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Abstract—We present Autonomous Rssi based RElative poSitioning and Tracking (ARREST), a new system for dynamic tracking of
moving, RF-emitting object, referred to as the Leader, by a tracking robot that solely employs radio strength measurements. Our
proposed tracking agent, referred to as the TrackBot, uses a single rotating, off-the-shelf, directional antenna, novel angle and relative
speed estimation algorithms, and Kalman filtering to continually estimate the Leader’s relative position with decimeter level accuracy
(which is comparable to a multiple access point based RF-localization system) and the relative speed of the Leader with accuracy on
the order of 1 m/s. The TrackBot feeds the relative position and speed estimates into a Linear Quadratic Gaussian controller (LQG) to
generate a set of control outputs to control the orientation and the movement of the TrackBot. We perform an extensive set of real world
experiments with a full-fledged prototype to demonstrate that the TrackBot is able to stay within 5m of the Leader with: (1) more than
99% probability in line of sight scenarios, and (2) more than 70% probability in no line of sight scenarios, when it moves 1.8X faster

than the Leader.

Index Terms—Sensing, Tracking, Robots, Radio Signal Strength Information (RSSI)

1 INTRODUCTION

OCALIZATION and tracking of a moving object/human

by a robot is an important topic of research in the field
of robotics and automation for enabling collaborative work
environments [1], including for applications such as fire
fighting [2] and exploration of unknown terrains [3]. In dis-
aster management, robots can assist by tracking and follow-
ing first-responders while the team explores an unknown
environment [4]. To achieve this, staying in proximity to the
first-responders is the key. Another application context of
this field of research is in the Leader-Follower collaborative
robotics architecture [5] where a follower robot is required
to track and follow a respective Leader. Robotic localization
and autonomous navigation/tracking is also required in
smart home environments where robots assist humans in
daily activities [6]. In this paper, we focus on this class of
tracking problems where the term “tracking” refers to the
dynamic relative position sensing and control of a robot that is
required to stay in proximity to an uncontrolled moving target
such as a Leader robot or human.

In a successful tracking system, the tracker requires
information about its relative position with respect to the
Leader/Target. The accuracy and timeliness of such infor-
mation is crucial for maintaining proximity. In traditional
Global Positioning System (GPS) based tracking and path
planning, one can use GPS coordinates to precisely calcu-
late the relative position [7]. However, there exists many
scenarios in indoors and cluttered environments where GPS
signals are limited, such as disaster operations in large cities
or underground operations. While there are many camera
and rangefinder based systems for tracking moving objects (
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[8], [9]), the effectiveness of these sensors crumble when vis-
ibility deteriorates or direct line of sight does not exist [10].
Moreover, the use of these types of sensors as well as the
processing of their data, namely image processing, increases
the form factor and power consumption of the robots which
inherently always work under power constraints. Thus, we
need an alternative, cheap, and scalable solution with low
processing power requirements to tackle low visibility con-
texts and cluttered environments. Among the alternatives,
radio signal strength based localization techniques are very
popular [11]. Therefore, we propose a pure RF based relative
localization and control system for efficient autonomous tracking
of a moving object in indoor cluttered environments.

Our Contribution: We propose the Autonomous Rssi
based RElative poSitioning and Tracking (ARREST), a purely
Radio Signal Strength Information (RSSI) based single node RF
sensing and tracking system for joint location, angle and speed
estimation and bounded distance tracking of a target moving
arbitrarily in 2-D that can be implemented using commodity
hardware. In our proposed system, the target, which we refer
to as the Leader, carries an RF-emitting device that sends
out periodic beacons while moving. The tracking robot,
which we refer to as the TrackBot, employs an off-the-shelf
directional antenna, novel relative position and speed esti-
mation algorithms, and a Linear Quadratic Gaussian (LQG)
controller to measure the RSSI of the beacons and control
its maneuvers. Further, to evaluate the ARREST system in
a range of large scale and uncontrolled environments, we
developed an integrated Time Difference of Arrival (TDoA)
based ground truth estimation system for line of sight (LOS)
scenarios that can be easily extended to perform a range
of large scale indoor and outdoor robotics experiments,
without the need of a costly and permanent VICON [12]
system.

Performance Evaluation Overview: To analyze and
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Fig. 1. (a) The TrackBot Prototype (b) The 3pi Leader-Bot used as a RF-emitting dynamic object (Leader) (c) Coordinate System lllustration

evaluate the ARREST architecture, we develop a hardware
prototype (detailed in Section [f] and illustrated in Fig. [Ta)
and perform a set of exhaustive real world experiments
as well as emulations. We first perform a set of emulation
experiments (detailed in Section based on real world
RSSI data traces collected in various environments. The
emulations demonstrate that the TrackBot is able to estimate
the target’s location with decimeter-scale accuracy, and stay
within 5m of the Leader (with > 99% probability and with
bounded errors in estimations) as long as the Leader’s speed
is less than or equal to 3m/s and the TrackBot’s speed is
1.8X times faster than the Leader’s speed. Next, using the
same parameter setup as in the emulations, we perform a
set of small scale real-world tracking experiments (detailed
in Section in three representative environments and
a range of large-scale long duration experiments in four
representative environments (detailed in Section [6.3). These
experiments demonstrate the practicality of our ARREST
architecture and validate the emulation results. Moreover,
these experiments prove that our ARREST system works
well (with > 70% probability) in cluttered environments
(even in the absence of line of sight) and identify some non-
line of sight scenarios where our system can fail. To improve
the success rate of our ARREST system in severe non-
line of sight (NLOS) situations, we propose a movement
randomization technique, detailed in Section Note that,
while we presented a subset of the emulation and small scale
results in our workshop paper [13|], the large scale results, a new
TDoA based ground truth system, and the randomized multipath
adaptation system for severe multipath or NLOS scenarios are
exclusive to this manuscript. Furthermore, we also compare the
ARREST system’s performance for varying relative position esti-
mation accuracies offered by different sensing modalities such as
camera or infrared in Section |6.4.3

Related Works: The most popular class of tracking archi-
tectures employs vision and laser range finder systems ( [8],
[9], [14]). Researchers have proposed a class of efficient
sampling and filtering algorithms for vision based tracking
such as the Kalman filtering and the particle filtering ( [9],
[15] ). There also exist some works that combine vision with
range finders ( [14], [16]). However, these sensors are known
to perform poorly in low visibility and non line of sight
scenarios [10]. Moreover, the processing requirements for
these sensor data based actuation, such as for image pro-
cessing, increase the form factors and power consumption

of the power constrained robots. As alternatives, the RF
Localization related works in wireless sensor networks [11]
where robots are employed for localizing static nodes, are
relevant. Graefenstein ef al. [17] employed a rotating antenna
on a mobile robot to map the RSSI of a region and exploit
the map to localize the static nodes. Similar works have
been proposed in the context of locating static radio sources
such as radio tagged fish or wild animals ( [18], [19] ). The
works of Zickler and Veloso [20], and Oliveira et al. [21]
on RF-based relative localization are also relevant as we
also employ a RF based relative localization in our system.
Vasisht, Kumar, and Katabi [22] have applied a MIMO-
based system to relatively localize a single node. Simulation
of a RSSI based constant distance following technique is
demonstrated in [23] where the leader movement path is
predetermined and known to the Follower. However, unlike
these works, the TrackBot in the ARREST system relies solely
on RSSI data not only for the localization of the mobile Leader
with unknown movement pattern, but also for autonomous motion
control with the goal of maintaining a bounded distance. The clos-
est state-of-the-art related to our work is presented in [24].
In this work, the authors developed a system that follows
the bearing of a directional antenna for effective commu-
nication. However, to our knowledge, the maintenance of
guaranteed close proximity to the Leader was not discussed
in [24], which is the most important goal in our work.
Moreover, this work employs both RSSI and sonar to deter-
mine the orientation of the transmitter antenna along with
comparatively costly and high power consuming processing
hardware with larger form factor. On LQG related works,
Bertsekas [25] has demonstrated that a LQG controller can
provide the optimal control of a robot along a known/pre-
calculated path, when the uncertainty in the motion as
well as the noise in observations are Gaussian. Extending
this concept, LQG based robotic path planning solutions to
deal with uncertainties and imperfect state observations are
presented in ( [26], [27] ). To the best of our knowledge, we are
the first to combine RSSI-based relative position, angle, and speed
estimation with the LQG controller for localizing and tracking a
moving RF-emitting object.

