Observe that, since the initial search direction is chosen uniformly randomly, the
total expected competitive ratio is

1

2

[
1 +

2
(
rk+1 − r

)
(2rk+δ ± 1) ln r

]
+

1

2

[
1 +

2(rδ+k + rd+k+1 − rk+1 − r)

(2rk+δ ± 1) ln r

]
= 1 +

(
rk+1 − r

)
(2rk+δ ± 1) ln r

+
(rδ+k + rd+k+1 − rk+1 − r)

(2rk+δ ± 1) ln r

= 1 +
rk+δ(1 + r)− 2r

(2rk+δ ± 1) ln r
≤ 1 +

rk+δ(1 + r)− (1 + r)

(2rk+δ − 1) ln r − ln r
= 1 +

(1 + r)(rk+δ − 1)

ln r (2rk+δ − 2)

= 1 +
1 + r

2 ln r
.

Finally, with an expansion rate of r = 1
W (1/e) ≈ 3.59112, the above upper bound

becomes 1 + 1
2W (1/e) ≈ 2.79556.

Remark 3. Note that, again, algorithm A′ is exactly the modified version of A
that would be used in the unbounded case, so the competitive ratio of at most
1 + 1

2W (1/e) applies to both the bounded and unbounded cases.

5 Two Agents

In this section, we present results for multi-agent search and rescue, considering
the case of two agents initially located at the same point s on the line segment but
with different speeds v1 and v2. Without loss of generality, we assume v1 ≥ v2.
We refer to the agent with speed v1 as the “first” or “fast” agent and the agent
with speed v2 as the “second” or “slow” agent. The goal is the same, except
agents may hand over the object to each other via face-to-face encounter. We
denote v = v2/v1 as the speed of the slower agent relative to the faster agent
(observe 0 ≤ v ≤ 1). The delivery time of the optimal algorithm, then, is clearly
(2y − s)/v1, where the fast agent delivers the object entirely by itself.
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Remark 4. By Theorem 4.1, whenever v2 = 0, the lower bound of 1+
√
2 applies

to the two-agent case directly.

Now we present Algorithm 6, an online algorithm which involves the slow
agent moving toward 1 and the fast agent moving toward 0 only if doing so is
better than the fast agent simply executing Algorithm 1 by itself.

Algorithm 6 Online two-agent algorithm for agents starting at s ∈ [0, 1]

1: if other agent is faster then
2: x← 1
3: else if 2−

√
2

2+
√

2
< v < 1 then

4: x← 0
5: else
6: x← s(1 + 1/

√
2)

7: move along path s → x → 0 → 1, returning to 0 with the object once it is found
and handing it over to any faster agent encountered

Theorem 5.1. For any system with two agents starting at position s ∈ [0, 1],

Algorithm 6 has a competitive ratio of min
(
1 +

√
2, 3−v

1+v

)
where v = v2/v1.

Proof. First, observe that since both agents start at s, an optimal offline algo-
rithm involves only the first agent moving directly toward the object and then

to 0 for delivery. Thus, in the case where v ≤ 2−
√
2

2+
√
2
or v = 1, the first agent

exactly performs Algorithm 1, and so a competitive ratio of 1 +
√
2 is achieved.

The interesting case, then is when 2−
√
2

2+
√
2
< v < 1. Let y be the position of the

object along the line segment. Clearly if y ≤ s, then the algorithm is optimal.
If y > s, then there are two possible scenarios. If s + y ≤ (y − s)/v, then the
fast agent reaches the object at the same time or before the slow agent, so the
competitive ratio is

2y + s

2y − s
≤

2y + 1−v
1+v y

2y − 1−v
1+v y

=
3 + v

3v + 1
.

If s + y > (y − s)/v, then the slow agent reaches the object first, picks it up,
and moves toward 0 until encountering the fast agent for a handover. Then the
fast agent delivers the object. In this case, the delivery time can be written as
the sum of the time it took to meet (t = 2y

1+v ) and the time for the fast agent to
carry the object the remaining distance (y − (tv − (y − s)) = 2y − tv − s) for a
total time of 4y

1+v − s. Thus, the competitive ratio is

4y
1+v − s

2y − s
≤ 3− v

1 + v



Search and Rescue on the Line 17

since the function is decreasing with respect to y in the y > s region and thus
obtains its maximum value at y = s. Finally, observe the second case dominates
the competitive ratio:

3− v

1 + v
≥ 3 + v

1 + 3v
⇒ 3 + 8v − 3v2 ≥ 3 + 4v + v2 ⇒ v(1− v) ≥ 0

Of course this condition is always satisfied since 0 ≤ v ≤ 1.