2 PROBLEM FORMULATION

In this section, we present the details of our tracking prob-
lem and our mathematical formulation based on both a 2D
global frame of reference, R, and the TrackBot’s 2D local



frame of reference at time ¢, Rp(t). Let the location of the
Leader at time t be represented as X (t) = (zr(¢),yc(t)) in
R¢. The Leader follows an unknown path, Pr,. Similarly, let
the position of the TrackBot at any time instant ¢ be denoted
by Xr(t) = (zr(t),yr(t)). The maximum speeds of the
Leader and the TrackBot are v7*** and vi#?*, respectively.
For simplicity, we discretize the time with steps of 6t > 0
and use the notation n to refer to the n'”* time step i.e.,
t = n-dt. Let dln] = ||Xr[n] — Xr[n]||2 be the distance
between the TrackBot and the Leader at time-slot n, where
[|.||2 denotes the Ly norm. Then, with Dy, denoting the max
distance allowed between the Leader (L) and the TrackBot
(F), the objective of tracking is to plan the TrackBot’s path,
Pr, such that P (d[n] < D) ~ 1 Vn where P(.) denotes the
probability.

However, realistic deployment scenarios typically do not
have a global frame of reference. Thus, we formulate a local
frame of reference, Rr[n], with the origin representing the
location of the TrackBot, X r[n]. Let the robot’s forward and
backward movements at any time instant n be aligned with
the X-axis of Rr[n|. Also, let the direction perpendicular to
the robot’s forward and backward movements be aligned
with the Y-axis of Rp[n]. This local frame of reference
is illustrated in Fig. Note that in our real system all
measurements by the TrackBot are in Rp[n]. In order to
convert the position of the Leader in Rp[n] from R¢ or
vice versa for simulations and emulations, we need to
apply coordinate transformations. Let the relative angular
orientation of Rp[n] with respect to R be 0,.,[n] and the
position of the Leader in R ¢ [n] be X7 [n] = (27 [n], y;¢'[n]).

Then:
zr[n| cos(0rot[n])  —sin(@roe[n]) xr[n]] [27%[n]
yL [n] = sin(@mt [HD COS(@TDt [n]) Yr [TL] yzel [’I’L]

(€}
and 60,.[n] = arctan(y5[n]/25![n]) is the Leader’s direc-
tion in Rr[n]. To restate the objective of tracking in terms
of the local coordinates, Pgd[n] < Dy,) = 1 Vit where

dln] = [ X5 ]|l = (2! n]” + yie' [n] )12,

3 THE ARREST SYSTEM

In this section, we discuss our proposed system solution
for RSSI based relative position sensing and tracking. In the
ARREST system, the Leader is a robot or a human carry-
ing a device that periodically transmits RF beacons, and
the TrackBot is a robot carrying a directional, off-the-shelf
RF receiver. As shown in Fig. [2} the ARREST architecture
consists of three layers: Communication ANd Estimation
(CANE), Control And STate update (CAST), and Physical
Robotlc ControllEr (PRICE). In order to track the Leader, the
TrackBot needs sufficiently accurate estimations of both the
Leader’s relative position (X%¢) and relative speed (v.c;).
Thus, at any time instant [n], we define the state of the Track-
Bot as a 3-tuple: S[n] = [d°[n], wviy[n], 0O5.[n]] where the
superscript e refers to the estimated values, d°[n] = || X5 [n]||2
refers to the estimated distance at time n, v¢,[n] refers to

rel

the relative speed of the TrackBot along the X-axis of R p[n]

3

with respect to the Leader, and 6¢,,[n] refers to the angular

orientation (in radians) of the Leader in R [n].

CANE: The function of the CANE layer is to measure
RSSI values from the beacons and approximate the Leader’s
position relative to the TrackBot, (i.e., d°[n] and 6¢,;[n]). The
CANE layer is broken down into three modules: Wireless
Communication and Sensing, Rotating Platform Assembly,
and Relative Position Estimation. At the beginning of each
time slot n, the Wireless Communication and Sensing mod-
ule and the Rotating Platform Assembly perform a 360°
RSSI sweep by physically rotating the directional antenna
while storing RSSI measurements of successful beacon re-
ceptions into the vector ry[n]. The Relative Position Estima-
tion module uses ry[n] to approximate the relative position
of the Leader by leveraging pre-estimated directional gains
of the antenna, detailed in Section [4]
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Fig. 2. The ARREST Architecture

CAST: The functions of the CAST layer is to maintain
the 3-tuple state estimates and to generate control com-
mands based on current and past observations to send to
the PRICE layer. The CAST layer consists of two main
modules: the Linear Quadratic Gaussian (LQG) Controller
and the Strategic Speed Controller. We also added a special,
case specific module to our initial ARREST architecture (presented
in [13]) called Multipath Angle Correction for severely cluttered
environments (explained further in Section [6.3.4). The Strategic
Speed Controller estimates the relative speed of the Leader
by exploiting past and current state information and gen-
erates the speed control signal in conjunction with the LQG
controller. The term “Strategic” is used to emphasize that we
propose two different strategies, Optimistic and Pragmatic,
for the relative speed approximation as well as speed control
of the TrackBot (detailed in Section . The LQG controller,
detailed in Section incorporates past state information,
past control information, and relative position and speed
approximations to: (1) generate the system’s instantaneous
state, (2) determine how much to rotate the TrackBot itself,
and (3) determine what should be the TrackBot’s relative
speed. The state information generated by the LQG con-
troller is directly sent to the Strategic Speed Controller to
calculate the absolute speed of the TrackBot.

PRICE: The goal of the PRICE layer is to convert the
control signals from the CAST layer into actual translational
and rotational motions of the TrackBot. It consists of two
modules: Movement Translator and Robot Chassis. The



Movement Translator maps the control signals from the
CAST layer to a series of platform-specific Robot Chassis
motor control signals (detailed in Section [5).

3.1

In our proposed solution, we first formulate the movement
control problem of the TrackBot as a discrete time Linear
Quadratic Gaussian (LQG) control problem. A LQG con-
troller is a combination of a Kalman Filter with a Linear
Quadratic Regulator (LQR) that is proven to be the optimal
controller for linear systems with Additive White Gaussian
Noise (AWGN) and incomplete state information [28]. The
linear system equations for any discrete LQG problem can
be written as:

S[n+ 1] = A,S[n] + B,U[n] + Z[n] :

O[n] = C,S[n] + W(n] @
where A, and B, are the state transition matrices, U[n]
is the LQG control vector, Z[n] is the system noise, O[n]
is the LQG system’s observation vector, C), is the state-to-
observation transformation matrix, and Wn| is the obser-
vation noise at time n. A LQG controller first predicts the
next state based on the current state and the signals gener-
ated by the LQR. Next, it applies the system observations
to update the estimates further and generates the control
signals based on the updated state estimates. In our case,
O[n] = [d™[n], wviy[n], Zf;,[n]]T (the superscript m refers to
measured values). Moreover, in our case, the state transition
matices A,, = A, B, = B, C,, = C are time invariant and
the time horizon is infinite as we do not have any control
over the Leader’s movements. For a infinite time horizon
LQG problem [25], the cost function can be written as:

Proposed LQG Formulation

N
. 1
J= lim —E <Z;)S[n]TQS[n] + U[n]THU[n]> 3)
where Q > 0,H > 0 are the weighting matrices. The
discrete time LQG controller for this optimization problem
is:

S[n + 1] = AS[n] + BU[n] + K(O[n + 1] — C{AS[n] + BU[n]})
Uln] = —LS[n] and  8(0) = E(S(0))

*)

where " denotes estimates, K is the Kalman gain which can
be solved via the algebraic Riccati equation [29], and L is
the feedback gain matrix. In our system, the state transition
matrix values are as follows:

] ©)

[1 —dt 0] [0 —5t 0
A=|0 1 0/B=|0 1 0
0o 0 1 0o 0 -1
where 0t is the time granularity for the state update. Ideally,
within §t, the TrackBot executes one set of movement control
decisions while it also scans RSSI for the next set of control deci-
sion (detailed in Sections [6.1) and [6.2). Note that, to solve this
optimization problem, we also require the covariance data
for the noise, i.e., Syyw = E(WW7T), and Y, = E(ZZT).
We assume the system noise, Z[n], to be Gaussian and the
measurement noise, W[n], to be approximated as Gaussian.
Furthermore, we tweak the LQG controller to send out
a rotational control signal after a state update and before
generating the LQR control signals, U[n]. The rotational

C =

S O =
o= O
_= o O
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control signal rotates the TrackBot assembly by 6¢,,[n] and
sets 6S,,[n] = 0. This is performed to align the robot
toward the estimated direction of the Leader before calcu-
lating the movement speed. Thus, we use only the Kalman
Filtering part of the LQG controller for angle/orientation
control. The reason behind not using the full LQG controller
for TrackBot’s orientation control lies in the fact that the
LQG controller considers sudden rapid change in direction
(= 180°) as a noise and takes a while to correct the course of
the TrackBot. More study of this problem is left as a future
work.

4 RSSI BASED RELATIVE POSITION AND SPEED
OBSERVATIONS

In this section, we discuss our methodologies to map the
observed RSSI vector, ry[n], into the controller observation
vector, O[n].

4.1

The RSSI is well known to be a measure of distance if
provided with sufficient transceiver statistics such as the
transmitter power, the channel path loss exponent, and
the fading characteristics. One of the standard equations
for calculating the received power for an omnidirectional
antenna is as follows [30]:

Distance Observations

d™[n]

d'r‘ef +w

PraBm = Piapm + Gap — Lrey — 10nlog;,

P;;gm = PiaBm + GaB — Lrey + ¢
dm[n] 10

~

(6)

ref
(Prn,dBm*Pr,dBm)
10-n

dre f

where P, B, is the received power in dBm, P; 4p, is the
transmitter power in dBm, Gyp is the gain in dB, L.y is
the path loss at the reference distance d,.¢ in dB, 7 is the
path loss exponent, d"[n] is the distance between the trans-
mitter and receiver at time n, 9 is the random log-normal
shadowing and multipath fading noise in dB, and P’%,
is the received power at reference distance, d,.s. Note 7that,
since the noise 1) cannot be entirely cancelled out by the
power difference term, P:, ?ng — P, 4Bm, it contributes to
the distance observation noise term of W(n| in Eqn. (2). In
our system, Py qpm and Gqp in Eqn. (6) represent the average
received power of the observed RSSI vector, v+, [n|, and the average
directional gain of the directional antenna, respectively. Averag-
ing over multiple directional samples mitigates the small
scale fading noise due to presence of scatters. The directional
samples of the antenna mitigates multipath interference
through spatial diversity, and the mobility of the Leader and
the TrackBot introduces a fast fading channel where the path
loss model is sufficient. A range of different techniques, such
as dynamic increase in the power level or transmission rate,
can further reduce the effect of multipath fading [31].

To apply (6) in ARREST, the TrackBot needs to learn the
channel parameters such as the 1, £,.. ¢, and d, . In our pro-
posed system, we assume that the TrackBot has information
about the initial distance to the Leader, d™(0). Furthermore,
Ggp and P; 4B, are known as a part of the system design
process. Upon initialization of ARREST, the TrackBot performs
a RSSI scan by rotating the antenna assembly to generate r[0]



and harnesses the average received power (P, qpm) information
to estimate the environment’s 1 as follows.

e d™[o
n= (Pr,dem — Prapm)/10logy, o)

dref

Next, the TrackBot applies the estimated n and P, qp,m = avg
{ry[n]} on (6) to map the average received power (based on r [n])
to the observed distance to the Leader, " [n]. Similar dynamic
calibration techniques can be found in [32], [33].

@)

4.2 Angle Observations

One of the main components of our ARREST architecture
is the observation of the Angle of Arrival (AoA) of RF
beacons solely based on the RSSI data, ry[n]. There exist
three different classes of RF based solutions to determine the
AoA. The first class, antenna array based approaches, employs
an array of antennas to determine the AoA by leveraging
the phase differences among the signals received by the
different antennas [34]. The main difficulty of implementing
this class is that very few multi-antenna off-the-shelf ra-
dios provide access to phase information. The second class,
multiple directional antenna based approaches, employs at least
two directional antennas oriented in different directions [35]
to determine AoA. In this class, the differences among
RSSI values from all antennas are utilized to determine
the AoA. However, utilizing off-the-shelf antenna arrays
or multiple directional antennas significantly increases the
cost, complexity, and, in the case of multiple directional
antennas, form factor of a TrackBot implementation. We
choose to not implement a beamformer with an antenna
array because this would require around four or more an-
tennas to complete a 360° coverage as well as complex soft-
ware with significant computational power or customized
radio hardware. We also choose to not employ multiple
directional antennas because each antenna would require
separate radio hardware as well as more complex software
to synchronize the multiple radios. Instead, we develop
methods contributing to the third class of solutions, which
is the use of a single, rotating antenna and the knowledge
of the antenna’s directional gain pattern to approximate
the AoA of RF beacons. Such systems not only reduce
the complexity and power consumption, but also achieve
spatial diversity due to the physical rotation of the antenna.
The core of these methods, called pattern correlation, is to
correlate the vector of RSSI measurements, ry[n|, with an-
other vector representing the antenna’s known, normalized
gain pattern, gaps. At the beginning of each time slot n,
the TrackBot performs a 360° sweep of RSSI measurements
to generate the vector, ry[n]. Then, ry[n] is normalized:
gm = ry[n] — max(ry[n]). The TrackBot also generates
different @ shifted versions of gans(6) as follows.

ry[n] = [r_180,7-178.2, "+ ,T—1.8,7T0,T1.8, " - T178.2]

/ / ! ! ! /
8m = [T—1807T—178427 o yT-1.8,T0, 718y " T17842] 8)
Babs(0) = [g(—180+9)7 5 9(046) 7 79(178.24-9)]

where 7y refers to the RSSI measurement, g4 refers to the
antenna gain, and 7, = r, —max{ry } refers to the observed
gain for the antenna orientation of ¢° with respect to the
X-axis of Rp[n]. The step size of 1.8° is chosen based on our
hardware implementation’s constraints. Thus, the possible
antenna orientations (¢) are limited to © = {—180,--- ,—1.8,0,

5

---,178.2}. Next, the TrackBot employs different pattern
correlation methods for the AoA observation. Below, we de-
scribe three methods in increasing order of complexity. The
first method was originally demonstrated by [17]. Through
real world experimentation, we develop two additional
improved methods.

4.2.1 Basic Correlation Method

The first method (originally demonstrated by [17]) of de-
termining AoA correlates gy, with gaps(f) V0 € © and
calculates the respective Lo distances. The observed AoA
is the 8 at which the L, distance is the smallest:
o, =argmin Y wi - ||7, — grreyll2 - L. ©)
vee =% '
where the indicator function L. indicates whether the sam-
ple 7}, exists or not to account for missing samples in real
experiments, and wy = 1 is a constant.

4.2.2 Clustering Method

While the first method works well if enough uniformly
distributed samples (> 100 in our implementation) are
collected within the 360° scan, it fails in scenarios of sparse,
non-uniform sampling due to packet loss. In real exper-
iments (mainly indoors), the collected RSSI samples can
be uniformly sparse or sometimes batched sparse (samples
form clusters with large gaps (= 30°) between them).