Observe that since agents start at the same position, Algorithm 1 still has

a competitive ratio of 1 +
√
2. Algorithm 6 is only better when v2 > 2−

√
2

2+
√
2
v1 ≈

0.1716v1. In other words, as long as one agent is not too much faster than the
other, Algorithm 6 is more competitive.

5.1 Agents with Radios

In Algorithm 6, the fast agent moves toward 0 and only turns around to help the
slower agent if it reaches 0 without finding the object. If the slow agent finds the
object before the fast agent reaches 0 and the agents can communicate, though,
then clearly the fast agent should turn around immediately to acquire the object
as quickly as possible.

Algorithm 7 Online two-agent algorithm for agent starting at s ∈ [0, 1]

1: if other agent is faster then
2: x← 1
3: else if 2−

√
2

2+2
√
2
< v < 1 then

4: x← 0
5: else
6: x← s(1 + s/

√
2)

7: move along path s → x → 0 → 1, returning to 0 with the object once it is found
and handing it over to any fast agent encountered

Theorem 5.2. Algorithm 7 has a competitive ratio of min
(
1 +

√
2, 3

1+2v

)
.

Proof. The proof is very similar to that of Theorem 5.1. Without loss of gener-
ality, suppose the first agent has a speed of 1 and the second agent a speed of

v ≤ 1. For the case where v ≤ 2−
√
2

2+2
√
2
or v = 1, the first agent exactly performs

Algorithm 1, and so a competitive ratio of 1 +
√
2 is achieved. The interesting

case, then is when 2−
√
2

2+2
√
2
< v < 1. First, if the fast agent still arrives at the

object first, the competitive ratio is 3+v
1+3v (using the same analysis as used in the

proof for Theorem 5.1). Otherwise, if the slow agent arrives at the object before
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the fast agent reaches 0 (i.e. s > y−s
v ⇒ y < s(v + 1)), then the competitive

ratio is

t+ (y − (tv − (y − s)))

2y − s
=

s(2− v)− 2y

v(s− 2y)
≤ 3

1 + 2v

where t =
2(y−(s− y−s

v ))
1+v is the time the agents meet for a handover. The first

equality follows from substituting this value for t and the final inequality follows

since s(2−v)−2y
v(s−2y) is increasing with respect to y (its derivative with respect to y,

2s(1−v)
v(s−2y)2 , is positive for all v < 1) and y < s(v+1). On the other hand, if the slow

agent finds the object after the fast agent reaches 0 but still before it catches up
(s < y−s

v < y + s), then the competitive ratio is

t+ (y − (tv − (y − s)))

2y − s
=

s(1 + v)− 4y

(1 + v)(s− 2y)
=

s(1 + v)− 4y

s(1 + v)− 2y(1 + v)
≤ 3

1 + 2v

where t = 2y
1+v is the time the agents meet for a handover. The first equality

follows from substituting this value for t and the final inequality follows since
s(1+v)−4y

s(1+v)−2y(1+v) is decreasing with respect to y (its derivative with respect to y,
2s(v−1)

(1+v)(s−2y)2 , is negative for all v < 1) and y > s(1 + v). Finally, observe the

second and third cases dominate the competitive ratio:

3

1 + 2v
≥ 3 + v

1 + 3v
⇒ 3 + 9v ≥ 3 + 7v + 2v2 ⇒ v(1− v) ≥ 0

Clearly this condition is always satisfied since 0 ≤ v ≤ 1.

Observe that Algorithm 7 has a better competitive ratio than Algorithm 1

whenever the slow agent has speed greater than 2−
√
2

2+2
√
2

≈ 0.1213. Recall for

the case where agents cannot communicate, the slow agent only helps when its

speed is greater than 2+
√
2

2−
√
2
≈ 0.1716.

6 Conclusion

In this paper, we propose a problem inspired by search and rescue, a task that
cooperative robotic systems have long showed promise in assisting with. We
provide both deterministic and randomized algorithms for the single-agent case
and provide lower and upper bounds on their competitive ratios. We showed the
search and rescue problem is fundamentally different than the search and de-
livery problems considered separately, which are trivial. For the case where the
destination is in the middle, however, the optimal (deterministic and random-
ized) algorithms are essentially the same as the well-known optimal algorithms
for search problem, though the resulting competitive ratios are different. For the
two-agent case, we essentially provide one algorithm and demonstrate how ex-
tra communication ability between the two agents affects its competitive ratio.
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While the deterministic single-agent algorithms are optimal, it’s not clear if the
randomized and multi-agent algorithms can be improved. This is an interesting
area for future work on this problem. Other areas that deserve more attention are
the study of search and rescue for other topologies (i.e. the ring, the plane, and
trees/graphs) and for more general multi-agent scenarios (with different starting
locations, communication abilities, etc.).
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