Definition 1. An angular cluster (A) is a set of valid samples
for a contiguous set of angles: A = {k|[L,, = 1Vk € {5, 05 +
1'87' t a¢l} - @}

To prevent undue bias from large cardinality clusters that
can cause errors in estimating the correlation, we assign a
weight (wy) to each sample (k) and use the pattern corre-
lation method as in Eqn. (9). In our weighting scheme, we
assign wy, = [y where k € A.

4.2.3 Weighted Average Method

Based on real world experiments, we find that the angle
observation based on the basic correlation method, say 6},
gives reasonable error performance if the average cluster
size, denoted by )\, is greater than the average gap size be-
tween clusters, p,. Conversely, the angle observation based
on the clustering method, say 02, is better if A\, << ji,.
Thus, as a trade-off between both the basic correlation
method and the clustering method, we propose a weighted
averaging method described below.

. {M.e,lnnt(l—ﬁj)ﬂ?n if Ao < pa (10)

— L
rel — o

oL if Aa > pa

In the rest of the paper, we use the weighted average method for
angle observations.

4.3 Speed Observations

To fulfill the tracking objective, the TrackBot needs to adapt
its speed of movement (vg[n]), according to the Leader’s
speed (vp[n]). In our ARREST architecture, the Strategic
Speed Controller uses the relative position observations
(d™[n], 01%,[n]) from the CANE layer and the past LQG state
estimates to determine the current relative speed, v, [n], as
well as the Leader’s speed, v7*[n]. In this context, we employ



two different observation strategies. The first strategy, which
we refer to as the Optimistic strategy, assumes that the Leader
will be static for the next time slot and determines the
relative speed as follows:

Tra;kBot

TrackBot Leader at [n-1]
at [n-1] i

at[n] o .

d‘[n]

Fig. 3. lllustration of the Relative Speed Observation

(d" (1) = d°[n) - cos 072, [n)
5t (1)

Vrel [n] = Uiez[n] -

vrn+1]=0
On the other hand, the Pragmatic Strateqy assumes that the
Leader will continue traveling at the observed speed, v7*[n].
This strategy determines the relative speed as follows:

(@[] — ™ [n] - cos 07 [n])? + (™ [n] - sin 072, [n])*) "

vrln] = 5t
d™[n] - sin 677 [n]

d™[n] - cos 07, [n] — d¢[n]

vi[n+ 1] = vi'[n] = vr[n] - cos(6,[n])

0,[n] = arctan — 0rei[n]

vra[n] = vr[n] — vi'[n]
(12)

For an illustration of different components of this process,
please refer to Fig. Next, the LQG controller uses the
observation vector O[n] to decide the next state’s relative
speed, vS,[n + 1] which is used by the Speed Controller
to generate the TrackBot’s actual speed for next time step,
vp[n 4+ 1] = v§[n + 1] + vE, [n + 1]. Note that the speed of
the TrackBot, vr[n], is exactly known to itself at any time n.
In addition to the different assumptions about the Leader’s
speed, the two strategies also differ in how the noise is
modeled in the correlation between distance and speed
estimations: the Optimistic Strategy assumes that the noise
in speed observations are uncorrelated with the noise in dis-
tance observations, whereas the Pragmatic strategy assumes
strong correlation between distance and speed estimation
noise. We compare the performance of both strategies based
on emulation and real world experiments in Sections [6.1.1]

and respectively.

5 TRAcCKBOT PROTOTYPE
5.1 Hardware

We implemented a TrackBot with our ARREST architecture
inside a real, low-cost robot prototype presented in Fig.
For a concise description of our prototype, we list the
hardware used for implementation of each of the ARREST
components in Table We discuss details of the Time
Difference of Arrival (TDOA) based localization system

1.Due to page limitations, we do not detail the hard-
ware design here. We will release the hardware design
and schematics upon publication at https://github.com/
ANRGUSC/ARREST-Hardware,
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(which is a significant new addition to the system presented
in [13]]) integrated with our ARREST architecture for ground
truth estimation separately in Section

TABLE 1
ARREST Hardware Implementation
Module Hardware
‘C/chﬁlri?nication OpenMote [36]; Rosewill Directional An-
. tenna (Model RNX-AD7D)
and Sensing
% Rotating Nema 17 (4-wire bipolar Stepper Motor);
2 | Platform EasyDriver - Stepper Motor Driver; mbed
U | Assembly NXP LPC1768 [37]
Reltive Position | pped NXP LPC1768 [37]
stimation
CAST mbed NXP LPC1768 [37]
Movement
6 Translator mbed NXP LPC1768 [37]
~ Baron-4WD Mobile Platform, L298N Step-
4| Robot Chassis per Motor Driver Controller Board, HC-
SR04 Ultrasonic Sensor [38]

In the TrackBot prototype, the directional antenna and
the OpenMote are mounted on top of a stepper motor using
a circular platform. The mbed NXP LPC1768 microproces-
sor, located on the main chassis, rotates the platform in pre-
cise steps of 1.8° via the Easydriver-motor driver. While we
use two microcontroller (on the OpenMote and the mbed),
the system can be implemented using one microcontroller.
We choose to use to use two in this prototype to alleviate
wiring issues and compensate for the lack of sufficient GPIO
pins on the OpenMote. The OpenMote is only used for
RF sensing while the mbed is used to implement the rest
of the ARREST modules. For programming on the mbed,
we use the mbed Real Time Operating System [39]]. Each
consecutive 360° antenna rotations alternate between clockwise
and anti-clockwise because this: (1) prevents any wire twisting
between the mbed and OpenMote and (2) compensates for the
stepper motor’s movement errors. The mbed communicates
with other H/W components via serial communication and
GPIO pins. For reliability in the serial communication, we
have implemented a version of the well known High Level
Data Link Control (HDLC) Protocol [40] on both mbed OS
and RIOT.

In the current prototype, the maximum speed of the
robot is 0.3m/s. Due to acceleration forces caused when
trying to simultaneously rotate the antenna and move the
robot chassis, the stepper motor rotating the antenna as-
sembly sometimes misses a step or over-steps which causes
the assembly to not return to its initial position after a
complete rotation. To solve this issue while avoiding com-
plex solutions (e.g., via additional sensors and a feedback-
based offset control mechanism), the TrackBot instead first
performs a RSSI scan and then moves the chassis. Ideally,
the antenna can rotate 360° in 1s while collecting 200
samples. However, we choose to slow the scan down to
a duration of 2s to cope with the occasional occurrence
of sparse RSSI samples. Moreover, to keep the movement
simple, the TrackBot first rotates to the desired direction and
then moves straight with the desired speed. The wheels of
the robot are controlled using PWM signals from the mbed
with a period of 2s. We choose a 2s period for robot rotation
as one 2s pulse width equates to a chassis rotation amount
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of ~ 180°. We also choose the same period length (2s) for
forward movement which caps the speed of the robot at
0.6/6 = 0.1m/s (including 2s of RSSI scan). The whole
system is powered by five 1.2V Ni-MH rechargeable AA
batteries which can power the system for ~ 2 — 3 hours.
The battery is directly connected to both motor drivers.
The Easy Driver stepper motor driver include an on-board
voltage regulator which can output 5V. The 5V output is
used to power the mbed, and the mbed’s internal voltage
regulator is used to step down the voltage to 3.3V to power
the Openmote. We also have a provision for using a single
9V, Lithium-ion rechargeable battery which we do not use in
any of the experiments. We also implemented a very simple
obstacle avoidance mechanism by employing a single HC-
SR04 range finder in the front bumper of the chassis and
protection bumpers on the other sides. While moving for-
ward, if the ultrasound detects an object at a distance less
than 10cm, it stops the TrackBot’s movement immediately.

The Leader node is currently implemented as an Open-
Mote transmitting beacons with the standard omnidirec-
tional antenna and a transmit power of 7dBm. For pro-
gramming of the OpenMotes, we use the RIOT operating
system [41], [42]. The Leader implementation is capable of
transmitting 200 packets/second.

5.2 ARREST System Parameter Setup
5.2.1

In the cost function of our LQG formulation, the matrix
Q is a 3 x 3 positive definite diagonal matrix: Q =
diag{Qa, Quv,Qp}. Our main goal is to keep the distance
as well as the relative angle to be as low as possible while
keeping emphasis on the distance. From this perspective,
we perform a set of experiments to find a good trade-off
between (), Q¢ and ()4 where we vary one parameter while
keeping the rest of them fixed. Based on these experiments,
we opt for the following settings: ), = 0.1, @y = 1 and
Qq = 10 - v7'** where v7'*" is the maximum speed of the
Leader. With these settings, our system performs better than
any other explored settings. Furthermore, H is chosen to be
a 3 x 3 Identity matrix.

Cost Parameters Setup

5.2.2 Noise Covariance Matrix Parameters Setup

In our implementation, the system noises are assumed to
be ii.d normal random variables with X7z being a 3 x 3
identity matrix. On the other hand, the observation noise
covariance matrix requires separate settings for the differ-
ent strategies. For the Optimistic strategy, we assume that
the observation noises are uncorrelated, whereas, for the
Pragmatic strategy, the distance estimation errors and the
relative speed estimation errors are highly correlated with
variances proportional to v7'**. A set of empirically deter-
mined values of Xy for the Optimistic and the Pragmatic
strategies are as follows.

S O
o N O
= o O

@) P
ZWPW = vEWgW =
0.1

1 o 0
vpeT  (ymazy2 (13)
0 0

where Op and Pg refers to the Optimistic and the Pragmatic
strategies, respectively.

6 EXPERIMENTS AND PERFORMANCE ANALYSIS
6.1 Baseline Analysis via Emulation

In this section, we perform a thorough evaluation and setup
the different parameters such as the LQG covariance matrix
(discussed in Section of the ARREST architecture via a
set of emulation experiments. We use the emulation experi-
ment results as a baseline for our real-world experiments.

We employ our hardware prototypes, discussed in Sec-
tion 5} to collect sets of RSSI data in cluttered indoor and
outdoor environments for a set of representative distances,
D, and angles ©. Next, we use the collected samples to
interpolate the RSSI samples for any random configuration
C = (d,0¢), where d € RY and 0,; € [—180,180), as
follows: 7¢ = r* — 10 - 1) - logy(d/dnear) + N(0,02), where
r® is a random sample for configuration Cpeqr = (dnear,
Onear) such that dyeqr = argming cp |d; — d| and Opear =
argming ¢ |0; — Ore|. Note that we add an extra noise of
variance 02 = 2 on top of the noisy samples (with 02 = 4)
for configuration Cycqr. To estimate the 7, we use (7) to
calculate 7;; for each pair of distances, d;,d; € D and take
the average of them. We choose a value of 6t = 1s in
to match the maximum achievable speed of our stepper
motor as, ideally, the interval between any two consecutive
movement control decisions could be 1s where the Track-
Bot carries out any movement control decision within the
respective 1s interval.

€ 30 o ARREST--Pragmatic € 3= ® ARREST--Pragmatic
c ¢ ARREST--Optimistic| c ¢ ARREST--Optimistic
- *Baseline Algorithm | ~ *Baseline Algorithm

E’ZO * g’Z [ B T I T S
o * 2 °
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@ fp e ' 5
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Leader Maximum Speed in m/s TrackBot Maximum Speed in m/s

(a) Varying Leader Speed (b) Varying TrackBot's Speed

Fig. 4. (a)-(b)Tracking Performance Comparison Among Different
Speed Estimation Strategies

6.1.1 The Optimistic Strategy vs. The Pragmatic Strategy

In this section, we compare the performance among the
two proposed strategies, Optimistic and Pragmatic, and a
Baseline algorithm. In the Baseline algorithm, the TrackBot es-
timates the relative position via the basic correlation method
(discussed in [£.2.I). Once the direction is determined, the
TrackBot rotates to align itself toward the estimated di-
rection and then moves with a speed of min{vj*”, dz[t"} }.
In Fig. [da] we compare the average distance between the
TrackBot and the Leader for varying v7'** while setting
v = 1.8 - v'**. Figure [ia clearly demonstrates that the
Pragmatic strategy performs better than the Optimistic strat-
egy as well as the Baseline algorithm, due to adaptability
and accuracy of the speed information. The poor perfor-
mance of the Optimistic strategy is due to its indifference
towards the actual speed of the Leader which causes the

TrackBot to lag behind for higher velocities. Conversely, we




compare the average distance between the Leader and the
TrackBot for varying vj'®®, while the Leader’s maximum
speed is fixed at v7** = 1m/s. The experiment outcomes,
presented in Fig. b} show that the performance of both
strategies are comparable, while the Optimistic strategy
outperforms the Pragmatic strategy for vj** > 3 . v*".
The reason behind this is the Leader is constantly changing
movement direction while the TrackBot always travels along
the straight line joining the last estimated position of the
Leader and the TrackBot which may not be the same as the
Leader’s direction of movement. This results in oscillations
in the movement pattern for the Pragmatic strategy while
the Optimistic strategy avoids oscillations since it assumes
the Leader to be static. The worst performance of the Base-
line approach is attributed to lack of speed adaptation by
taking past observation into account.

One more noticeable fact from Fig. [4b]is that if vj#** =
v7'**, the tracking performance is the worst. This is quite
intuitive because for this speed configuration, the TrackBot
is unable to compensate for any error or initial distance
while the Leader constantly moves at a speed close to
v***. Thus, the relative speed needs to be positive for
proper tracking. In order to find a lower bound on the
TrackBot’s speed requirement, we perform another set of
experiments by varying vi#** from v7*** to 3 - v7'**. Based
on the results, we conclude that for v3** < 1.6 - 0%,
the tracking system fails and the distance increases rapidly.
On the other hand, for v7** > 1.6 - v]*** the performance
remains the same. Thus, in our experimental setup, we opt
for v = 1.8 - vPO%.

1 1 1
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Fig. 5. Emulation Based Performance: (a) Absolute Distance Estimation
Errors (in m), (b) Absolute Angle Estimation Errors (in degrees), and (c)
Absolute Speed Estimation Errors (in m/s)

6.1.2 Absolute Distance Statistics

One main focus of our ARREST architecture is to guarantee
P(||Xc[n] —Xr[n]||2 < Din) =~ 1 Vn. The value of Dy, could
be chosen as a function of v7'*”. However, according to
our target application context, we select Dy, = 5m as we
consider distances beyond 5 meters to be unreasonable for
proximity considering typical household room sizes. Note
that, one can easily choose a different threshold distance and
tune the rest of the parameters by considering the trade-off
represented in Fig. [l With this constraint, we find that our
present implementation of the ARREST system fails in the
tracking/following objective if the Leader moves faster than
3m/s. In order to verify whether our ARREST architecture
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can guarantee the distance requirement for Leader with
vr® < 3m/s, we perform a set of emulations with ¢ = 1s,
where the Leader travels along a set of random paths. In
all cases, the instantaneous distances between the TrackBot
and the Leader during the emulation are less than 5m with
probability ~ 1. The nonzero probability of distances higher
than 5m is due to randomness in the Leader’s motion
including complete reversal of movement direction. Note
that we do not present the respective plots due to page
limitations.

6.1.3 Estimation Errors

In order to learn the statistics of different estimation errors,
we perform a range of emulation experiments, where the
Leader follows a set of random paths and v7%* < 3m/s. In
Fig. [5a} we plot the empirical CDF of the absolute errors in
the distance estimates maintained by our system. Figure
clearly illustrates that the instantaneous errors are less than
100cm with very high probability (= 90%), and that the
absolute error values are bounded by 1.5m. These statistics
are reasonable for pure RSSI-based estimation systems (ex-
plained further in Section [6.4.T). We also plot the CDF of
the absolute angle estimation errors over the duration of the
emulations in Fig. |5b} It can be seen that the absolute angle
errors are less than 40° with high (= 80%) probability, which
is justified as the Half Power Beam Width (HPBW) for the
antenna we are using is approx 70°. Further improvements
may be possible by using an antenna with greater direction-
ality or other radios (such as UWB radios). The non-zero
probability of the angle error being more than 40° is again
due to the random direction changes in the Leader’s move-
ments. Similarly, we analyze the absolute speed estimation
errors in terms of CDEF illustrated in Fig. The absolute
errors in the speed estimations of the Leader are less that
1m/s with =~ 90% probability.
TABLE 2
Summary of Emulation Results

m

O Pragmatic Strategy performs best for 1.6 - v'*" < vE*" <
3 - v7'*” while Optimistic Strategy performs best for vz** >
3. Uznaac

O The ARREST system fails if v7'*® > 3m/s.

O For v7'** < 3m/s and vF** = 1.8 - v7'*”, the TrackBot stays
within 5m of the Leader with probability ~ 100%.

O Absolute distance estimation errors are < 100cm with prob-
ability =~ 90% and < 150cm with probability ~ 100%.

0O Absolute angle estimation errors are < 40° with probability
~ 80%.

O Absolute speed estimation errors are less than 1m/s with
probability ~ 90%.

6.2 Real Experiment Results : Small Scale

To analyse the performance of the ARREST architecture, we
use the TrackBot prototype to perform a set of small scale
experiments, followed by a range of large scale experiments.
In this section, we present the results of our small-scale real-
world experiments.

Based on the valuable insights from the emulation re-
sults, we choose TrackBot’s speed to be at least 1.8X the
Leader’s speed. The TrackBot makes a decision every 6s.
Between each decision, the TrackBot takes 2s for both the an-
tenna rotation and RSSI scan, 2s for the chassis rotation, and



2s for the chassis translation. However, in the state update
equations, 0t = 4s because the actual chassis movement
takes place for only 4s. With this setup, we perform a set of
real tracking experiments in three different environments:

O A cluttered office space, illustrated in Fig.|6a|(~ 10m X
6m), with a lot of office desks, chairs, cabinets, and reflecting
surfaces.

O A hallway, illustrated in Fig. [b| (=~ 18m long and 3m
wide), with pillars as well as sharp corners.

O A VICON camera localization [12] based robot exper-
iment facility, illustrated in Fig.[6d (= 6m x 6m).

For the first two environments, we use manual markings
on the floor to localize both the Leader and the TrackBot. For
the last environment, the VICON facility provides us with
camera-based localization at millimeter scale accuracy. We
perform a set of experiments in each of these environments
for an approximate total period of one month with individ-
ual run lasting for 30 minutes during different times of the
day. For these experiments, the Leader is a human carrying
an OpenMote transmitter.

6.2.1 The Optimistic Strategy vs. The Pragmatic Strategy

Similar to our emulation based analysis, we perform a real
system based comparison of the proposed speed adaptation
strategies as well as the Baseline Algorithm (introduced in
Section [6.1.1). However, in this set of experiments we do
not vary the maximum speed of the TrackBot or the Leader
due to prototype hardware limitations. Instead, we compare
the absolute distance CDF statistics of these three strategies
in Fig. [7a| for vF** = 0.lm/s and v}p*® = 1.8 - 0%,
Figure [7a| validates that Pragmatic strategy performs best
among all three strategies when v7** = 1.8 - v7***. More-
over, the baseline strategy performs the worst due to lack of
speed adaptation as well as lack of history incorporation. In
summary, our real experiment based results concur with the
emulation results.

6.2.2 Estimation Errors

To analyze the state estimation errors in our ARREST ar-
chitecture similar to the emulations, we perform a range of
prototype based experiments, where the vi** = 1.8 - v7'*
and the Leader follows a set of random paths. In Fig. [7b]
we plot the empirical CDF of the absolute errors in the
distance estimates maintained by our TrackBot. Figure [7b|
clearly illustrates that the instantaneous absolute errors in
our distance estimates are < 100cm with very high proba-
bility (= 90%), and are bounded by 1.5m. These statistics
are also reasonable for pure RSSI based estimation systems
and concur with the emulation results. Next, in Fig.
we compare the angle estimation error performance of the
TrackBot for all three AoA observation methods introduced
in Section where we intentionally introduce random
sparsity in the RSSI measurements. Figure illustrates
that our proposed clustering method and weighted average
method perform significantly better than the basic correlation
method which is expected since the first two take into ac-
count the clustered sparsity (Detailed in Section [£.2). The
instantaneous absolute angle errors are less than 40° with
high probability (= 90%) for all three methods which is
justified because the HPBW specification for the antenna
is approx 70°. Figure [7c| also illustrates that the weighted
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angle observation method slightly outperforms the cluster-
ing method for AoA observation. The apparent similarity
between the performance of the clustering method and the
weighted average method is attributed to the consistent
lower cluster sizes compared to the gap sizes (A, << p,) in
our experiments.

6.2.3 Tracking Performance

In Fig. we present a representative path trace from the
experiments in the indoor scenario. Similarly, in Fig. [6b| we
present a real experiment instance in the Hallway. Lastly,
Fig. [6dillustrates an example trace from the VICON system.
All three figures illustrate that our system performs quite
well in the respective scenarios and stays within ~ 2m from
the Leader for the duration of the experiments. These results
suggest that our system works equally well in different en-
vironments: cluttered and uncluttered. To verify that further,
we perform a set of experiments with a static Leader not in
the line of sight of the TrackBot for > 50% of the TrackBot’s
path. Our TrackBot was able to find the Leader in 75% of such
experiments. In Fig. [bd] we present one instance of such
experiment. The main reason behind this success lies in the
TrackBot’s ability to leverage a good multipath signal (if
exists). In absence of direct line of sight, the TrackBot first
follows the most promising multipath component and by
doing so it eventually comes in line of sight with the Leader
and follows the direct path from that point on. In most of
these experiments (> 90%), the TrackBot travels a total distance
of less than 2X the distance traveled by the Leader. This implies
that our system is efficient in terms of enerqy consumption due to
robotic maneuvers.

Nonetheless, these small real-world experiments also
point out that our current system does not work if there
exists no strong/good multipath signal in NLOS situations
where “strong multipath” implies that one multipath sig-
nal’s power is significantly higher than other multipath sig-
nals. We detail multipath related problems and our method
of partly circumventing it in Section

TABLE 3
Summary of Small Scale Real-World Experiments

mazT mazT

O Pragmatic Strategy performs best for 1.8 - v7'** = v
O Absolute distance estimation errors are < 100cm with prob-
ability ~ 90% and < 150cm with probability ~ 100%.

O Absolute angle estimation errors are < 40° with probability
~ 90%.

O Weighted average AoA observation method performs the
best.

O The TrackBot stays within 2m of the Leader with probability
~ 98% in line of sight contexts.

0O The ARREST system works with probability ~ 75% for NLOS
contexts, although it fails if no “strong multipath” exists.

6.3 Real Experiment Results : Large Scale

The small scale experiments, presented in Section were
limited in terms of deployment region (< 60 sq. meters)
due to the dimensions of the VICON system and the effort
plus time required for large scale experiments with man-
ual measuring/markings. To perform large scale and long
duration experiments based evaluations, we integrated a
version of a well known Time Difference of Arrival based
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localization [43] ground truth system in our TrackBot. This
helped us avoid the need of tedious manual markings
and measurements. For more efficient experiments, we also
developed a robotic leader, which we will refer to as the
LeaderBot in this section, to act as both Leader as well as the
reference node for the TDoA localization system.

The main idea behind TDoA systems is to use a ref-
erence node that transmits two different types of signals,
say RF and Ultrasound, simultaneously. Now, the localiz-
ing/receiver node receives these two signals at different
instances of time due the propagation speed difference be-
tween RF and Ultrasound, say Ac. With proper timestamps,
the receiver can now calculate the time difference of arrival
of these two signal, say At, to estimate the distance as
Ac - At. We extend this concept slightly further by placing
both the receiver RF antenna and the ultrasound on the
the TrackBot’s rotating platform. We rotate the platform in
steps of 18° (just a design choice) and perform TDoA based
distance estimation for each orientation of the assembly. The
TDoA system returns a valid measurement if and only if
the assembly is oriented toward a direct line of sight or a
reflected signal path. Assuming that there exists a line of
sight, the orientation with the smallest TDoA corresponds
to the actual angle between the LeaderBot and the TrackBot,
and value of the smallest TDoA corresponds to the distance.
Note that none of the materials presented in this section is
presented in our workshop paper [13].
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6.3.1 LeaderBot and TDoA Ranging

The LeaderBot is built upon the commercially available
small mbed-controlled programmable Pololu 3pi robot [44].
In our LeaderBot, we use two Openmotes: one Openmote
acts as the Leader beaconer (Beacon Mote) and operates on
802.15.4 channel 26; the other Openmote (Range Mote) is
used to remotely control the 3pi robot’s movements and to
perform the TDoA based localization on 802.15.4 channel
25. We use two Openmotes for a cleaner design as well as
to avoid operation interference between remote controlling
and beaconing. The Range Mote is slotted into the 3pi’s
built-in Xbee socket which draws power from the mbed. The
Beacon Mote is powered by the on-board USB socket with
a regulated voltage supply and connected to the mbed via
external circuitry. We use a MB 1300 XL-MaxSonar-AEOQ [45]
as the ultrasound beaconer which is also powered by the
3pi robot. The LeaderBot is illustrated in Fig. On the
TrackBot, we also add a MB 1300 XL-MaxSonar-AEOQ [45] ul-
trasound on the rotating platform alongside with the direc-
tional antenna to receive the ultrasound beacons. We will re-
lease the hardware design and schematics upon publication
at https://github.com/ANRGUSC/ARREST-Hardware.

In these experiments, the Openmote on the TrackBot
switches between Tracking mode and the Ranging mode for
ground truth estimation by switching its operating threads
as well as the Openmote channel. Before ranging, the Track-
Bot and the LeaderBot finish up their last movement step
and stops. This is followed by a Handshake Mechanism
between the LeaderBot’s RangeMote and the TrackBot's
Openmote to perform all the initialization: (1) switching the
channel from 26 (Tracking channel) to 25 (Ranging Channel),
and (2) turning ON the ultrasound-rf ping receiving mode of
the TrackBot by setting some flags in the MAC layer to pre-
pare for interception of the packet. After the initialization,
the TrackBot sends a localization request to the RangeMote
on the 3pi. Upon receiving the request, the RangeMote sends
exactly one RF packet and exactly one ultrasound ping at
42kHz. If both transmissions are received, the TrackBot’s
Openmote estimates the TDoA and sends it to the TrackBot’s
mbed which then rotates the platform to the next orien-
tation. If the TDoA process fails, the Openmote times out
and returns 0 to the mbed which then rotates the platform
to the next orientation after a couple retries. If a full 360°
rotation of the platform is complete, the mbed processes the
TDoA data to estimate the angle and the distance. Lastly,
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the TrackBot’s Openmote switches back to channel 26 for
Tracking mode.
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Fig. 8. TDOA based Localization System Performance: (a) Distance
Estimation Errors and (b) Angle Estimation Errors

Before evaluating the ARREST system on the basis of
the TDoA ground truth system, we first evaluate the perfor-
mance of the TDoA system. We found that the worst case
distance estimation errors in TDoA systems are in the order
of 10 — 20 cm, as illustrated in Fig.|8a} The angle estimation
statistics presented in Fig. [8b| demonstrates highly accurate
performance in angle estimations. The slight chances of
getting an error of 18° is justifiable by our choice of ranging
rotation step size of 18°. Thus, our TDOA system is accurate
enough to be considered as a ground truth in line of sight
situations. Nonetheless, we monitor the ranging outputs to
trigger retries in case of very inaccurate outputs or momen-
tary failures. Moreover, in non-line sight situations, we still
rely on manual measurements as the TDOA system fails in
such scenarios.
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Fig. 9. Real Experiment Based Performance for Large Scale: (a) Ab-
solute Distance in Meters, (b) Absolute Distance Estimation Error in
Meters, and (c) Absolute Angle Estimation Error in Degrees

6.3.2 Different Experimental Settings

With the aforementioned setup, we performed a range of
experiments over months of duration with each run lasting
for 12 hours. For the ARREST setup, we use the Pragmatic
policy with the weighted average angle estimation because
of its superior performance in our emulations and small
scale experiments. The LQG setup are also kept same as the
small scale experiments. To diversify the situation we have
performed experiments in four different classes of settings.

O Large (> 15m x 10m) office rooms with lots of
computers, reflective surface, and cluttered regions.

O Long hallways (= 200m long and 5 — 10m wide) with
lots of turns.

11

O Open ground floor spaces (=~ 30m x 30m) with pillars.
O Homelike environments with couches, furniture, and
obstacles.

6.3.3 Performance Analysis

In Fig.[9al we present the statistics of the absolute distance
between the TrackBot and the LeaderBot throughout the
duration of the experiments in all four scenarios. Figure
shows that the absolute distance is bounded by 3.5 meters
in all four scenarios which further verifies our small scale
experiment results presented in Fig. [7} Another noticeable
fact from the figure is that ARREST system performs worst
in the cluttered office scenarios which is justifiable due to
presence of a lot of reflecting surfaces as well as obstacles.

Similar statistics can be seen in the absolute LQG
distance error plot presented in the Fig. [0bl Figure [9b|
shows that the instantaneous absolute distance errors are
< 100cm with ~ 90% probability, except in the office
scenario (= 70%). The comparatively higher distance errors
for office scenarios is due to overestimation of distances in
NLOS scenarios and in presence of strong multipath signals.
However, this does not affect the performance much as the
temporarily predicted higher distance tends to only lead to a
temporary higher velocity of the TrackBot. In summary, the
distance error statistics is also mostly similar to the distance
error statistics from the small scale experiments. Similar
pattern can be observed in the angle estimation error plots
presented in Fig. 9d Again the office space performance is
worst. The open space performance is prominently better
than the other scenarios due to absence of any sort of
multipath signals. The instantaneous angle errors are less
than 40° with high probability (= 85%) in overall statistics.
However the scenario specific errors statistics (error being
less that 40°) vary from ~ 75% probability in indoor setting
to = 100% probability in the outdoor settings. This slight
discrepancy between small scale and large scale angle error
performance is mainly due to different environment settings
as evident from the Fig. [0 itself. In Fig. we present a
sample illustrative trace of a large scale hallway experiment,
drawn based on manual reconstruction from a video record-
ing and markings on the floor.

6.3.4 Multipath Adaptation

Similar to small-scale experiments, we perform a set of
experiments with a static Leader not in the line of sight
of the TrackBot for > 50% of the TrackBot’s path. Due to
the TrackBot’s ability to leverage a good multipath signal,
the TrackBot was able to find the Leader in 70% of the
cases. However, we also notice that it fails dramatically
if the TrackBot falls into a region with no direct path as
well as no strong multipath signals (i.e., there exist multiple
similar strength multipath signals). To overcome that, we
add a Multipath Angle Correction module in the CAST layer
(refer to Fig. ). This module triggers a randomized move-
ment for a single LQG period if: (1) the TrackBot hits an
obstacle for 3 — 4 consecutive LQG periods or, (2) the LQG
estimated distance to the transmitter doesn’t change much
over 3 — 4 consecutive periods. This policy basically leads
the TrackBot to a random direction with the hope of getting
out of such region. However, we noticed that if the TrackBot
keeps following randomized direction for consecutive LQG



periods, it harms the tracking performance. Thus, we have
set a minimum time duration (Five LQG periods in our
implementation) between any two consecutive randomized
movements. Note that, all these timing choices are made em-
pirically via a range of real experiments. With this strategy,
we noticed an improvement on the TrackBot's success rate from
~ 70% to a success rate of = 95% in such scenarios. However,
the trade-off in such context is that the convergence in case of a
far away Leader (> 8m) is now slower by ~ 15%.

) 1

Fig. 10. Full path Trace for a Sample Large Scale Experiment (Blue —-
Leader, Red — TrackBot). This trace is drawn based on manual
reconstruction from a video recording and markings on the floor.

TABLE 4
Summary of Large Scale Real-World Experiments

O Absolute distance estimation errors are < 100cm with proba-
bility ~ 90% except in the case of cluttered office environments.
O Average Absolute angle estimation errors are < 40° with
probability ~ 85%.

O The TrackBot stays within 3.5m of the Leader with probabil-
ity = 100% in all scenarios of tracking.

O In NLOS scenarios, addition of a conditional randomization
improves the success rate from 70% to 95% but slows the
converges by =~ 15% for static far-away Leader.

6.4 Miscellaneous
6.4.1 Raw RSSI Data Analysis

Based on all our evaluations, we conclude that the presence
of multipath signals does not hamper the performance if
there exists a direct line of sight. To justify this further
and to gather more insights on the systems performance,
we perform a raw RSSI data analysis and calculate the
unfiltered error statistics. In Fig. we plot the RSSI pat-
tern based distance estimation error statistics which demon-
strates that the accuracy of the directional antenna pattern
based distance estimations are in the order of less than 1
meter with 90% probability. On the other hand, Fig.
shows that the RSSI pattern based angle estimation error
are less that 40° with very high probability (=~ 80%) with
some deviations due to multipath and random changes in
movement directions. Again, note that, the an error upto
40° is acceptable due to our choice of directional antenna.
We also perform a set of experiments in an anechoic chamber
with controlled position of the reflectors. While we do not present
the respective plots for page limitations, the statistics are very
similar to Fig.|11|for a maximum separation distance of 5m. We
also verify the performance of the RSSI based estimation
for varying sampling rate. For these set of experiments, we
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fix the distance and angle between the TrackBot and the
Leader and properly set the channel parameters before each
experiment. Figures and present the average dis-
tance errors and average angle estimation errors with 95%
confidence interval for varying sampling rate. Figure
shows that the angle estimation performance deteriorates as
the sampling rate is decreased which is self-justified. The
distance estimation actually does not vary much with the
sampling rate.

1.5 0.015
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Fig. 11. Raw Data Analysis: (a) Distance Estimation Errors and (b) Angle
Estimation Errors
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Fig. 12. Estimation Performance for Varying Sampling Rate: (a) Distance
Estimation Errors and (b) Angle Estimation Errors

Our numbers may even appear to be better than those typically
reported for RSSI based localization (where typical accuracies are
~ 2m — d5m or higher), but this is attributed to the fact that
the distance estimates use the average of 40 — 200 samples, one
from each sample’s respective antenna orientation. Moreover, the
different orientations of the directional antenna add some
spatial diversity to the samples which in turn also improves
the overall RSSI based estimation performance. This analy-
sis also suggests that we can use sampling rate of 100 sam-
ples/rev to achieve similar performance. Nonetheless, we
stick with 200 sample/rev as we notice a loss of maximum
70 — 90 samples per revolution in severe scenarios.

6.4.2 Effect of Antenna Rotation Direction

The direction of antenna rotation might play an important
role in the estimation and tracking performance of the
ARREST system. Continuous rotation in one direction (say
clockwise) might favor the system more than the other
(counter-clockwise) due to uneven system bias. To verify
whether this statement applies to our proposed ARREST
system, we performed a comparison of the RSSI based dis-
tance and angle estimation performance statistics between
clockwise rotations and counter-clockwise rotations. To this
end, we present the error statistics for distance and angle

estimation errors in Figs.[I3aland respectively. Figure
demonstrates that the error statistics are very similar for



clockwise and counter clockwise rotation which implies that
the rotation direction does not have any prominent effect
towards the performance of the ARREST system.
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Fig. 13. Effect of Antenna Rotation Direction of the Estimation: (a)
Distance Estimation Errors and (b) Angle Estimation Errors

6.4.3 Different Sensing Modalities

While our proposed ARREST architecture employs pure
RSSI based distance, angle, and speed estimations, the same
architecture can be easily adapted to use other technologies
such as cameras or infrared sensors. In such cases, we just
need to modify the CANE layer of the ARREST architecture
and feed the relative position approximations to the CAST
layer. Now, each of these estimation technologies i.e., cam-
era based or RF based estimations, have different accuracies
in terms of distance and angle estimations. To analyze the
tracking performance of the ARREST system, oblivious to
the actual technology used in CANE layer, we perform a
set of simulation experiments where we control the average
errors in the distance and the angle estimations. Figure
illustrates one instance of such experiments where we fix
the average angle error (0 in this case) and vary the average
distance estimation error. Figure shows that the effect
of positive estimation errors (dorq — d® > 0, where d,4 is
the actual distance) have a more detrimental effect on the
tracking performance than negative errors.

This is justified as positive distance estimation errors
imply always falling short in the movements, whereas,
negative errors imply over-estimations and more aggressive
movements. It is also noticeable that there exists an optimal
value of average distance estimation error. The value of this
optimal distance error depends on the maximum Leader
speed as well as average angle error. Next, we plot the
relation between average tracking distance and average
angle error while the average distance error is kept to be
0 in Fig. It is obvious and quite intuitive that the
best tracking performance is obtained for an average angle
estimation error of 0. Note that, we do not control the
speed error separately as it is directly related to the angle
and distance estimations. This analysis demonstrates the
versatility of our ARREST architecture to tolerate a large
range of estimation errors. More specifically, it tolerates up
to 5m average distance error and 45° average absolute angle
error in a successful tracking application. This analysis also
shows that while RSSI based system is not optimum, it
has reasonable performance compared to the best possible
ARREST system (with zero distance and angle estimation
error).
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7 CONCLUSION

In this paper, we propose ARREST, a pure RF based relative
localization and tracking system, for autonomously follow-
ing a RF-emitting object. The proposed ARREST system
employs a rotating directional antenna based approxima-
tion of relative distance, angle, and speed, that is further
utilized by a LQG controller to improve the estimates and to
autonomously control the motion of the TrackBot. Through
a set of emulations and real world experiments using our
TrackBot prototype, we demonstrate the performance and
error statistics of our system. Nonetheless, there are a lot of
research questions that need to be addressed in our future
works and are not part of this work. First, we intend to
develop a strategy with a proper trade-off between Opti-
mism and Pragmatism, which will potentially improve the
performance. Second, we want to make the system faster
by employing the concept of compressive sampling that
will potentially allow for continuous-time decision making.
Third, we want to explore the optimal configuration options
for our system as well as the optimality conditions for
RF based tracking. Fourth, we intend to look into more
structured randomization in the TrackBot’s movements to
improve performance in severe NLOS environments. Fifth,
it is well-known that LQG solutions do not provide a global
system-independent robustness and stability guarantee [46].
While this has not come up as a major concern in the
ARREST system experimentation, we would like to perform
a thorough stability analysis in future to further characterize
our proposed controller. Sixth, we plan to combine other
sensing modalities such as ultrasound to explore whether
the tracking can be significantly improved. Ultrasound is
known to have better localization accuracy but at the cost of
LOS restriction. We plan to design a system that can take ad-
vantage of ultrasound even in NLOS environments. Finally,
we plan to investigate a slip ring based implementation for
an alternative and potentially better mechanical design.
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Fig. 14. Performance of the ARREST System in Terms of Controlled
Estimation Errors
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